forked from Minki/linux
ae2df912d1
PCC regions utilize a mailbox to set/retrieve register values used by the CPPC code. This is fine as long as the operations are infrequent. With the FIE code enabled though the overhead can range from 2-11% of system CPU overhead (ex: as measured by top) on Arm based machines. So, before enabling FIE assure none of the registers used by cppc_get_perf_ctrs() are in the PCC region. Finally, add a module parameter which can override the PCC region detection at boot or module reload. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1014 lines
26 KiB
C
1014 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* CPPC (Collaborative Processor Performance Control) driver for
|
|
* interfacing with the CPUfreq layer and governors. See
|
|
* cppc_acpi.c for CPPC specific methods.
|
|
*
|
|
* (C) Copyright 2014, 2015 Linaro Ltd.
|
|
* Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
|
|
|
|
#include <linux/arch_topology.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/time.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <uapi/linux/sched/types.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <acpi/cppc_acpi.h>
|
|
|
|
/* Minimum struct length needed for the DMI processor entry we want */
|
|
#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
|
|
|
|
/* Offset in the DMI processor structure for the max frequency */
|
|
#define DMI_PROCESSOR_MAX_SPEED 0x14
|
|
|
|
/*
|
|
* This list contains information parsed from per CPU ACPI _CPC and _PSD
|
|
* structures: e.g. the highest and lowest supported performance, capabilities,
|
|
* desired performance, level requested etc. Depending on the share_type, not
|
|
* all CPUs will have an entry in the list.
|
|
*/
|
|
static LIST_HEAD(cpu_data_list);
|
|
|
|
static bool boost_supported;
|
|
|
|
struct cppc_workaround_oem_info {
|
|
char oem_id[ACPI_OEM_ID_SIZE + 1];
|
|
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
|
|
u32 oem_revision;
|
|
};
|
|
|
|
static struct cppc_workaround_oem_info wa_info[] = {
|
|
{
|
|
.oem_id = "HISI ",
|
|
.oem_table_id = "HIP07 ",
|
|
.oem_revision = 0,
|
|
}, {
|
|
.oem_id = "HISI ",
|
|
.oem_table_id = "HIP08 ",
|
|
.oem_revision = 0,
|
|
}
|
|
};
|
|
|
|
static struct cpufreq_driver cppc_cpufreq_driver;
|
|
|
|
static enum {
|
|
FIE_UNSET = -1,
|
|
FIE_ENABLED,
|
|
FIE_DISABLED
|
|
} fie_disabled = FIE_UNSET;
|
|
|
|
#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
|
|
module_param(fie_disabled, int, 0444);
|
|
MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
|
|
|
|
/* Frequency invariance support */
|
|
struct cppc_freq_invariance {
|
|
int cpu;
|
|
struct irq_work irq_work;
|
|
struct kthread_work work;
|
|
struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
|
|
struct cppc_cpudata *cpu_data;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
|
|
static struct kthread_worker *kworker_fie;
|
|
|
|
static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
|
|
static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
|
|
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
|
|
struct cppc_perf_fb_ctrs *fb_ctrs_t1);
|
|
|
|
/**
|
|
* cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
|
|
* @work: The work item.
|
|
*
|
|
* The CPPC driver register itself with the topology core to provide its own
|
|
* implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
|
|
* gets called by the scheduler on every tick.
|
|
*
|
|
* Note that the arch specific counters have higher priority than CPPC counters,
|
|
* if available, though the CPPC driver doesn't need to have any special
|
|
* handling for that.
|
|
*
|
|
* On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
|
|
* reach here from hard-irq context), which then schedules a normal work item
|
|
* and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
|
|
* based on the counter updates since the last tick.
