forked from Minki/linux
f1947d7c8a
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmNHYD0ACgkQSfxwEqXe A655AA//dJK0PdRghqrKQsl18GOCffV5TUw5i1VbJQbI9d8anfxNjVUQiNGZi4et qUwZ8OqVXxYx1Z1UDgUE39PjEDSG9/cCvOpMUWqN20/+6955WlNZjwA7Fk6zjvlM R30fz5CIJns9RFvGT4SwKqbVLXIMvfg/wDENUN+8sxt36+VD2gGol7J2JJdngEhM lW+zqzi0ABqYy5so4TU2kixpKmpC08rqFvQbD1GPid+50+JsOiIqftDErt9Eg1Mg MqYivoFCvbAlxxxRh3+UHBd7ZpJLtp1UFEOl2Rf00OXO+ZclLCAQAsTczucIWK9M 8LCZjb7d4lPJv9RpXFAl3R1xvfc+Uy2ga5KeXvufZtc5G3aMUKPuIU7k28ZyblVS XXsXEYhjTSd0tgi3d0JlValrIreSuj0z2QGT5pVcC9utuAqAqRIlosiPmgPlzXjr Us4jXaUhOIPKI+Musv/fqrxsTQziT0jgVA3Njlt4cuAGm/EeUbLUkMWwKXjZLTsv vDsBhEQFmyZqxWu4pYo534VX2mQWTaKRV1SUVVhQEHm57b00EAiZohoOvweB09SR 4KiJapikoopmW4oAUFotUXUL1PM6yi+MXguTuc1SEYuLz/tCFtK8DJVwNpfnWZpE lZKvXyJnHq2Sgod/hEZq58PMvT6aNzTzSg7YzZy+VabxQGOO5mc= =M+mV -----END PGP SIGNATURE----- Merge tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull more random number generator updates from Jason Donenfeld: "This time with some large scale treewide cleanups. The intent of this pull is to clean up the way callers fetch random integers. The current rules for doing this right are: - If you want a secure or an insecure random u64, use get_random_u64() - If you want a secure or an insecure random u32, use get_random_u32() The old function prandom_u32() has been deprecated for a while now and is just a wrapper around get_random_u32(). Same for get_random_int(). - If you want a secure or an insecure random u16, use get_random_u16() - If you want a secure or an insecure random u8, use get_random_u8() - If you want secure or insecure random bytes, use get_random_bytes(). The old function prandom_bytes() has been deprecated for a while now and has long been a wrapper around get_random_bytes() - If you want a non-uniform random u32, u16, or u8 bounded by a certain open interval maximum, use prandom_u32_max() I say "non-uniform", because it doesn't do any rejection sampling or divisions. Hence, it stays within the prandom_*() namespace, not the get_random_*() namespace. I'm currently investigating a "uniform" function for 6.2. We'll see what comes of that. By applying these rules uniformly, we get several benefits: - By using prandom_u32_max() with an upper-bound that the compiler can prove at compile-time is ≤65536 or ≤256, internally get_random_u16() or get_random_u8() is used, which wastes fewer batched random bytes, and hence has higher throughput. - By using prandom_u32_max() instead of %, when the upper-bound is not a constant, division is still avoided, because prandom_u32_max() uses a faster multiplication-based trick instead. - By using get_random_u16() or get_random_u8() in cases where the return value is intended to indeed be a u16 or a u8, we waste fewer batched random bytes, and hence have higher throughput. This series was originally done by hand while I was on an airplane without Internet. Later, Kees and I worked on retroactively figuring out what could be done with Coccinelle and what had to be done manually, and then we split things up based on that. So while this touches a lot of files, the actual amount of code that's hand fiddled is comfortably small" * tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: prandom: remove unused functions treewide: use get_random_bytes() when possible treewide: use get_random_u32() when possible treewide: use get_random_{u8,u16}() when possible, part 2 treewide: use get_random_{u8,u16}() when possible, part 1 treewide: use prandom_u32_max() when possible, part 2 treewide: use prandom_u32_max() when possible, part 1
758 lines
19 KiB
C
758 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/process.c
|
|
*
|
|
* Original Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
#include <linux/compat.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/user.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/notifier.h>
|
|
#include <trace/events/power.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/compat.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pointer_auth.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/system_misc.h>
|
|
|
|
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
|
|
#include <linux/stackprotector.h>
|
|
unsigned long __stack_chk_guard __ro_after_init;
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
|
|
/*
|
|
* Function pointers to optional machine specific functions
|
|
*/
|
|
void (*pm_power_off)(void);
|
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
cpu_die();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called by kexec, immediately prior to machine_kexec().
