linux/arch/arm64/net/bpf_jit.h
Xu Kuohai b2ad54e153 bpf, arm64: Implement bpf_arch_text_poke() for arm64
Implement bpf_arch_text_poke() for arm64, so bpf prog or bpf trampoline
can be patched with it.

When the target address is NULL, the original instruction is patched to
a NOP.

When the target address and the source address are within the branch
range, the original instruction is patched to a bl instruction to the
target address directly.

To support attaching bpf trampoline to both regular kernel function and
bpf prog, we follow the ftrace patchsite way for bpf prog. That is, two
instructions are inserted at the beginning of bpf prog, the first one
saves the return address to x9, and the second is a nop which will be
patched to a bl instruction when a bpf trampoline is attached.

However, when a bpf trampoline is attached to bpf prog, the distance
between target address and source address may exceed 128MB, the maximum
branch range, because bpf trampoline and bpf prog are allocated
separately with vmalloc. So long jump should be handled.

When a bpf prog is constructed, a plt pointing to empty trampoline
dummy_tramp is placed at the end:

        bpf_prog:
                mov x9, lr
                nop // patchsite
                ...
                ret

        plt:
                ldr x10, target
                br x10
        target:
                .quad dummy_tramp // plt target

This is also the state when no trampoline is attached.

When a short-jump bpf trampoline is attached, the patchsite is patched to
a bl instruction to the trampoline directly:

        bpf_prog:
                mov x9, lr
                bl <short-jump bpf trampoline address> // patchsite
                ...
                ret

        plt:
                ldr x10, target
                br x10
        target:
                .quad dummy_tramp // plt target

When a long-jump bpf trampoline is attached, the plt target is filled with
the trampoline address and the patchsite is patched to a bl instruction to
the plt:

        bpf_prog:
                mov x9, lr
                bl plt // patchsite
                ...
                ret

        plt:
                ldr x10, target
                br x10
        target:
                .quad <long-jump bpf trampoline address>

dummy_tramp is used to prevent another CPU from jumping to an unknown
location during the patching process, making the patching process easier.

The patching process is as follows:

1. when neither the old address or the new address is a long jump, the
   patchsite is replaced with a bl to the new address, or nop if the new
   address is NULL;

2. when the old address is not long jump but the new one is, the
   branch target address is written to plt first, then the patchsite
   is replaced with a bl instruction to the plt;

3. when the old address is long jump but the new one is not, the address
   of dummy_tramp is written to plt first, then the patchsite is replaced
   with a bl to the new address, or a nop if the new address is NULL;

4. when both the old address and the new address are long jump, the
   new address is written to plt and the patchsite is not changed.

Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20220711150823.2128542-4-xukuohai@huawei.com
2022-07-11 21:08:01 +02:00