|
|
*/
|
|
static void cppc_scale_freq_workfn(struct kthread_work *work)
|
|
{
|
|
struct cppc_freq_invariance *cppc_fi;
|
|
struct cppc_perf_fb_ctrs fb_ctrs = {0};
|
|
struct cppc_cpudata *cpu_data;
|
|
unsigned long local_freq_scale;
|
|
u64 perf;
|
|
|
|
cppc_fi = container_of(work, struct cppc_freq_invariance, work);
|
|
cpu_data = cppc_fi->cpu_data;
|
|
|
|
if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
|
|
pr_warn("%s: failed to read perf counters\n", __func__);
|
|
return;
|
|
}
|
|
|
|
perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
|
|
&fb_ctrs);
|
|
cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
|
|
|
|
perf <<= SCHED_CAPACITY_SHIFT;
|
|
local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
|
|
|
|
/* This can happen due to counter's overflow */
|
|
if (unlikely(local_freq_scale > 1024))
|
|
local_freq_scale = 1024;
|
|
|
|
per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
|
|
}
|
|
|
|
static void cppc_irq_work(struct irq_work *irq_work)
|
|
{
|
|
struct cppc_freq_invariance *cppc_fi;
|
|
|
|
cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
|
|
kthread_queue_work(kworker_fie, &cppc_fi->work);
|
|
}
|
|
|
|
static void cppc_scale_freq_tick(void)
|
|
{
|
|
struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
|
|
|
|
/*
|
|
* cppc_get_perf_ctrs() can potentially sleep, call that from the right
|
|
* context.
|
|
*/
|
|
irq_work_queue(&cppc_fi->irq_work);
|
|
}
|
|
|
|
static struct scale_freq_data cppc_sftd = {
|
|
.source = SCALE_FREQ_SOURCE_CPPC,
|
|
.set_freq_scale = cppc_scale_freq_tick,
|
|
};
|
|
|
|
static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_freq_invariance *cppc_fi;
|
|
int cpu, ret;
|
|
|
|
if (fie_disabled)
|
|
return;
|
|
|
|
for_each_cpu(cpu, policy->cpus) {
|
|
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
|
|
cppc_fi->cpu = cpu;
|
|
cppc_fi->cpu_data = policy->driver_data;
|
|
kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
|
|
init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
|
|
|
|
ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
|
|
if (ret) {
|
|
pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
|
|
__func__, cpu, ret);
|
|
|
|
/*
|
|
* Don't abort if the CPU was offline while the driver
|
|
* was getting registered.
|
|
*/
|
|
if (cpu_online(cpu))
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Register for freq-invariance */
|
|
topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
|
|
}
|
|
|
|
/*
|
|
* We free all the resources on policy's removal and not on CPU removal as the
|
|
* irq-work are per-cpu and the hotplug core takes care of flushing the pending
|
|
* irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
|
|
* fires on another CPU after the concerned CPU is removed, it won't harm.
|
|
*
|
|
* We just need to make sure to remove them all on policy->exit().
|
|
*/
|
|
static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_freq_invariance *cppc_fi;
|
|
int cpu;
|
|
|
|
if (fie_disabled)
|
|
return;
|
|
|
|
/* policy->cpus will be empty here, use related_cpus instead */
|
|
topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
|
|
|
|
for_each_cpu(cpu, policy->related_cpus) {
|
|
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
|
|
irq_work_sync(&cppc_fi->irq_work);
|
|
kthread_cancel_work_sync(&cppc_fi->work);
|
|
}
|
|
}
|
|
|
|
static void __init cppc_freq_invariance_init(void)
|
|
{
|
|
struct sched_attr attr = {
|
|
.size = sizeof(struct sched_attr),
|
|
.sched_policy = SCHED_DEADLINE,
|
|
.sched_nice = 0,
|
|
.sched_priority = 0,
|
|
/*
|
|
* Fake (unused) bandwidth; workaround to "fix"
|
|
* priority inheritance.
