/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include /* bpf_check() is a static code analyzer that walks eBPF program * instruction by instruction and updates register/stack state. * All paths of conditional branches are analyzed until 'bpf_exit' insn. * * The first pass is depth-first-search to check that the program is a DAG. * It rejects the following programs: * - larger than BPF_MAXINSNS insns * - if loop is present (detected via back-edge) * - unreachable insns exist (shouldn't be a forest. program = one function) * - out of bounds or malformed jumps * The second pass is all possible path descent from the 1st insn. * Since it's analyzing all pathes through the program, the length of the * analysis is limited to 32k insn, which may be hit even if total number of * insn is less then 4K, but there are too many branches that change stack/regs. * Number of 'branches to be analyzed' is limited to 1k * * On entry to each instruction, each register has a type, and the instruction * changes the types of the registers depending on instruction semantics. * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is * copied to R1. * * All registers are 64-bit. * R0 - return register * R1-R5 argument passing registers * R6-R9 callee saved registers * R10 - frame pointer read-only * * At the start of BPF program the register R1 contains a pointer to bpf_context * and has type PTR_TO_CTX. * * Verifier tracks arithmetic operations on pointers in case: * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), * 1st insn copies R10 (which has FRAME_PTR) type into R1 * and 2nd arithmetic instruction is pattern matched to recognize * that it wants to construct a pointer to some element within stack. * So after 2nd insn, the register R1 has type PTR_TO_STACK * (and -20 constant is saved for further stack bounds checking). * Meaning that this reg is a pointer to stack plus known immediate constant. * * Most of the time the registers have UNKNOWN_VALUE type, which * means the register has some value, but it's not a valid pointer. * (like pointer plus pointer becomes UNKNOWN_VALUE type) * * When verifier sees load or store instructions the type of base register * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer * types recognized by check_mem_access() function. * * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' * and the range of [ptr, ptr + map's value_size) is accessible. * * registers used to pass values to function calls are checked against * function argument constraints. * * ARG_PTR_TO_MAP_KEY is one of such argument constraints. * It means that the register type passed to this function must be * PTR_TO_STACK and it will be used inside the function as * 'pointer to map element key' * * For example the argument constraints for bpf_map_lookup_elem(): * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, * .arg1_type = ARG_CONST_MAP_PTR, * .arg2_type = ARG_PTR_TO_MAP_KEY, * * ret_type says that this function returns 'pointer to map elem value or null' * function expects 1st argument to be a const pointer to 'struct bpf_map' and * 2nd argument should be a pointer to stack, which will be used inside * the helper function as a pointer to map element key. * * On the kernel side the helper function looks like: * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) * { * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; * void *key = (void *) (unsigned long) r2; * void *value; * * here kernel can access 'key' and 'map' pointers safely, knowing that * [key, key + map->key_size) bytes are valid and were initialized on * the stack of eBPF program. * } * * Corresponding eBPF program may look like: * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), * here verifier looks at prototype of map_lookup_elem() and sees: * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, * Now verifier knows that this map has key of R1->map_ptr->key_size bytes * * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, * Now verifier checks that [R2, R2 + map's key_size) are within stack limits * and were initialized prior to this call. * If it's ok, then verifier allows this BPF_CALL insn and looks at * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function * returns ether pointer to map value or NULL. * * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' * insn, the register holding that pointer in the true branch changes state to * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false * branch. See check_cond_jmp_op(). * * After the call R0 is set to return type of the function and registers R1-R5 * are set to NOT_INIT to indicate that they are no longer readable. */ /* types of values stored in eBPF registers */ enum bpf_reg_type { NOT_INIT = 0, /* nothing was written into register */ UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */ PTR_TO_CTX, /* reg points to bpf_context */ CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ PTR_TO_MAP_VALUE, /* reg points to map element value */ PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */ FRAME_PTR, /* reg == frame_pointer */ PTR_TO_STACK, /* reg == frame_pointer + imm */ CONST_IMM, /* constant integer value */ }; struct reg_state { enum bpf_reg_type type; union { /* valid when type == CONST_IMM | PTR_TO_STACK */ int imm; /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | * PTR_TO_MAP_VALUE_OR_NULL */ struct bpf_map *map_ptr; }; }; enum bpf_stack_slot_type { STACK_INVALID, /* nothing was stored in this stack slot */ STACK_SPILL, /* register spilled into stack */ STACK_MISC /* BPF program wrote some data into this slot */ }; #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ /* state of the program: * type of all registers and stack info */ struct verifier_state { struct reg_state regs[MAX_BPF_REG]; u8 stack_slot_type[MAX_BPF_STACK]; struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE]; }; /* linked list of verifier states used to prune search */ struct verifier_state_list { struct verifier_state state; struct verifier_state_list *next; }; /* verifier_state + insn_idx are pushed to stack when branch is encountered */ struct verifier_stack_elem { /* verifer state is 'st' * before processing instruction 'insn_idx' * and after processing instruction 'prev_insn_idx' */ struct verifier_state st; int insn_idx; int prev_insn_idx; struct verifier_stack_elem *next; }; #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ /* single container for all structs * one verifier_env per bpf_check() call */ struct verifier_env { struct bpf_prog *prog; /* eBPF program being verified */ struct verifier_stack_elem *head; /* stack of verifier states to be processed */ int stack_size; /* number of states to be processed */ struct verifier_state cur_state; /* current verifier state */ struct verifier_state_list **explored_states; /* search pruning optimization */ struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ u32 used_map_cnt; /* number of used maps */ }; /* verbose verifier prints what it's seeing * bpf_check() is called under lock, so no race to access these global vars */ static u32 log_level, log_size, log_len; static char *log_buf; static DEFINE_MUTEX(bpf_verifier_lock); /* log_level controls verbosity level of eBPF verifier. * verbose() is used to dump the verification trace to the log, so the user * can figure out what's wrong with the program */ static void verbose(const char *fmt, ...) { va_list args; if (log_level == 0 || log_len >= log_size - 1) return; va_start(args, fmt); log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); va_end(args); } /* string representation of 'enum bpf_reg_type' */ static const char * const reg_type_str[] = { [NOT_INIT] = "?", [UNKNOWN_VALUE] = "inv", [PTR_TO_CTX] = "ctx", [CONST_PTR_TO_MAP] = "map_ptr", [PTR_TO_MAP_VALUE] = "map_value", [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", [FRAME_PTR] = "fp", [PTR_TO_STACK] = "fp", [CONST_IMM] = "imm", }; static const struct { int map_type; int func_id; } func_limit[] = { {BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call}, {BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read}, }; static void print_verifier_state(struct verifier_env *env) { enum bpf_reg_type t; int i; for (i = 0; i < MAX_BPF_REG; i++) { t = env->cur_state.regs[i].type; if (t == NOT_INIT) continue; verbose(" R%d=%s", i, reg_type_str[t]); if (t == CONST_IMM || t == PTR_TO_STACK) verbose("%d", env->cur_state.regs[i].imm); else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || t == PTR_TO_MAP_VALUE_OR_NULL) verbose("(ks=%d,vs=%d)", env->cur_state.regs[i].map_ptr->key_size, env->cur_state.regs[i].map_ptr->value_size); } for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { if (env->cur_state.stack_slot_type[i] == STACK_SPILL) verbose(" fp%d=%s", -MAX_BPF_STACK + i, reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]); } verbose("\n"); } static