285 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* BPF JIT compiler for ARM64
*
* Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
*/
#ifndef _BPF_JIT_H
#define _BPF_JIT_H
#include <asm/insn.h>
/* 5-bit Register Operand */
#define A64_R(x) AARCH64_INSN_REG_##x
#define A64_FP AARCH64_INSN_REG_FP
#define A64_LR AARCH64_INSN_REG_LR
#define A64_ZR AARCH64_INSN_REG_ZR
#define A64_SP AARCH64_INSN_REG_SP
#define A64_VARIANT(sf) \
((sf) ? AARCH64_INSN_VARIANT_64BIT : AARCH64_INSN_VARIANT_32BIT)
/* Compare & branch (immediate) */
#define A64_COMP_BRANCH(sf, Rt, offset, type) \
aarch64_insn_gen_comp_branch_imm(0, offset, Rt, A64_VARIANT(sf), \
AARCH64_INSN_BRANCH_COMP_##type)
#define A64_CBZ(sf, Rt, imm19) A64_COMP_BRANCH(sf, Rt, (imm19) << 2, ZERO)
#define A64_CBNZ(sf, Rt, imm19) A64_COMP_BRANCH(sf, Rt, (imm19) << 2, NONZERO)
/* Conditional branch (immediate) */
#define A64_COND_BRANCH(cond, offset) \
aarch64_insn_gen_cond_branch_imm(0, offset, cond)
#define A64_COND_EQ AARCH64_INSN_COND_EQ /* == */
#define A64_COND_NE AARCH64_INSN_COND_NE /* != */
#define A64_COND_CS AARCH64_INSN_COND_CS /* unsigned >= */
#define A64_COND_HI AARCH64_INSN_COND_HI /* unsigned > */
#define A64_COND_LS AARCH64_INSN_COND_LS /* unsigned <= */
#define A64_COND_CC AARCH64_INSN_COND_CC /* unsigned < */
#define A64_COND_GE AARCH64_INSN_COND_GE /* signed >= */
#define A64_COND_GT AARCH64_INSN_COND_GT /* signed > */
#define A64_COND_LE AARCH64_INSN_COND_LE /* signed <= */
#define A64_COND_LT AARCH64_INSN_COND_LT /* signed < */
#define A64_B_(cond, imm19) A64_COND_BRANCH(cond, (imm19) << 2)
/* Unconditional branch (immediate) */
#define A64_BRANCH(offset, type) aarch64_insn_gen_branch_imm(0, offset, \
AARCH64_INSN_BRANCH_##type)
#define A64_B(imm26) A64_BRANCH((imm26) << 2, NOLINK)
#define A64_BL(imm26) A64_BRANCH((imm26) << 2, LINK)
/* Unconditional branch (register) */
#define A64_BR(Rn) aarch64_insn_gen_branch_reg(Rn, AARCH64_INSN_BRANCH_NOLINK)
#define A64_BLR(Rn) aarch64_insn_gen_branch_reg(Rn, AARCH64_INSN_BRANCH_LINK)
#define A64_RET(Rn) aarch64_insn_gen_branch_reg(Rn, AARCH64_INSN_BRANCH_RETURN)
/* Load/store register (register offset) */
#define A64_LS_REG(Rt, Rn, Rm, size, type) \
aarch64_insn_gen_load_store_reg(Rt, Rn, Rm, \
AARCH64_INSN_SIZE_##size, \
AARCH64_INSN_LDST_##type##_REG_OFFSET)
#define A64_STRB(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 8, STORE)
#define A64_LDRB(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 8, LOAD)
#define A64_STRH(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 16, STORE)
#define A64_LDRH(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 16, LOAD)
#define A64_STR32(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 32, STORE)
#define A64_LDR32(Wt, Xn, Xm) A64_LS_REG(Wt, Xn, Xm, 32, LOAD)
#define A64_STR64(Xt, Xn, Xm) A64_LS_REG(Xt, Xn, Xm, 64, STORE)
#define A64_LDR64(Xt, Xn, Xm) A64_LS_REG(Xt, Xn, Xm, 64, LOAD)
/* Load/store register (immediate offset) */
#define A64_LS_IMM(Rt, Rn, imm, size, type) \
aarch64_insn_gen_load_store_imm(Rt, Rn, imm, \