|
|
*/
|
|
.sched_runtime = 1000000,
|
|
.sched_deadline = 10000000,
|
|
.sched_period = 10000000,
|
|
};
|
|
int ret;
|
|
|
|
if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
|
|
fie_disabled = FIE_ENABLED;
|
|
if (cppc_perf_ctrs_in_pcc()) {
|
|
pr_info("FIE not enabled on systems with registers in PCC\n");
|
|
fie_disabled = FIE_DISABLED;
|
|
}
|
|
}
|
|
|
|
if (fie_disabled)
|
|
return;
|
|
|
|
kworker_fie = kthread_create_worker(0, "cppc_fie");
|
|
if (IS_ERR(kworker_fie))
|
|
return;
|
|
|
|
ret = sched_setattr_nocheck(kworker_fie->task, &attr);
|
|
if (ret) {
|
|
pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
|
|
ret);
|
|
kthread_destroy_worker(kworker_fie);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void cppc_freq_invariance_exit(void)
|
|
{
|
|
if (fie_disabled)
|
|
return;
|
|
|
|
kthread_destroy_worker(kworker_fie);
|
|
kworker_fie = NULL;
|
|
}
|
|
|
|
#else
|
|
static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
|
|
{
|
|
}
|
|
|
|
static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
|
|
{
|
|
}
|
|
|
|
static inline void cppc_freq_invariance_init(void)
|
|
{
|
|
}
|
|
|
|
static inline void cppc_freq_invariance_exit(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
|
|
|
|
/* Callback function used to retrieve the max frequency from DMI */
|
|
static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
|
|
{
|
|
const u8 *dmi_data = (const u8 *)dm;
|
|
u16 *mhz = (u16 *)private;
|
|
|
|
if (dm->type == DMI_ENTRY_PROCESSOR &&
|
|
dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
|
|
u16 val = (u16)get_unaligned((const u16 *)
|
|
(dmi_data + DMI_PROCESSOR_MAX_SPEED));
|
|
*mhz = val > *mhz ? val : *mhz;
|
|
}
|
|
}
|
|
|
|
/* Look up the max frequency in DMI */
|
|
static u64 cppc_get_dmi_max_khz(void)
|
|
{
|
|
u16 mhz = 0;
|
|
|
|
dmi_walk(cppc_find_dmi_mhz, &mhz);
|
|
|
|
/*
|
|
* Real stupid fallback value, just in case there is no
|
|
* actual value set.
|
|
*/
|
|
mhz = mhz ? mhz : 1;
|
|
|
|
return (1000 * mhz);
|
|
}
|
|
|
|
/*
|
|
* If CPPC lowest_freq and nominal_freq registers are exposed then we can
|
|
* use them to convert perf to freq and vice versa. The conversion is
|
|
* extrapolated as an affine function passing by the 2 points:
|
|
* - (Low perf, Low freq)
|
|
* - (Nominal perf, Nominal perf)
|
|
*/
|
|
static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
|
|
unsigned int perf)
|
|
{
|
|
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
|
s64 retval, offset = 0;
|
|
static u64 max_khz;
|
|
u64 mul, div;
|
|
|
|
if (caps->lowest_freq && caps->nominal_freq) {
|
|
mul = caps->nominal_freq - caps->lowest_freq;
|
|
div = caps->nominal_perf - caps->lowest_perf;
|
|
offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
|
|
} else {
|
|
if (!max_khz)
|
|
max_khz = cppc_get_dmi_max_khz();
|
|
mul = max_khz;
|
|
div = caps->highest_perf;
|
|
}
|
|
|
|
retval = offset + div64_u64(perf * mul, div);
|
|
if (retval >= 0)
|
|
return retval;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
|
|
unsigned int freq)
|
|
{
|
|
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
|
s64 retval, offset = 0;
|
|
static u64 max_khz;
|
|
u64 mul, div;
|
|
|
|
if (caps->lowest_freq && caps->nominal_freq) {
|
|
mul = caps->nominal_perf - caps->lowest_perf;
|
|
div = caps->nominal_freq - caps->lowest_freq;
|
|
offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
|
|
} else {
|
|
if (!max_khz)
|
|
max_khz = cppc_get_dmi_max_khz();
|
|
mul = caps->highest_perf;
|
|
div = max_khz;
|
|
}
|
|
|
|
retval = offset + div64_u64(freq * mul, div);
|
|
if (retval >= 0)
|
|
return retval;
|
|
return 0;
|
|
}
|
|
|
|
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpufreq_freqs freqs;
|
|
u32 desired_perf;
|
|
int ret = 0;
|
|
|
|
desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
|
|
/* Return if it is exactly the same perf */
|
|
if (desired_perf == cpu_data->perf_ctrls.desired_perf)
|
|
return ret;
|
|
|
|
cpu_data->perf_ctrls.desired_perf = desired_perf;
|
|
freqs.old = policy->cur;
|
|
freqs.new = target_freq;
|
|
|
|
cpufreq_freq_transition_begin(policy, &freqs);
|
|
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
|
|
cpufreq_freq_transition_end(policy, &freqs, ret != 0);
|
|
|
|
if (ret)
|
|
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
|
|
cpu, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
|
|