|
|
*
|
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
|
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
|
|
*/
|
|
void machine_shutdown(void)
|
|
{
|
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
|
}
|
|
|
|
/*
|
|
* Halting simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this.
|
|
*/
|
|
void machine_halt(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
while (1);
|
|
}
|
|
|
|
/*
|
|
* Power-off simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this. When the system power is turned off, it will take all CPUs
|
|
* with it.
|
|
*/
|
|
void machine_power_off(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
do_kernel_power_off();
|
|
}
|
|
|
|
/*
|
|
* Restart requires that the secondary CPUs stop performing any activity
|
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
|
* This is required so that any code running after reset on the primary CPU
|
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
|
* to use. Implementing such co-ordination would be essentially impossible.
|
|
*/
|
|
void machine_restart(char *cmd)
|
|
{
|
|
/* Disable interrupts first */
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
|
|
/*
|
|
* UpdateCapsule() depends on the system being reset via
|
|
* ResetSystem().
|
|
*/
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efi_reboot(reboot_mode, NULL);
|
|
|
|
/* Now call the architecture specific reboot code. */
|
|
do_kernel_restart(cmd);
|
|
|
|
/*
|
|
* Whoops - the architecture was unable to reboot.
|
|
*/
|
|
printk("Reboot failed -- System halted\n");
|
|
while (1);
|
|
}
|
|
|
|
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
|
|
static const char *const btypes[] = {
|
|
bstr(NONE, "--"),
|
|
bstr( JC, "jc"),
|
|
bstr( C, "-c"),
|
|
bstr( J , "j-")
|
|
};
|
|
#undef bstr
|
|
|
|
static void print_pstate(struct pt_regs *regs)
|
|
{
|
|
u64 pstate = regs->pstate;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
|
|
pstate,
|
|
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
|
|
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
|
|
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
|
|
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_AA32_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_AA32_DIT_BIT ? '+' : '-',
|
|
pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
|
|
} else {
|
|
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
|
|
PSR_BTYPE_SHIFT];
|
|
|
|
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
|
|
pstate,
|
|
pstate & PSR_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_D_BIT ? 'D' : 'd',
|
|
pstate & PSR_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_PAN_BIT ? '+' : '-',
|
|
pstate & PSR_UAO_BIT ? '+' : '-',
|
|
pstate & PSR_TCO_BIT ? '+' : '-',
|
|
pstate & PSR_DIT_BIT ? '+' : '-',
|
|
pstate & PSR_SSBS_BIT ? '+' : '-',
|
|
btype_str);
|
|
}
|
|
}
|
|
|
|
void __show_regs(struct pt_regs *regs)
|
|
{
|
|
int i, top_reg;
|
|
u64 lr, sp;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
lr = regs->compat_lr;
|
|
sp = regs->compat_sp;
|
|
top_reg = 12;
|
|
} else {
|
|
lr = regs->regs[30];
|
|
sp = regs->sp;
|
|
top_reg = 29;
|
|
}
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
print_pstate(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
printk("pc : %pS\n", (void *)regs->pc);
|
|
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
|
|
} else {
|
|
printk("pc : %016llx\n", regs->pc);
|
|
printk("lr : %016llx\n", lr);
|
|
}
|
|
|
|
printk("sp : %016llx\n", sp);
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
printk("pmr_save: %08llx\n", regs->pmr_save);
|
|
|
|
i = top_reg;
|
|
|
|
while (i >= 0) {
|
|
printk("x%-2d: %016llx", i, regs->regs[i]);
|
|
|
|
while (i-- % 3)
|
|
pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
__show_regs(regs);
|
|
dump_backtrace(regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static void tls_thread_flush(void)
|
|
{
|
|
write_sysreg(0, tpidr_el0);
|
|
if (system_supports_tpidr2())
|
|
write_sysreg_s(0, SYS_TPIDR2_EL0);
|
|
|
|
if (is_compat_task()) {
|
|
current->thread.uw.tp_value = 0;
|
|
|
|
/*
|
|
* We need to ensure ordering between the shadow state and the
|
|
* hardware state, so that we don't corrupt the hardware state
|
|
* with a stale shadow state during context switch.