AARCH64_INSN_SIZE_##size, \
AARCH64_INSN_LDST_##type##_IMM_OFFSET)
#define A64_STRBI(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 8, STORE)
#define A64_LDRBI(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 8, LOAD)
#define A64_STRHI(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 16, STORE)
#define A64_LDRHI(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 16, LOAD)
#define A64_STR32I(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 32, STORE)
#define A64_LDR32I(Wt, Xn, imm) A64_LS_IMM(Wt, Xn, imm, 32, LOAD)
#define A64_STR64I(Xt, Xn, imm) A64_LS_IMM(Xt, Xn, imm, 64, STORE)
#define A64_LDR64I(Xt, Xn, imm) A64_LS_IMM(Xt, Xn, imm, 64, LOAD)
/* LDR (literal) */
#define A64_LDR32LIT(Wt, offset) \
aarch64_insn_gen_load_literal(0, offset, Wt, false)
#define A64_LDR64LIT(Xt, offset) \
aarch64_insn_gen_load_literal(0, offset, Xt, true)
/* Load/store register pair */
#define A64_LS_PAIR(Rt, Rt2, Rn, offset, ls, type) \
aarch64_insn_gen_load_store_pair(Rt, Rt2, Rn, offset, \
AARCH64_INSN_VARIANT_64BIT, \
AARCH64_INSN_LDST_##ls##_PAIR_##type)
/* Rn -= 16; Rn[0] = Rt; Rn[8] = Rt2; */
#define A64_PUSH(Rt, Rt2, Rn) A64_LS_PAIR(Rt, Rt2, Rn, -16, STORE, PRE_INDEX)
/* Rt = Rn[0]; Rt2 = Rn[8]; Rn += 16; */
#define A64_POP(Rt, Rt2, Rn) A64_LS_PAIR(Rt, Rt2, Rn, 16, LOAD, POST_INDEX)
/* Load/store exclusive */
#define A64_SIZE(sf) \
((sf) ? AARCH64_INSN_SIZE_64 : AARCH64_INSN_SIZE_32)
#define A64_LSX(sf, Rt, Rn, Rs, type) \
aarch64_insn_gen_load_store_ex(Rt, Rn, Rs, A64_SIZE(sf), \
AARCH64_INSN_LDST_##type)
/* Rt = [Rn]; (atomic) */
#define A64_LDXR(sf, Rt, Rn) \
A64_LSX(sf, Rt, Rn, A64_ZR, LOAD_EX)
/* [Rn] = Rt; (atomic) Rs = [state] */
#define A64_STXR(sf, Rt, Rn, Rs) \
A64_LSX(sf, Rt, Rn, Rs, STORE_EX)
/* [Rn] = Rt (store release); (atomic) Rs = [state] */
#define A64_STLXR(sf, Rt, Rn, Rs) \
aarch64_insn_gen_load_store_ex(Rt, Rn, Rs, A64_SIZE(sf), \
AARCH64_INSN_LDST_STORE_REL_EX)
/*
* LSE atomics
*
* ST{ADD,CLR,SET,EOR} is simply encoded as an alias for
* LDD{ADD,CLR,SET,EOR} with XZR as the destination register.
*/
#define A64_ST_OP(sf, Rn, Rs, op) \
aarch64_insn_gen_atomic_ld_op(A64_ZR, Rn, Rs, \
A64_SIZE(sf), AARCH64_INSN_MEM_ATOMIC_##op, \
AARCH64_INSN_MEM_ORDER_NONE)
/* [Rn] <op>= Rs */
#define A64_STADD(sf, Rn, Rs) A64_ST_OP(sf, Rn, Rs, ADD)
#define A64_STCLR(sf, Rn, Rs) A64_ST_OP(sf, Rn, Rs, CLR)
#define A64_STEOR(sf, Rn, Rs) A64_ST_OP(sf, Rn, Rs, EOR)
#define A64_STSET(sf, Rn, Rs) A64_ST_OP(sf, Rn, Rs, SET)
#define A64_LD_OP_AL(sf, Rt, Rn, Rs, op) \
aarch64_insn_gen_atomic_ld_op(Rt, Rn, Rs, \
A64_SIZE(sf), AARCH64_INSN_MEM_ATOMIC_##op, \
AARCH64_INSN_MEM_ORDER_ACQREL)
/* Rt = [Rn] (load acquire); [Rn] <op>= Rs (store release) */
#define A64_LDADDAL(sf, Rt, Rn, Rs) A64_LD_OP_AL(sf, Rt, Rn, Rs, ADD)
#define A64_LDCLRAL(sf, Rt, Rn, Rs) A64_LD_OP_AL(sf, Rt, Rn, Rs, CLR)
#define A64_LDEORAL(sf, Rt, Rn, Rs) A64_LD_OP_AL(sf, Rt, Rn, Rs, EOR)
#define A64_LDSETAL(sf, Rt, Rn, Rs) A64_LD_OP_AL(sf, Rt, Rn, Rs, SET)
/* Rt = [Rn] (load acquire); [Rn] = Rs (store release) */