unsigned int target_freq)
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
unsigned int cpu = policy->cpu;
|
|
u32 desired_perf;
|
|
int ret;
|
|
|
|
desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
|
|
cpu_data->perf_ctrls.desired_perf = desired_perf;
|
|
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
|
|
|
|
if (ret) {
|
|
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
|
|
cpu, ret);
|
|
return 0;
|
|
}
|
|
|
|
return target_freq;
|
|
}
|
|
|
|
static int cppc_verify_policy(struct cpufreq_policy_data *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The PCC subspace describes the rate at which platform can accept commands
|
|
* on the shared PCC channel (including READs which do not count towards freq
|
|
* transition requests), so ideally we need to use the PCC values as a fallback
|
|
* if we don't have a platform specific transition_delay_us
|
|
*/
|
|
#ifdef CONFIG_ARM64
|
|
#include <asm/cputype.h>
|
|
|
|
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
|
|
{
|
|
unsigned long implementor = read_cpuid_implementor();
|
|
unsigned long part_num = read_cpuid_part_number();
|
|
|
|
switch (implementor) {
|
|
case ARM_CPU_IMP_QCOM:
|
|
switch (part_num) {
|
|
case QCOM_CPU_PART_FALKOR_V1:
|
|
case QCOM_CPU_PART_FALKOR:
|
|
return 10000;
|
|
}
|
|
}
|
|
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
|
|
}
|
|
#else
|
|
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
|
|
{
|
|
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
|
|
|
|
static DEFINE_PER_CPU(unsigned int, efficiency_class);
|
|
static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
|
|
|
|
/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
|
|
#define CPPC_EM_CAP_STEP (20)
|
|
/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
|
|
#define CPPC_EM_COST_STEP (1)
|
|
/* Add a cost gap correspnding to the energy of 4 CPUs. */
|
|
#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
|
|
/ CPPC_EM_CAP_STEP)
|
|
|
|
static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_perf_caps *perf_caps;
|
|
unsigned int min_cap, max_cap;
|
|
struct cppc_cpudata *cpu_data;
|
|
int cpu = policy->cpu;
|
|
|
|
cpu_data = policy->driver_data;
|
|
perf_caps = &cpu_data->perf_caps;
|
|
max_cap = arch_scale_cpu_capacity(cpu);
|
|
min_cap = div_u64(max_cap * perf_caps->lowest_perf, perf_caps->highest_perf);
|
|
if ((min_cap == 0) || (max_cap < min_cap))
|
|
return 0;
|
|
return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
|
|
}
|
|
|
|
/*
|
|
* The cost is defined as:
|
|
* cost = power * max_frequency / frequency
|
|
*/
|
|
static inline unsigned long compute_cost(int cpu, int step)
|
|
{
|
|
return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
|
|
step * CPPC_EM_COST_STEP;
|
|
}
|
|
|
|
static int cppc_get_cpu_power(struct device *cpu_dev,
|
|
unsigned long *power, unsigned long *KHz)
|
|
{
|
|
unsigned long perf_step, perf_prev, perf, perf_check;
|
|
unsigned int min_step, max_step, step, step_check;
|
|
unsigned long prev_freq = *KHz;
|
|
unsigned int min_cap, max_cap;
|
|
struct cpufreq_policy *policy;
|
|
|
|
struct cppc_perf_caps *perf_caps;
|
|
struct cppc_cpudata *cpu_data;
|
|
|
|
policy = cpufreq_cpu_get_raw(cpu_dev->id);
|
|
cpu_data = policy->driver_data;
|
|
perf_caps = &cpu_data->perf_caps;
|
|
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
|
|
min_cap = div_u64(max_cap * perf_caps->lowest_perf,
|
|
perf_caps->highest_perf);
|
|
|
|
perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
|
|
min_step = min_cap / CPPC_EM_CAP_STEP;
|
|
max_step = max_cap / CPPC_EM_CAP_STEP;
|
|
|
|
perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
|
|
step = perf_prev / perf_step;
|
|
|
|
if (step > max_step)
|
|
return -EINVAL;
|
|
|
|
if (min_step == max_step) {
|
|
step = max_step;
|
|
perf = perf_caps->highest_perf;
|
|
} else if (step < min_step) {
|
|
step = min_step;
|
|
perf = perf_caps->lowest_perf;
|
|
} else {
|
|
step++;
|
|
if (step == max_step)
|
|
perf = perf_caps->highest_perf;
|
|
else
|
|
perf = step * perf_step;
|
|
}
|
|
|
|
*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
|
|
perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
|
|
step_check = perf_check / perf_step;
|
|
|
|
/*
|
|
* To avoid bad integer approximation, check that new frequency value
|
|
* increased and that the new frequency will be converted to the
|
|
* desired step value.