const char *const bpf_class_string[] = { [BPF_LD] = "ld", [BPF_LDX] = "ldx", [BPF_ST] = "st", [BPF_STX] = "stx", [BPF_ALU] = "alu", [BPF_JMP] = "jmp", [BPF_RET] = "BUG", [BPF_ALU64] = "alu64", }; static const char *const bpf_alu_string[16] = { [BPF_ADD >> 4] = "+=", [BPF_SUB >> 4] = "-=", [BPF_MUL >> 4] = "*=", [BPF_DIV >> 4] = "/=", [BPF_OR >> 4] = "|=", [BPF_AND >> 4] = "&=", [BPF_LSH >> 4] = "<<=", [BPF_RSH >> 4] = ">>=", [BPF_NEG >> 4] = "neg", [BPF_MOD >> 4] = "%=", [BPF_XOR >> 4] = "^=", [BPF_MOV >> 4] = "=", [BPF_ARSH >> 4] = "s>>=", [BPF_END >> 4] = "endian", }; static const char *const bpf_ldst_string[] = { [BPF_W >> 3] = "u32", [BPF_H >> 3] = "u16", [BPF_B >> 3] = "u8", [BPF_DW >> 3] = "u64", }; static const char *const bpf_jmp_string[16] = { [BPF_JA >> 4] = "jmp", [BPF_JEQ >> 4] = "==", [BPF_JGT >> 4] = ">", [BPF_JGE >> 4] = ">=", [BPF_JSET >> 4] = "&", [BPF_JNE >> 4] = "!=", [BPF_JSGT >> 4] = "s>", [BPF_JSGE >> 4] = "s>=", [BPF_CALL >> 4] = "call", [BPF_EXIT >> 4] = "exit", }; static void print_bpf_insn(struct bpf_insn *insn) { u8 class = BPF_CLASS(insn->code); if (class == BPF_ALU || class == BPF_ALU64) { if (BPF_SRC(insn->code) == BPF_X) verbose("(%02x) %sr%d %s %sr%d\n", insn->code, class == BPF_ALU ? "(u32) " : "", insn->dst_reg, bpf_alu_string[BPF_OP(insn->code) >> 4], class == BPF_ALU ? "(u32) " : "", insn->src_reg); else verbose("(%02x) %sr%d %s %s%d\n", insn->code, class == BPF_ALU ? "(u32) " : "", insn->dst_reg, bpf_alu_string[BPF_OP(insn->code) >> 4], class == BPF_ALU ? "(u32) " : "", insn->imm); } else if (class == BPF_STX) { if (BPF_MODE(insn->code) == BPF_MEM) verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", insn->code, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->dst_reg, insn->off, insn->src_reg); else if (BPF_MODE(insn->code) == BPF_XADD) verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", insn->code, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->dst_reg, insn->off, insn->src_reg); else verbose("BUG_%02x\n", insn->code); } else if (class == BPF_ST) { if (BPF_MODE(insn->code) != BPF_MEM) { verbose("BUG_st_%02x\n", insn->code); return; } verbose("(%02x) *(%s *)(r%d %+d) = %d\n", insn->code, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->dst_reg, insn->off, insn->imm); } else if (class == BPF_LDX) { if (BPF_MODE(insn->code) != BPF_MEM) { verbose("BUG_ldx_%02x\n", insn->code); return; } verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", insn->code, insn->dst_reg, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->src_reg, insn->off); } else if (class == BPF_LD) { if (BPF_MODE(insn->code) == BPF_ABS) { verbose("(%02x) r0 = *(%s *)skb[%d]\n", insn->code, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->imm); } else if (BPF_MODE(insn->code) == BPF_IND) { verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", insn->code, bpf_ldst_string[BPF_SIZE(insn->code) >> 3], insn->src_reg, insn->imm); } else if (BPF_MODE(insn->code) == BPF_IMM) { verbose("(%02x) r%d = 0x%x\n", insn->code, insn->dst_reg, insn->imm); } else { verbose("BUG_ld_%02x\n", insn->code); return; } } else if (class == BPF_JMP) { u8 opcode = BPF_OP(insn->code); if (opcode == BPF_CALL) { verbose("(%02x) call %d\n", insn->code, insn->imm); } else if (insn->code == (BPF_JMP | BPF_JA)) { verbose("(%02x) goto pc%+d\n", insn->code, insn->off); } else if (insn->code == (BPF_JMP | BPF_EXIT)) { verbose("(%02x) exit\n", insn->code); } else if (BPF_SRC(insn->code) == BPF_X) { verbose("(%02x) if r%d %s r%d goto pc%+d\n", insn->code, insn->dst_reg, bpf_jmp_string[BPF_OP(insn->code) >> 4], insn->src_reg, insn->off); } else { verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", insn->code, insn->dst_reg, bpf_jmp_string[BPF_OP(insn->code) >> 4], insn->imm, insn->off); } } else { verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); } } static int pop_stack(struct verifier_env *env, int *prev_insn_idx) { struct verifier_stack_elem *elem; int insn_idx; if (env->head == NULL) return -1; memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); insn_idx = env->head->insn_idx; if (prev_insn_idx) *prev_insn_idx = env->head->prev_insn_idx; elem = env->head->next; kfree(env->head); env->head = elem; env->stack_size--; return insn_idx; } static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, int prev_insn_idx) { struct verifier_stack_elem *elem; elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); if (!elem) goto err; memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); elem->insn_idx = insn_idx; elem->prev_insn_idx = prev_insn_idx; elem->next = env->head; env->head = elem; env->stack_size++; if (env->stack_size > 1024) { verbose("BPF program is too complex\n"); goto err; } return &elem->st; err: /* pop all elements and return */ while (pop_stack(env, NULL) >= 0); return NULL; } #define CALLER_SAVED_REGS 6 static const int caller_saved[CALLER_SAVED_REGS] = { BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 }; static void init_reg_state(struct reg_state *regs) { int i; for (i = 0; i < MAX_BPF_REG; i++) { regs[i].type = NOT_INIT; regs[i].imm = 0; regs[i].map_ptr = NULL; } /* frame pointer */ regs[BPF_REG_FP].type = FRAME_PTR; /* 1st arg to a function */ regs[BPF_REG_1].type = PTR_TO_CTX; } static void mark_reg_unknown_value(struct reg_state *regs, u32 regno) { BUG_ON(regno >= MAX_BPF_REG); regs[regno].type = UNKNOWN_VALUE; regs[regno].imm = 0; regs[regno].map_ptr = NULL; } enum reg_arg_type { SRC_OP, /* register is used as source operand */ DST_OP, /* register is used as destination operand */ DST_OP_NO_MARK /* same as above, check only, don't mark */ }; static int check_reg_arg(struct reg_state *regs, u32 regno, enum reg_arg_type t) { if (regno >= MAX_BPF_REG) { verbose("R%d is invalid\n", regno); return -EINVAL; } if (t == SRC_OP) { /* check whether register used as source operand can be read */ if (regs[regno].type == NOT_INIT) { verbose("R%d !read_ok\n", regno); return -EACCES; } } else { /* check whether register used as dest operand can be written to */ if (regno == BPF_REG_FP) { verbose("frame pointer is read only\n"); return -EACCES; } if (t == DST_OP) mark_reg_unknown_value(regs, regno); } return 0; } static int bpf_size_to_bytes(int bpf_size) { if (bpf_size == BPF_W) return 4; else if (bpf_size == BPF_H) return 2; else if (bpf_size == BPF_B) return 1; else if (bpf_size == BPF_DW) return 8; else return -EINVAL; } /* check_stack_read/write functions track spill/fill of registers, * stack boundary and alignment are checked in check_mem_access() */ static int check_stack_write(struct verifier_state *state, int off, int size, int value_regno) { int i; /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, * so it's aligned access and [off, off + size) are within stack limits */ if (value_regno >= 0 && (state->regs[value_regno].type == PTR_TO_MAP_VALUE || state->regs[value_regno].type == PTR_TO_STACK || state->regs[value_regno].type == PTR_TO_CTX)) { /* register containing pointer is being spilled into stack */ if (size != BPF_REG_SIZE) { verbose("invalid size of register spill\n"); return -EACCES; } /* save register state */ state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = state->regs[value_regno]; for (i = 0; i < BPF_REG_SIZE; i++) state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; } else { /* regular write of data into stack */ state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = (struct reg_state) {}; for (i = 0; i < size; i++) state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; } return 0; } static int check_stack_read(struct verifier_state *state, int off, int size, int value_regno) { u8 *slot_type; int i; slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; if (slot_type[0] == STACK_SPILL) { if (size != BPF_REG_SIZE) { verbose("invalid size of register spill\n"); return -EACCES; } for (i = 1; i < BPF_REG_SIZE; i++) { if (slot_type[i] != STACK_SPILL) { verbose("corrupted spill memory\n"); return -EACCES; } } if (value_regno >= 0) /* restore register state from stack */ state->regs[value_regno] = state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE]; return 0; } else { for (i = 0; i < size; i++) { if (slot_type[i] != STACK_MISC) { verbose("invalid read from stack off %d+%d size %d\n", off, i, size); return -EACCES; } } if (value_regno >= 0) /* have read misc data from the stack */ mark_reg_unknown_value(state->regs, value_regno); return 0; } } /* check read/write into map element returned by bpf_map_lookup_elem() */ static int check_map_access(struct verifier_env *env, u32 regno, int off, int size) { struct bpf_map *map = env->cur_state.regs[regno].map_ptr; if (off < 0 || off + size > map->value_size) { verbose("invalid access to map value, value_size=%d off=%d size=%d\n", map->value_size, off, size); return -EACCES; } return 0; } /* check access to 