|
|
*/
|
|
barrier();
|
|
write_sysreg(0, tpidrro_el0);
|
|
}
|
|
}
|
|
|
|
static void flush_tagged_addr_state(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
|
|
clear_thread_flag(TIF_TAGGED_ADDR);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
fpsimd_flush_thread();
|
|
tls_thread_flush();
|
|
flush_ptrace_hw_breakpoint(current);
|
|
flush_tagged_addr_state();
|
|
}
|
|
|
|
void arch_release_task_struct(struct task_struct *tsk)
|
|
{
|
|
fpsimd_release_task(tsk);
|
|
}
|
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
if (current->mm)
|
|
fpsimd_preserve_current_state();
|
|
*dst = *src;
|
|
|
|
/* We rely on the above assignment to initialize dst's thread_flags: */
|
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
|
|
|
|
/*
|
|
* Detach src's sve_state (if any) from dst so that it does not
|
|
* get erroneously used or freed prematurely. dst's copies
|
|
* will be allocated on demand later on if dst uses SVE.
|
|
* For consistency, also clear TIF_SVE here: this could be done
|
|
* later in copy_process(), but to avoid tripping up future
|
|
* maintainers it is best not to leave TIF flags and buffers in
|
|
* an inconsistent state, even temporarily.
|
|
*/
|
|
dst->thread.sve_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SVE);
|
|
|
|
/*
|
|
* In the unlikely event that we create a new thread with ZA
|
|
* enabled we should retain the ZA state so duplicate it here.
|
|
* This may be shortly freed if we exec() or if CLONE_SETTLS
|
|
* but it's simpler to do it here. To avoid confusing the rest
|
|
* of the code ensure that we have a sve_state allocated
|
|
* whenever za_state is allocated.
|
|
*/
|
|
if (thread_za_enabled(&src->thread)) {
|
|
dst->thread.sve_state = kzalloc(sve_state_size(src),
|
|
GFP_KERNEL);
|
|
if (!dst->thread.sve_state)
|
|
return -ENOMEM;
|
|
dst->thread.za_state = kmemdup(src->thread.za_state,
|
|
za_state_size(src),
|
|
GFP_KERNEL);
|
|
if (!dst->thread.za_state) {
|
|
kfree(dst->thread.sve_state);
|
|
dst->thread.sve_state = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
dst->thread.za_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SME);
|
|
}
|
|
|
|
/* clear any pending asynchronous tag fault raised by the parent */
|
|
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
|
|
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
|
{
|
|
unsigned long clone_flags = args->flags;
|
|
unsigned long stack_start = args->stack;
|
|
unsigned long tls = args->tls;
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
|
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
|
|
|
/*
|
|
* In case p was allocated the same task_struct pointer as some
|
|
* other recently-exited task, make sure p is disassociated from
|
|
* any cpu that may have run that now-exited task recently.
|
|
* Otherwise we could erroneously skip reloading the FPSIMD
|
|
* registers for p.
|
|
*/
|
|
fpsimd_flush_task_state(p);
|
|
|
|
ptrauth_thread_init_kernel(p);
|
|
|
|
if (likely(!args->fn)) {
|
|
*childregs = *current_pt_regs();
|
|
childregs->regs[0] = 0;
|
|
|
|
/*
|
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
|
* out-of-sync with the saved value.
|
|
*/
|
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
|
if (system_supports_tpidr2())
|
|
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
|
|
|
if (stack_start) {
|
|
if (is_compat_thread(task_thread_info(p)))
|
|
childregs->compat_sp = stack_start;
|
|
else
|
|
childregs->sp = stack_start;
|
|
}
|
|
|
|
/*
|
|
* If a TLS pointer was passed to clone, use it for the new
|
|
* thread. We also reset TPIDR2 if it's in use.
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
p->thread.uw.tp_value = tls;
|
|
p->thread.tpidr2_el0 = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* A kthread has no context to ERET to, so ensure any buggy
|
|
* ERET is treated as an illegal exception return.
|
|
*
|
|
* When a user task is created from a kthread, childregs will
|
|
* be initialized by start_thread() or start_compat_thread().
|
|
*/
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
|
|
|
|
p->thread.cpu_context.x19 = (unsigned long)args->fn;
|
|
p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
|
|
}
|
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
|
/*
|
|
* For the benefit of the unwinder, set up childregs->stackframe
|
|
* as the final frame for the new task.