|
|
*/
|
|
while ((*KHz == prev_freq) || (step_check != step)) {
|
|
perf++;
|
|
*KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
|
|
perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
|
|
step_check = perf_check / perf_step;
|
|
}
|
|
|
|
/*
|
|
* With an artificial EM, only the cost value is used. Still the power
|
|
* is populated such as 0 < power < EM_MAX_POWER. This allows to add
|
|
* more sense to the artificial performance states.
|
|
*/
|
|
*power = compute_cost(cpu_dev->id, step);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
|
|
unsigned long *cost)
|
|
{
|
|
unsigned long perf_step, perf_prev;
|
|
struct cppc_perf_caps *perf_caps;
|
|
struct cpufreq_policy *policy;
|
|
struct cppc_cpudata *cpu_data;
|
|
unsigned int max_cap;
|
|
int step;
|
|
|
|
policy = cpufreq_cpu_get_raw(cpu_dev->id);
|
|
cpu_data = policy->driver_data;
|
|
perf_caps = &cpu_data->perf_caps;
|
|
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
|
|
|
|
perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
|
|
perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
|
|
step = perf_prev / perf_step;
|
|
|
|
*cost = compute_cost(cpu_dev->id, step);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int populate_efficiency_class(void)
|
|
{
|
|
struct acpi_madt_generic_interrupt *gicc;
|
|
DECLARE_BITMAP(used_classes, 256) = {};
|
|
int class, cpu, index;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
gicc = acpi_cpu_get_madt_gicc(cpu);
|
|
class = gicc->efficiency_class;
|
|
bitmap_set(used_classes, class, 1);
|
|
}
|
|
|
|
if (bitmap_weight(used_classes, 256) <= 1) {
|
|
pr_debug("Efficiency classes are all equal (=%d). "
|
|
"No EM registered", class);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Squeeze efficiency class values on [0:#efficiency_class-1].
|
|
* Values are per spec in [0:255].
|
|
*/
|
|
index = 0;
|
|
for_each_set_bit(class, used_classes, 256) {
|
|
for_each_possible_cpu(cpu) {
|
|
gicc = acpi_cpu_get_madt_gicc(cpu);
|
|
if (gicc->efficiency_class == class)
|
|
per_cpu(efficiency_class, cpu) = index;
|
|
}
|
|
index++;
|
|
}
|
|
cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_cpudata *cpu_data;
|
|
struct em_data_callback em_cb =
|
|
EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
|
|
|
|
cpu_data = policy->driver_data;
|
|
em_dev_register_perf_domain(get_cpu_device(policy->cpu),
|
|
get_perf_level_count(policy), &em_cb,
|
|
cpu_data->shared_cpu_map, 0);
|
|
}
|
|
|
|
#else
|
|
static int populate_efficiency_class(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
|
|
{
|
|
struct cppc_cpudata *cpu_data;
|
|
int ret;
|
|
|
|
cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
|
|
if (!cpu_data)
|
|
goto out;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
|
|
goto free_cpu;
|
|
|
|
ret = acpi_get_psd_map(cpu, cpu_data);
|
|
if (ret) {
|
|
pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
|
|
goto free_mask;
|
|
}
|
|
|
|
ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
|
|
if (ret) {
|
|
pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
|
|
goto free_mask;
|
|
}
|
|
|
|
/* Convert the lowest and nominal freq from MHz to KHz */
|
|
cpu_data->perf_caps.lowest_freq *= 1000;
|
|
cpu_data->perf_caps.nominal_freq *= 1000;
|
|
|
|
list_add(&cpu_data->node, &cpu_data_list);
|
|
|
|
return cpu_data;
|
|
|
|
free_mask:
|
|
free_cpumask_var(cpu_data->shared_cpu_map);
|
|
free_cpu:
|
|
kfree(cpu_data);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
|
|
list_del(&cpu_data->node);
|
|
free_cpumask_var(cpu_data->shared_cpu_map);
|
|
kfree(cpu_data);
|
|
policy->driver_data = NULL;
|
|
}
|
|
|
|
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int cpu = policy->cpu;
|
|
struct cppc_cpudata *cpu_data;
|
|
struct cppc_perf_caps *caps;
|
|
int ret;
|
|
|
|
cpu_data = cppc_cpufreq_get_cpu_data(cpu);
|
|
if (!cpu_data) {
|
|
pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
caps = &cpu_data->perf_caps;
|
|
policy->driver_data = cpu_data;
|
|
|
|
/*
|
|
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see
|
|
* Section 8.4.7.1.1.5 of ACPI 6.1 spec)
|
|
*/
|
|
policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->lowest_nonlinear_perf);
|
|
policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->nominal_perf);
|
|
|
|
/*
|
|
* Set cpuinfo.min_freq to Lowest to make the full range of performance
|
|
* available if userspace wants to use any perf between lowest & lowest
|
|
* nonlinear perf
|
|
*/
|
|
policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->lowest_perf);
|
|
policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->nominal_perf);
|
|
|
|
policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
|
|
policy->shared_type = cpu_data->shared_type;
|
|
|
|
switch (policy->shared_type) {
|
|
case CPUFREQ_SHARED_TYPE_HW:
|
|
case CPUFREQ_SHARED_TYPE_NONE:
|
|
/* Nothing to be done - we'll have a policy for each CPU */
|
|
break;
|
|
case CPUFREQ_SHARED_TYPE_ANY:
|
|
/*
|
|
* All CPUs in the domain will share a policy and all cpufreq
|
|
* operations will use a single cppc_cpudata structure stored
|
|
* in policy->driver_data.
|
|
*/
|
|
cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
|
|
break;
|
|
default:
|
|
pr_debug("Unsupported CPU co-ord type: %d\n",
|
|
policy->shared_type);
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
policy->fast_switch_possible = cppc_allow_fast_switch();
|
|
policy->dvfs_possible_from_any_cpu = true;
|
|
|
|
/*
|
|
* If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
|
|
* is supported.
|
|
*/
|
|
if (caps->highest_perf > caps->nominal_perf)
|
|
boost_supported = true;
|
|
|
|
/* Set policy->cur to max now. The governors will adjust later. */
|
|
policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
|
|
cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
|
|
|
|
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
|
|
if (ret) {
|
|
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
|
|
caps->highest_perf, cpu, ret);
|
|
goto out;
|
|
}
|
|
|
|
cppc_cpufreq_cpu_fie_init(policy);
|
|
return 0;
|
|
|
|
out:
|
|
cppc_cpufreq_put_cpu_data(policy);
|
|
return ret;
|
|
}
|
|
|
|
static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
|
unsigned int cpu = policy->cpu;
|
|
int ret;
|
|
|
|
cppc_cpufreq_cpu_fie_exit(policy);
|
|
|
|
cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
|
|
|
|
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
|
|
if (ret)
|
|
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
|
|
caps->lowest_perf, cpu, ret);
|
|
|
|
cppc_cpufreq_put_cpu_data(policy);
|
|
return 0;
|
|
}
|
|
|
|
static inline u64 get_delta(u64 t1, u64 t0)
|
|
{
|
|
if (t1 > t0 || t0 > ~(u32)0)
|
|
return t1 - t0;
|
|
|
|
return (u32)t1 - (u32)t0;
|
|
}
|
|
|
|
static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
|
|
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
|
|
struct cppc_perf_fb_ctrs *fb_ctrs_t1)
|
|
{
|
|
u64 delta_reference, delta_delivered;
|
|
u64 reference_perf;
|
|
|
|
reference_perf = fb_ctrs_t0->reference_perf;
|
|
|
|
delta_reference = get_delta(fb_ctrs_t1->reference,
|
|
fb_ctrs_t0->reference);
|
|
delta_delivered = get_delta(fb_ctrs_t1->delivered,
|
|
fb_ctrs_t0->delivered);
|
|
|
|
/* Check to avoid divide-by zero and invalid delivered_perf */
|
|
if (!delta_reference || !delta_delivered)
|
|
return cpu_data->perf_ctrls.desired_perf;
|
|
|
|
return (reference_perf * delta_delivered) / delta_reference;
|
|
}
|
|
|
|
static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
|
|
{
|
|
struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
u64 delivered_perf;
|
|
int ret;
|
|
|
|
cpufreq_cpu_put(policy);
|
|
|
|
ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
udelay(2); /* 2usec delay between sampling */
|
|
|
|
ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
|
|
&fb_ctrs_t1);
|
|
|
|
return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
|
|
}
|
|
|
|
static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
|
|
int ret;
|
|
|
|
if (!boost_supported) {
|
|
pr_err("BOOST not supported by CPU or firmware\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (state)
|
|
policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->highest_perf);
|
|
else
|
|
policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
|
|
caps->nominal_perf);
|
|
policy->cpuinfo.max_freq = policy->max;
|
|
|
|
ret = freq_qos_update_request(policy->max_freq_req, policy->max);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
|
|
return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
|
|
}
|
|
cpufreq_freq_attr_ro(freqdomain_cpus);
|
|
|
|
static struct freq_attr *cppc_cpufreq_attr[] = {
|
|
&freqdomain_cpus,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver cppc_cpufreq_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS,
|
|
.verify = cppc_verify_policy,
|
|
.target = cppc_cpufreq_set_target,
|
|
.get = cppc_cpufreq_get_rate,
|
|
.fast_switch = cppc_cpufreq_fast_switch,
|
|
.init = cppc_cpufreq_cpu_init,
|
|
.exit = cppc_cpufreq_cpu_exit,
|
|
.set_boost = cppc_cpufreq_set_boost,
|
|
.attr = cppc_cpufreq_attr,
|
|
.name = "cppc_cpufreq",
|
|
};
|
|
|
|
/*
|
|
* HISI platform does not support delivered performance counter and
|
|
* reference performance counter. It can calculate the performance using the
|
|
* platform specific mechanism. We reuse the desired performance register to
|
|
* store the real performance calculated by the platform.
|
|
*/
|
|
static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
|
|
{
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct cppc_cpudata *cpu_data = policy->driver_data;
|
|
u64 desired_perf;
|
|
int ret;
|
|
|
|
cpufreq_cpu_put(policy);
|
|
|
|
ret = cppc_get_desired_perf(cpu, &desired_perf);
|
|
if (ret < 0)
|
|
return -EIO;
|
|
|
|
return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
|
|
}
|
|
|
|
static void cppc_check_hisi_workaround(void)
|
|
{
|
|
struct acpi_table_header *tbl;
|
|
acpi_status status = AE_OK;
|
|
int i;
|
|
|
|
status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
|
|
if (ACPI_FAILURE(status) || !tbl)
|
|
return;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
|
|
if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
|
|
!memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
|
|
wa_info[i].oem_revision == tbl->oem_revision) {
|
|
/* Overwrite the get() callback */
|
|
cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
|
|
fie_disabled = FIE_DISABLED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
acpi_put_table(tbl);
|
|
}
|
|
|
|
static int __init cppc_cpufreq_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!acpi_cpc_valid())
|
|
return -ENODEV;
|
|
|
|
cppc_check_hisi_workaround();
|
|
cppc_freq_invariance_init();
|
|
populate_efficiency_class();
|
|
|
|
ret = cpufreq_register_driver(&cppc_cpufreq_driver);
|
|
if (ret)
|
|
cppc_freq_invariance_exit();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void free_cpu_data(void)
|
|
{
|
|
struct cppc_cpudata *iter, *tmp;
|
|
|
|
list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
|
|
free_cpumask_var(iter->shared_cpu_map);
|
|
list_del(&iter->node);
|
|
kfree(iter);
|
|
}
|
|
|
|
}
|
|
|
|
static void __exit cppc_cpufreq_exit(void)
|
|
{
|
|
cpufreq_unregister_driver(&cppc_cpufreq_driver);
|
|
cppc_freq_invariance_exit();
|
|
|
|
free_cpu_data();
|
|
}
|
|
|
|
module_exit(cppc_cpufreq_exit);
|
|
MODULE_AUTHOR("Ashwin Chaugule");
|
|
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
late_initcall(cppc_cpufreq_init);
|
|
|
|
static const struct acpi_device_id cppc_acpi_ids[] __used = {
|
|
{ACPI_PROCESSOR_DEVICE_HID, },
|
|
{}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
|