'struct bpf_context' fields */ static int check_ctx_access(struct verifier_env *env, int off, int size, enum bpf_access_type t) { if (env->prog->aux->ops->is_valid_access && env->prog->aux->ops->is_valid_access(off, size, t)) return 0; verbose("invalid bpf_context access off=%d size=%d\n", off, size); return -EACCES; } /* check whether memory at (regno + off) is accessible for t = (read | write) * if t==write, value_regno is a register which value is stored into memory * if t==read, value_regno is a register which will receive the value from memory * if t==write && value_regno==-1, some unknown value is stored into memory * if t==read && value_regno==-1, don't care what we read from memory */ static int check_mem_access(struct verifier_env *env, u32 regno, int off, int bpf_size, enum bpf_access_type t, int value_regno) { struct verifier_state *state = &env->cur_state; int size, err = 0; if (state->regs[regno].type == PTR_TO_STACK) off += state->regs[regno].imm; size = bpf_size_to_bytes(bpf_size); if (size < 0) return size; if (off % size != 0) { verbose("misaligned access off %d size %d\n", off, size); return -EACCES; } if (state->regs[regno].type == PTR_TO_MAP_VALUE) { err = check_map_access(env, regno, off, size); if (!err && t == BPF_READ && value_regno >= 0) mark_reg_unknown_value(state->regs, value_regno); } else if (state->regs[regno].type == PTR_TO_CTX) { err = check_ctx_access(env, off, size, t); if (!err && t == BPF_READ && value_regno >= 0) mark_reg_unknown_value(state->regs, value_regno); } else if (state->regs[regno].type == FRAME_PTR || state->regs[regno].type == PTR_TO_STACK) { if (off >= 0 || off < -MAX_BPF_STACK) { verbose("invalid stack off=%d size=%d\n", off, size); return -EACCES; } if (t == BPF_WRITE) err = check_stack_write(state, off, size, value_regno); else err = check_stack_read(state, off, size, value_regno); } else { verbose("R%d invalid mem access '%s'\n", regno, reg_type_str[state->regs[regno].type]); return -EACCES; } return err; } static int check_xadd(struct verifier_env *env, struct bpf_insn *insn) { struct reg_state *regs = env->cur_state.regs; int err; if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || insn->imm != 0) { verbose("BPF_XADD uses reserved fields\n"); return -EINVAL; } /* check src1 operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; /* check src2 operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; /* check whether atomic_add can read the memory */ err = check_mem_access(env, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_READ, -1); if (err) return err; /* check whether atomic_add can write into the same memory */ return check_mem_access(env, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, -1); } /* when register 'regno' is passed into function that will read 'access_size' * bytes from that pointer, make sure that it's within stack boundary * and all elements of stack are initialized */ static int check_stack_boundary(struct verifier_env *env, int regno, int access_size) { struct verifier_state *state = &env->cur_state; struct reg_state *regs = state->regs; int off, i; if (regs[regno].type != PTR_TO_STACK) return -EACCES; off = regs[regno].imm; if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || access_size <= 0) { verbose("invalid stack type R%d off=%d access_size=%d\n", regno, off, access_size); return -EACCES; } for (i = 0; i < access_size; i++) { if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { verbose("invalid indirect read from stack off %d+%d size %d\n", off, i, access_size); return -EACCES; } } return 0; } static int check_func_arg(struct verifier_env *env, u32 regno, enum bpf_arg_type arg_type, struct bpf_map **mapp) { struct reg_state *reg = env->cur_state.regs + regno; enum bpf_reg_type expected_type; int err = 0; if (arg_type == ARG_DONTCARE) return 0; if (reg->type == NOT_INIT) { verbose("R%d !read_ok\n", regno); return -EACCES; } if (arg_type == ARG_ANYTHING) return 0; if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY || arg_type == ARG_PTR_TO_MAP_VALUE) { expected_type = PTR_TO_STACK; } else if (arg_type == ARG_CONST_STACK_SIZE) { expected_type = CONST_IMM; } else if (arg_type == ARG_CONST_MAP_PTR) { expected_type = CONST_PTR_TO_MAP; } else if (arg_type == ARG_PTR_TO_CTX) { expected_type = PTR_TO_CTX; } else { verbose("unsupported arg_type %d\n", arg_type); return -EFAULT; } if (reg->type != expected_type) { verbose("R%d type=%s expected=%s\n", regno, reg_type_str[reg->type], reg_type_str[expected_type]); return -EACCES; } if (arg_type == ARG_CONST_MAP_PTR) { /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ *mapp = reg->map_ptr; } else if (arg_type == ARG_PTR_TO_MAP_KEY) { /* bpf_map_xxx(..., map_ptr, ..., key) call: * check that [key, key + map->key_size) are within * stack limits and initialized */ if (!