|
|
*/
|
|
p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
|
|
|
|
ptrace_hw_copy_thread(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tls_preserve_current_state(void)
|
|
{
|
|
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
|
if (system_supports_tpidr2() && !is_compat_task())
|
|
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
|
}
|
|
|
|
static void tls_thread_switch(struct task_struct *next)
|
|
{
|
|
tls_preserve_current_state();
|
|
|
|
if (is_compat_thread(task_thread_info(next)))
|
|
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
|
|
else if (!arm64_kernel_unmapped_at_el0())
|
|
write_sysreg(0, tpidrro_el0);
|
|
|
|
write_sysreg(*task_user_tls(next), tpidr_el0);
|
|
if (system_supports_tpidr2())
|
|
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
|
|
}
|
|
|
|
/*
|
|
* Force SSBS state on context-switch, since it may be lost after migrating
|
|
* from a CPU which treats the bit as RES0 in a heterogeneous system.
|
|
*/
|
|
static void ssbs_thread_switch(struct task_struct *next)
|
|
{
|
|
/*
|
|
* Nothing to do for kernel threads, but 'regs' may be junk
|
|
* (e.g. idle task) so check the flags and bail early.
|
|
*/
|
|
if (unlikely(next->flags & PF_KTHREAD))
|
|
return;
|
|
|
|
/*
|
|
* If all CPUs implement the SSBS extension, then we just need to
|
|
* context-switch the PSTATE field.
|
|
*/
|
|
if (cpus_have_const_cap(ARM64_SSBS))
|
|
return;
|
|
|
|
spectre_v4_enable_task_mitigation(next);
|
|
}
|
|
|
|
/*
|
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
|
* shadow copy so that we can restore this upon entry from userspace.
|
|
*
|
|
* This is *only* for exception entry from EL0, and is not valid until we
|
|
* __switch_to() a user task.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
|
|
|
static void entry_task_switch(struct task_struct *next)
|
|
{
|
|
__this_cpu_write(__entry_task, next);
|
|
}
|
|
|
|
/*
|
|
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
|
|
* Ensure access is disabled when switching to a 32bit task, ensure
|
|
* access is enabled when switching to a 64bit task.
|
|
*/
|
|
static void erratum_1418040_thread_switch(struct task_struct *next)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
|
|
!this_cpu_has_cap(ARM64_WORKAROUND_1418040))
|
|
return;
|
|
|
|
if (is_compat_thread(task_thread_info(next)))
|
|
sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
|
|
else
|
|
sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
|
|
}
|
|
|
|
static void erratum_1418040_new_exec(void)
|
|
{
|
|
preempt_disable();
|
|
erratum_1418040_thread_switch(current);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
|
|
* this function must be called with preemption disabled and the update to
|
|
* sctlr_user must be made in the same preemption disabled block so that
|
|
* __switch_to() does not see the variable update before the SCTLR_EL1 one.
|
|
*/
|
|
void update_sctlr_el1(u64 sctlr)
|
|
{
|
|
/*
|
|
* EnIA must not be cleared while in the kernel as this is necessary for
|
|
* in-kernel PAC. It will be cleared on kernel exit if needed.
|
|
*/
|
|
sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
|
|
|
|
/* ISB required for the kernel uaccess routines when setting TCF0. */
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Thread switching.
|
|
*/
|
|
__notrace_funcgraph __sched
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
struct task_struct *last;
|
|
|
|
fpsimd_thread_switch(next);
|
|
tls_thread_switch(next);
|
|
hw_breakpoint_thread_switch(next);
|
|
contextidr_thread_switch(next);
|
|
entry_task_switch(next);
|
|
ssbs_thread_switch(next);
|
|
erratum_1418040_thread_switch(next);
|
|
ptrauth_thread_switch_user(next);
|
|
|
|
/*
|
|
* Complete any pending TLB or cache maintenance on this CPU in case
|
|
* the thread migrates to a different CPU.
|
|
* This full barrier is also required by the membarrier system
|
|
* call.
|
|
*/
|
|
dsb(ish);
|
|
|
|
/*
|
|
* MTE thread switching must happen after the DSB above to ensure that
|
|
* any asynchronous tag check faults have been logged in the TFSR*_EL1
|
|
* registers.