#define A64_SWPAL(sf, Rt, Rn, Rs) A64_LD_OP_AL(sf, Rt, Rn, Rs, SWP)
/* Rs = CAS(Rn, Rs, Rt) (load acquire & store release) */
#define A64_CASAL(sf, Rt, Rn, Rs) \
aarch64_insn_gen_cas(Rt, Rn, Rs, A64_SIZE(sf), \
AARCH64_INSN_MEM_ORDER_ACQREL)
/* Add/subtract (immediate) */
#define A64_ADDSUB_IMM(sf, Rd, Rn, imm12, type) \
aarch64_insn_gen_add_sub_imm(Rd, Rn, imm12, \
A64_VARIANT(sf), AARCH64_INSN_ADSB_##type)
/* Rd = Rn OP imm12 */
#define A64_ADD_I(sf, Rd, Rn, imm12) A64_ADDSUB_IMM(sf, Rd, Rn, imm12, ADD)
#define A64_SUB_I(sf, Rd, Rn, imm12) A64_ADDSUB_IMM(sf, Rd, Rn, imm12, SUB)
#define A64_ADDS_I(sf, Rd, Rn, imm12) \
A64_ADDSUB_IMM(sf, Rd, Rn, imm12, ADD_SETFLAGS)
#define A64_SUBS_I(sf, Rd, Rn, imm12) \
A64_ADDSUB_IMM(sf, Rd, Rn, imm12, SUB_SETFLAGS)
/* Rn + imm12; set condition flags */
#define A64_CMN_I(sf, Rn, imm12) A64_ADDS_I(sf, A64_ZR, Rn, imm12)
/* Rn - imm12; set condition flags */
#define A64_CMP_I(sf, Rn, imm12) A64_SUBS_I(sf, A64_ZR, Rn, imm12)
/* Rd = Rn */
#define A64_MOV(sf, Rd, Rn) A64_ADD_I(sf, Rd, Rn, 0)
/* Bitfield move */
#define A64_BITFIELD(sf, Rd, Rn, immr, imms, type) \
aarch64_insn_gen_bitfield(Rd, Rn, immr, imms, \
A64_VARIANT(sf), AARCH64_INSN_BITFIELD_MOVE_##type)
/* Signed, with sign replication to left and zeros to right */
#define A64_SBFM(sf, Rd, Rn, ir, is) A64_BITFIELD(sf, Rd, Rn, ir, is, SIGNED)
/* Unsigned, with zeros to left and right */
#define A64_UBFM(sf, Rd, Rn, ir, is) A64_BITFIELD(sf, Rd, Rn, ir, is, UNSIGNED)
/* Rd = Rn << shift */
#define A64_LSL(sf, Rd, Rn, shift) ({ \
int sz = (sf) ? 64 : 32; \
A64_UBFM(sf, Rd, Rn, (unsigned)-(shift) % sz, sz - 1 - (shift)); \
})
/* Rd = Rn >> shift */
#define A64_LSR(sf, Rd, Rn, shift) A64_UBFM(sf, Rd, Rn, shift, (sf) ? 63 : 31)
/* Rd = Rn >> shift; signed */
#define A64_ASR(sf, Rd, Rn, shift) A64_SBFM(sf, Rd, Rn, shift, (sf) ? 63 : 31)
/* Zero extend */
#define A64_UXTH(sf, Rd, Rn) A64_UBFM(sf, Rd, Rn, 0, 15)
#define A64_UXTW(sf, Rd, Rn) A64_UBFM(sf, Rd, Rn, 0, 31)
/* Move wide (immediate) */
#define A64_MOVEW(sf, Rd, imm16, shift, type) \
aarch64_insn_gen_movewide(Rd, imm16, shift, \
A64_VARIANT(sf), AARCH64_INSN_MOVEWIDE_##type)
/* Rd = Zeros (for MOVZ);
* Rd |= imm16 << shift (where shift is {0, 16, 32, 48});
* Rd = ~Rd; (for MOVN); */
#define A64_MOVN(sf, Rd, imm16, shift) A64_MOVEW(sf, Rd, imm16, shift, INVERSE)
#define A64_MOVZ(sf, Rd, imm16, shift) A64_MOVEW(sf, Rd, imm16, shift, ZERO)
#define A64_MOVK(sf, Rd, imm16, shift) A64_MOVEW(sf, Rd, imm16, shift, KEEP)
/* Add/subtract (shifted register) */
#define A64_ADDSUB_SREG(sf, Rd, Rn, Rm, type) \
aarch64_insn_gen_add_sub_shifted_reg(Rd, Rn, Rm, 0, \
A64_VARIANT(sf), AARCH64_INSN_ADSB_##type)
/* Rd = Rn OP Rm */
#define A64_ADD(sf, Rd, Rn, Rm) A64_ADDSUB_SREG(sf, Rd, Rn, Rm, ADD)
#define A64_SUB(sf, Rd, Rn, Rm) A64_ADDSUB_SREG(sf, Rd, Rn, Rm, SUB)
#define A64_SUBS(sf, Rd, Rn, Rm) A64_ADDSUB_SREG(sf, Rd, Rn, Rm, SUB_SETFLAGS)
/* Rd = -Rm */
#define A64_NEG(sf, Rd, Rm) A64_SUB(sf, Rd, A64_ZR, Rm)
/* Rn - Rm; set condition flags */
