linux/drivers/crypto/nx/nx-sha256.c
Herbert Xu b20d9a73a3 crypto: nx - Fix numerous sparse byte-order warnings
The nx driver started out its life as a BE-only driver.  However,
somewhere along the way LE support was partially added.  This never
seems to have been extended all the way but it does trigger numerous
warnings during build.

This patch fixes all those warnings, but it doesn't mean that the
driver will work on LE.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-06-24 14:51:35 +08:00

289 lines
7.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SHA-256 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha2.h>
#include <linux/module.h>
#include <asm/vio.h>
#include <asm/byteorder.h>
#include "nx_csbcpb.h"
#include "nx.h"
struct sha256_state_be {
__be32 state[SHA256_DIGEST_SIZE / 4];
u64 count;
u8 buf[SHA256_BLOCK_SIZE];
};
static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
int err;
err = nx_crypto_ctx_sha_init(tfm);
if (err)
return err;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
return 0;
}
static int nx_sha256_init(struct shash_desc *desc) {
struct sha256_state_be *sctx = shash_desc_ctx(desc);
memset(sctx, 0, sizeof *sctx);
sctx->state[0] = __cpu_to_be32(SHA256_H0);
sctx->state[1] = __cpu_to_be32(SHA256_H1);
sctx->state[2] = __cpu_to_be32(SHA256_H2);
sctx->state[3] = __cpu_to_be32(SHA256_H3);
sctx->state[4] = __cpu_to_be32(SHA256_H4);
sctx->state[5] = __cpu_to_be32(SHA256_H5);
sctx->state[6] = __cpu_to_be32(SHA256_H6);
sctx->state[7] = __cpu_to_be32(SHA256_H7);
sctx->count = 0;
return 0;
}
static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state_be *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *out_sg;
u64 to_process = 0, leftover, total;
unsigned long irq_flags;
int rc = 0;
int data_len;
u32 max_sg_len;
u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: < SHA256_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
*/
total = (sctx->count % SHA256_BLOCK_SIZE) + len;
if (total < SHA256_BLOCK_SIZE) {
memcpy(sctx->buf + buf_len, data, len);
sctx->count += len;
goto out;
}
memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
data_len = SHA256_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
&data_len, max_sg_len);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (data_len != SHA256_DIGEST_SIZE) {
rc = -EINVAL;
goto out;
}
do {
int used_sgs = 0;
struct nx_sg *in_sg = nx_ctx->in_sg;
if (buf_len) {
data_len = buf_len;
in_sg = nx_build_sg_list(in_sg,
(u8 *) sctx->buf,
&data_len,
max_sg_len);
if (data_len != buf_len) {
rc = -EINVAL;
goto out;
}
used_sgs = in_sg - nx_ctx->in_sg;
}
/* to_process: SHA256_BLOCK_SIZE aligned chunk to be
* processed in this iteration. This value is restricted
* by sg list limits and number of sgs we already used
* for leftover data. (see above)
* In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
* but because data may not be aligned, we need to account
* for that too. */
to_process = min_t(u64, total,
(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
data_len = to_process - buf_len;
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
&data_len, max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
to_process = data_len + buf_len;
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
total -= to_process;
data += to_process - buf_len;
buf_len = 0;
} while (leftover >= SHA256_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data, leftover);
sctx->count += len;
memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha256_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state_be *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
unsigned long irq_flags;
u32 max_sg_len;
int rc = 0;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (sctx->count >= SHA256_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
}
csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
len = sctx->count & (SHA256_BLOCK_SIZE - 1);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
&len, max_sg_len);
if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
rc = -EINVAL;
goto out;
}
len = SHA256_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len);
if (len != SHA256_DIGEST_SIZE) {
rc = -EINVAL;
goto out;
}
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha256_export(struct shash_desc *desc, void *out)
{
struct sha256_state_be *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int nx_sha256_import(struct shash_desc *desc, const void *in)
{
struct sha256_state_be *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
struct shash_alg nx_shash_sha256_alg = {
.digestsize = SHA256_DIGEST_SIZE,
.init = nx_sha256_init,
.update = nx_sha256_update,
.final = nx_sha256_final,
.export = nx_sha256_export,
.import = nx_sha256_import,
.descsize = sizeof(struct sha256_state_be),
.statesize = sizeof(struct sha256_state_be),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-nx",
.cra_priority = 300,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha256_init,
.cra_exit = nx_crypto_ctx_exit,
}
};