|
|
*/
|
|
mte_thread_switch(next);
|
|
/* avoid expensive SCTLR_EL1 accesses if no change */
|
|
if (prev->thread.sctlr_user != next->thread.sctlr_user)
|
|
update_sctlr_el1(next->thread.sctlr_user);
|
|
|
|
/* the actual thread switch */
|
|
last = cpu_switch_to(prev, next);
|
|
|
|
return last;
|
|
}
|
|
|
|
struct wchan_info {
|
|
unsigned long pc;
|
|
int count;
|
|
};
|
|
|
|
static bool get_wchan_cb(void *arg, unsigned long pc)
|
|
{
|
|
struct wchan_info *wchan_info = arg;
|
|
|
|
if (!in_sched_functions(pc)) {
|
|
wchan_info->pc = pc;
|
|
return false;
|
|
}
|
|
return wchan_info->count++ < 16;
|
|
}
|
|
|
|
unsigned long __get_wchan(struct task_struct *p)
|
|
{
|
|
struct wchan_info wchan_info = {
|
|
.pc = 0,
|
|
.count = 0,
|
|
};
|
|
|
|
if (!try_get_task_stack(p))
|
|
return 0;
|
|
|
|
arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
|
|
|
|
put_task_stack(p);
|
|
|
|
return wchan_info.pc;
|
|
}
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= prandom_u32_max(PAGE_SIZE);
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_elf_check_arch(const struct elf32_hdr *hdr)
|
|
{
|
|
if (!system_supports_32bit_el0())
|
|
return false;
|
|
|
|
if ((hdr)->e_machine != EM_ARM)
|
|
return false;
|
|
|
|
if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
|
|
return false;
|
|
|
|
/*
|
|
* Prevent execve() of a 32-bit program from a deadline task
|
|
* if the restricted affinity mask would be inadmissible on an
|
|
* asymmetric system.
|
|
*/
|
|
return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
|
|
!dl_task_check_affinity(current, system_32bit_el0_cpumask());
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
|
|
*/
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
unsigned long mmflags = 0;
|
|
|
|
if (is_compat_task()) {
|
|
mmflags = MMCF_AARCH32;
|
|
|
|
/*
|
|
* Restrict the CPU affinity mask for a 32-bit task so that
|
|
* it contains only 32-bit-capable CPUs.
|
|
*
|
|
* From the perspective of the task, this looks similar to
|
|
* what would happen if the 64-bit-only CPUs were hot-unplugged
|
|
* at the point of execve(), although we try a bit harder to
|
|
* honour the cpuset hierarchy.
|
|
*/
|
|
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
|
force_compatible_cpus_allowed_ptr(current);
|
|
} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
|
|
relax_compatible_cpus_allowed_ptr(current);
|
|
}
|
|
|
|
current->mm->context.flags = mmflags;
|
|
ptrauth_thread_init_user();
|
|
mte_thread_init_user();
|
|
erratum_1418040_new_exec();
|
|
|
|
if (task_spec_ssb_noexec(current)) {
|
|
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
|
|
PR_SPEC_ENABLE);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
|
|
/*
|
|
* Control the relaxed ABI allowing tagged user addresses into the kernel.
|
|
*/
|
|
static unsigned int tagged_addr_disabled;
|
|
|
|
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (system_supports_mte())
|
|
valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
|
|
| PR_MTE_TAG_MASK;
|
|
|
|
if (arg & ~valid_mask)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Do not allow the enabling of the tagged address ABI if globally
|
|
* disabled via sysctl abi.tagged_addr_disabled.
|
|
*/
|
|
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
|
|
return -EINVAL;
|
|
|
|
if (set_mte_ctrl(task, arg) != 0)
|
|
return -EINVAL;
|
|
|
|
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_tagged_addr_ctrl(struct task_struct *task)
|
|
{
|
|
long ret = 0;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
|
|
ret = PR_TAGGED_ADDR_ENABLE;
|
|
|
|
ret |= get_mte_ctrl(task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Global sysctl to disable the tagged user addresses support. This control
|
|
* only prevents the tagged address ABI enabling via prctl() and does not
|
|
* disable it for tasks that already opted in to the relaxed ABI.
|
|
*/
|
|
|
|
static struct ctl_table tagged_addr_sysctl_table[] = {
|
|
{
|
|
.procname = "tagged_addr_disabled",
|
|
.mode = 0644,
|
|
.data = &tagged_addr_disabled,
|
|
.maxlen = sizeof(int),
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init tagged_addr_init(void)
|
|
{
|
|
if (!register_sysctl("abi", tagged_addr_sysctl_table))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(tagged_addr_init);
|
|
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
|
|
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
|
|
bool has_interp, bool is_interp)
|
|
{
|
|
/*
|
|
* For dynamically linked executables the interpreter is
|
|
* responsible for setting PROT_BTI on everything except
|
|
* itself.
|
|
*/
|
|
if (is_interp != has_interp)
|
|
return prot;
|
|
|
|
if (!(state->flags & ARM64_ELF_BTI))
|
|
return prot;
|
|
|
|
if (prot & PROT_EXEC)
|
|
prot |= PROT_BTI;
|
|
|
|
return prot;
|
|
}
|
|
#endif
|