#define A64_CMP(sf, Rn, Rm) A64_SUBS(sf, A64_ZR, Rn, Rm)
/* Data-processing (1 source) */
#define A64_DATA1(sf, Rd, Rn, type) aarch64_insn_gen_data1(Rd, Rn, \
A64_VARIANT(sf), AARCH64_INSN_DATA1_##type)
/* Rd = BSWAPx(Rn) */
#define A64_REV16(sf, Rd, Rn) A64_DATA1(sf, Rd, Rn, REVERSE_16)
#define A64_REV32(sf, Rd, Rn) A64_DATA1(sf, Rd, Rn, REVERSE_32)
#define A64_REV64(Rd, Rn) A64_DATA1(1, Rd, Rn, REVERSE_64)
/* Data-processing (2 source) */
/* Rd = Rn OP Rm */
#define A64_DATA2(sf, Rd, Rn, Rm, type) aarch64_insn_gen_data2(Rd, Rn, Rm, \
A64_VARIANT(sf), AARCH64_INSN_DATA2_##type)
#define A64_UDIV(sf, Rd, Rn, Rm) A64_DATA2(sf, Rd, Rn, Rm, UDIV)
#define A64_LSLV(sf, Rd, Rn, Rm) A64_DATA2(sf, Rd, Rn, Rm, LSLV)
#define A64_LSRV(sf, Rd, Rn, Rm) A64_DATA2(sf, Rd, Rn, Rm, LSRV)
#define A64_ASRV(sf, Rd, Rn, Rm) A64_DATA2(sf, Rd, Rn, Rm, ASRV)
/* Data-processing (3 source) */
/* Rd = Ra + Rn * Rm */
#define A64_MADD(sf, Rd, Ra, Rn, Rm) aarch64_insn_gen_data3(Rd, Ra, Rn, Rm, \
A64_VARIANT(sf), AARCH64_INSN_DATA3_MADD)
/* Rd = Ra - Rn * Rm */
#define A64_MSUB(sf, Rd, Ra, Rn, Rm) aarch64_insn_gen_data3(Rd, Ra, Rn, Rm, \
A64_VARIANT(sf), AARCH64_INSN_DATA3_MSUB)
/* Rd = Rn * Rm */
#define A64_MUL(sf, Rd, Rn, Rm) A64_MADD(sf, Rd, A64_ZR, Rn, Rm)
/* Logical (shifted register) */
#define A64_LOGIC_SREG(sf, Rd, Rn, Rm, type) \
aarch64_insn_gen_logical_shifted_reg(Rd, Rn, Rm, 0, \
A64_VARIANT(sf), AARCH64_INSN_LOGIC_##type)
/* Rd = Rn OP Rm */
#define A64_AND(sf, Rd, Rn, Rm) A64_LOGIC_SREG(sf, Rd, Rn, Rm, AND)
#define A64_ORR(sf, Rd, Rn, Rm) A64_LOGIC_SREG(sf, Rd, Rn, Rm, ORR)
#define A64_EOR(sf, Rd, Rn, Rm) A64_LOGIC_SREG(sf, Rd, Rn, Rm, EOR)
#define A64_ANDS(sf, Rd, Rn, Rm) A64_LOGIC_SREG(sf, Rd, Rn, Rm, AND_SETFLAGS)
/* Rn & Rm; set condition flags */
#define A64_TST(sf, Rn, Rm) A64_ANDS(sf, A64_ZR, Rn, Rm)
/* Rd = ~Rm (alias of ORN with A64_ZR as Rn) */
#define A64_MVN(sf, Rd, Rm) \
A64_LOGIC_SREG(sf, Rd, A64_ZR, Rm, ORN)
/* Logical (immediate) */
#define A64_LOGIC_IMM(sf, Rd, Rn, imm, type) ({ \
u64 imm64 = (sf) ? (u64)imm : (u64)(u32)imm; \
aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_##type, \
A64_VARIANT(sf), Rn, Rd, imm64); \
})
/* Rd = Rn OP imm */
#define A64_AND_I(sf, Rd, Rn, imm) A64_LOGIC_IMM(sf, Rd, Rn, imm, AND)
#define A64_ORR_I(sf, Rd, Rn, imm) A64_LOGIC_IMM(sf, Rd, Rn, imm, ORR)
#define A64_EOR_I(sf, Rd, Rn, imm) A64_LOGIC_IMM(sf, Rd, Rn, imm, EOR)
#define A64_ANDS_I(sf, Rd, Rn, imm) A64_LOGIC_IMM(sf, Rd, Rn, imm, AND_SETFLAGS)
/* Rn & imm; set condition flags */
#define A64_TST_I(sf, Rn, imm) A64_ANDS_I(sf, A64_ZR, Rn, imm)
/* HINTs */
#define A64_HINT(x) aarch64_insn_gen_hint(x)
#define A64_PACIASP A64_HINT(AARCH64_INSN_HINT_PACIASP)
#define A64_AUTIASP A64_HINT(AARCH64_INSN_HINT_AUTIASP)
/* BTI */
#define A64_BTI_C A64_HINT(AARCH64_INSN_HINT_BTIC)
#define A64_BTI_J A64_HINT(AARCH64_INSN_HINT_BTIJ)
#define A64_BTI_JC A64_HINT(AARCH64_INSN_HINT_BTIJC)
#define A64_NOP A64_HINT(AARCH64_INSN_HINT_NOP)
/* DMB */
#define A64_DMB_ISH aarch64_insn_gen_dmb(AARCH64_INSN_MB_ISH)
#endif /* _BPF_JIT_H */