*mapp) { /* in function declaration map_ptr must come before * map_key, so that it's verified and known before * we have to check map_key here. Otherwise it means * that kernel subsystem misconfigured verifier */ verbose("invalid map_ptr to access map->key\n"); return -EACCES; } err = check_stack_boundary(env, regno, (*mapp)->key_size); } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { /* bpf_map_xxx(..., map_ptr, ..., value) call: * check [value, value + map->value_size) validity */ if (!*mapp) { /* kernel subsystem misconfigured verifier */ verbose("invalid map_ptr to access map->value\n"); return -EACCES; } err = check_stack_boundary(env, regno, (*mapp)->value_size); } else if (arg_type == ARG_CONST_STACK_SIZE) { /* bpf_xxx(..., buf, len) call will access 'len' bytes * from stack pointer 'buf'. Check it * note: regno == len, regno - 1 == buf */ if (regno == 0) { /* kernel subsystem misconfigured verifier */ verbose("ARG_CONST_STACK_SIZE cannot be first argument\n"); return -EACCES; } err = check_stack_boundary(env, regno - 1, reg->imm); } return err; } static int check_map_func_compatibility(struct bpf_map *map, int func_id) { bool bool_map, bool_func; int i; if (!map) return 0; for (i = 0; i < ARRAY_SIZE(func_limit); i++) { bool_map = (map->map_type == func_limit[i].map_type); bool_func = (func_id == func_limit[i].func_id); /* only when map & func pair match it can continue. * don't allow any other map type to be passed into * the special func; */ if (bool_map != bool_func) return -EINVAL; } return 0; } static int check_call(struct verifier_env *env, int func_id) { struct verifier_state *state = &env->cur_state; const struct bpf_func_proto *fn = NULL; struct reg_state *regs = state->regs; struct bpf_map *map = NULL; struct reg_state *reg; int i, err; /* find function prototype */ if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { verbose("invalid func %d\n", func_id); return -EINVAL; } if (env->prog->aux->ops->get_func_proto) fn = env->prog->aux->ops->get_func_proto(func_id); if (!fn) { verbose("unknown func %d\n", func_id); return -EINVAL; } /* eBPF programs must be GPL compatible to use GPL-ed functions */ if (!env->prog->gpl_compatible && fn->gpl_only) { verbose("cannot call GPL only function from proprietary program\n"); return -EINVAL; } /* check args */ err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map); if (err) return err; err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map); if (err) return err; err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map); if (err) return err; err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map); if (err) return err; err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map); if (err) return err; /* reset caller saved regs */ for (i = 0; i < CALLER_SAVED_REGS; i++) { reg = regs + caller_saved[i]; reg->type = NOT_INIT; reg->imm = 0; } /* update return register */ if (fn->ret_type == RET_INTEGER) { regs[BPF_REG_0].type = UNKNOWN_VALUE; } else if (fn->ret_type == RET_VOID) { regs[BPF_REG_0].type = NOT_INIT; } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; /* remember map_ptr, so that check_map_access() * can check 'value_size' boundary of memory access * to map element returned from bpf_map_lookup_elem() */ if (map == NULL) { verbose("kernel subsystem misconfigured verifier\n"); return -EINVAL; } regs[BPF_REG_0].map_ptr = map; } else { verbose("unknown return type %d of func %d\n", fn->ret_type, func_id); return -EINVAL; } err = check_map_func_compatibility(map, func_id); if (err) return err; return 0; } /* check validity of 32-bit and 64-bit arithmetic operations */ static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn) { u8 opcode = BPF_OP(insn->code); int err; if (opcode == BPF_END || opcode == BPF_NEG) { if (opcode == BPF_NEG) { if (BPF_SRC(insn->code) != 0 || insn->src_reg != BPF_REG_0 || insn->off != 0 || insn->imm != 0) { verbose("BPF_NEG uses reserved fields\n"); return -EINVAL; } } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0 || (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { verbose("BPF_END uses reserved fields\n"); return -EINVAL; } } /* check src operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; /* check dest operand */ err = check_reg_arg(regs, insn->dst_reg, DST_OP); if (err) return err; } else if (opcode == BPF_MOV) { if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0 || insn->off != 0) { verbose("BPF_MOV uses reserved fields\n"); return -EINVAL; } /* check src operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0) { verbose("BPF_MOV uses reserved fields\n"); return -EINVAL; } } /* check dest operand */ err = check_reg_arg(regs, insn->dst_reg, DST_OP); if (err) return err; if (BPF_SRC(insn->code) == BPF_X) { if (BPF_CLASS(insn->code) == BPF_ALU64) { /* case: R1 = R2 * copy register state to dest reg */ regs[insn->dst_reg] = regs[insn->src_reg]; } else { regs[insn->dst_reg].type = UNKNOWN_VALUE; regs[insn->dst_reg].map_ptr = NULL; } } else { /* case: R = imm * remember the value we stored into this reg */ regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = insn->imm; } } else if (opcode > BPF_END) { verbose("invalid BPF_ALU opcode %x\n", opcode); return -EINVAL; } else { /* all other ALU ops: and, sub, xor, add, ... */ bool stack_relative = false; if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0 || insn->off != 0) { verbose("BPF_ALU uses reserved fields\n"); return -EINVAL; } /* check src1 operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0) { verbose("BPF_ALU uses reserved fields\n"); return -EINVAL; } } /* check src2 operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; if ((opcode == BPF_MOD || opcode == BPF_DIV) && BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { verbose("div by zero\n"); return -EINVAL; } /* pattern match 'bpf_add Rx, imm' instruction */ if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && regs[insn->dst_reg].type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) stack_relative = true; /* check dest operand */ err = check_reg_arg(regs, insn->dst_reg, DST_OP); if (err) return err; if (stack_relative) { regs[insn->dst_reg].type = PTR_TO_STACK; regs[insn->dst_reg].imm = insn->imm; } } return 0; } static int check_cond_jmp_op(struct verifier_env *env, struct bpf_insn *insn, int *insn_idx) { struct reg_state *regs = env->cur_state.regs; struct verifier_state *other_branch; u8 opcode = BPF_OP(insn->code); int err; if (opcode > BPF_EXIT) { verbose("invalid BPF_JMP opcode %x\n", opcode); return -EINVAL; } if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0) { verbose("BPF_JMP uses reserved fields\n"); return -EINVAL; } /* check src1 operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; } else { if (insn->src_reg != BPF_REG_0) { verbose("BPF_JMP uses reserved fields\n"); return -EINVAL; } } /* check src2 operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; /* detect if R == 0 where R was initialized to zero earlier */ if (BPF_SRC(insn->code) == BPF_K && (opcode == BPF_JEQ || opcode == BPF_JNE) && regs[insn->dst_reg].type == CONST_IMM && regs[insn->dst_reg].imm == insn->imm) { if (opcode == BPF_JEQ) { /* if (imm == imm) goto pc+off; * only follow the goto, ignore fall-through */ *insn_idx += insn->off; return 0; } else { /* if (imm != imm) goto pc+off; * only follow fall-through branch, since * that's where the program will go */ return 0; } } other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); if (!other_branch) return -EFAULT; /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ if (BPF_SRC(insn->code) == BPF_K && insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) { if (opcode == BPF_JEQ) { /* next fallthrough insn can access memory via * this register */ regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; /* branch targer cannot access it, since reg == 0 */ other_branch->regs[insn->dst_reg].type = CONST_IMM; other_branch->regs[insn->dst_reg].imm = 0; } else { other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = 0; } } else if (BPF_SRC(insn->code) == BPF_K && (opcode == BPF_JEQ || opcode == BPF_JNE)) { if (opcode == BPF_JEQ) { /* detect if (R == imm) goto * and in the target state recognize that R = imm */ other_branch->regs[insn->dst_reg].type = CONST_IMM; other_branch->regs[insn->dst_reg].imm = insn->imm; } else { /* detect if (R != imm) goto * and in the fall-through state recognize that R = imm */ regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = insn->imm; } } if (log_level) print_verifier_state(env); return 0; } /* return the map pointer stored inside BPF_LD_IMM64 instruction */ static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) { u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; return (struct bpf_map *) (unsigned long) imm64; } /* verify BPF_LD_IMM64 instruction */ static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn) { struct reg_state *regs = env->cur_state.regs; int err; if (BPF_SIZE(insn->code) != BPF_DW) { verbose("invalid BPF_LD_IMM insn\n"); return -EINVAL; } if (insn->off != 0) { verbose("BPF_LD_IMM64 uses reserved fields\n"); return -EINVAL; } err = check_reg_arg(regs, insn->dst_reg, DST_OP); if (err) return err; if (insn->src_reg == 0) /* generic move 64-bit immediate into a register */ return 0; /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); regs[insn->dst_reg].type = CONST_PTR_TO_MAP; regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); return 0; } static bool may_access_skb(enum bpf_prog_type type) { switch (type) { case BPF_PROG_TYPE_SOCKET_FILTER: case BPF_PROG_TYPE_SCHED_CLS: case BPF_PROG_TYPE_SCHED_ACT: return true; default: return false; } } /* verify safety of LD_ABS|LD_IND instructions: * - they can only appear in the programs where ctx == skb * - since they are wrappers of function calls, they scratch R1-R5 registers, * preserve R6-R9, and store return value into R0 * * Implicit input: * ctx == skb == R6 == CTX * * Explicit input: * SRC == any register * IMM == 32-bit immediate * * Output: * R0 - 8/16/32-bit skb data converted to cpu endianness */ static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn) { struct reg_state *regs = env->cur_state.regs; u8 mode = BPF_MODE(insn->code); struct reg_state *reg; int i, err; if (!may_access_skb(env->prog->type)) { verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n"); return -EINVAL; } if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { verbose("BPF_LD_ABS uses reserved fields\n"); return -EINVAL; } /* check whether implicit source operand (register R6) is readable */ err = check_reg_arg(regs, BPF_REG_6, SRC_OP); if (err) return err; if (regs[BPF_REG_6].type != PTR_TO_CTX) { verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); return -EINVAL; } if (mode == BPF_IND) { /* check explicit source operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; } /* reset caller saved regs to unreadable */ for (i = 0; i < CALLER_SAVED_REGS; i++) { reg = regs + caller_saved[i]; reg->type = NOT_INIT; reg->imm = 0; } /* mark destination R0 register as readable, since it contains * the value fetched from the packet */ regs[BPF_REG_0].type = UNKNOWN_VALUE; return 0; } /* non-recursive DFS pseudo code * 1 procedure DFS-iterative(G,v): * 2 label v as discovered * 3 let S be a stack * 4 S.push(v) * 5 while S is not empty * 6 t <- S.pop() * 7 if t is what we're looking for: * 8 return t * 9 for all edges e in G.adjacentEdges(t) do * 10 if edge e is already labelled * 11 continue with the next edge * 12 w <- G.adjacentVertex(t,e) * 13 if vertex w is not discovered and not explored * 14 label e as tree-edge * 15 label w as discovered * 16 S.push(w) * 17 continue at 5 * 18 else if vertex w is discovered * 19 label e as back-edge * 20 else * 21 // vertex w is explored * 22 label e as forward- or cross-edge * 23 label t as explored * 24 S.pop() * * convention: * 0x10 - discovered * 0x11 - discovered and fall-through edge labelled * 0x12 - discovered and fall-through and branch edges labelled * 0x20 - explored */ enum { DISCOVERED = 0x10, EXPLORED = 0x20, FALLTHROUGH = 1, BRANCH = 2, }; #define STATE_LIST_MARK ((struct verifier_state_list *) -1L) static int *insn_stack; /* stack of insns to process */ static int cur_stack; /* current stack index */ static int *insn_state; /* t, w, e - match pseudo-code above: * t - index of current instruction * w - next instruction * e - edge */ static int push_insn(int t, int w, int e, struct verifier_env *env) { if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) return 0; if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) return 0; if (w < 0 || w >= env->prog->len) { verbose("jump out of range from insn %d to %d\n", t, w); return -EINVAL; } if (e == BRANCH) /* mark branch target for state pruning */ env->explored_states[w] = STATE_LIST_MARK; if (insn_state[w] == 0) { /* tree-edge */ insn_state[t] = DISCOVERED | e; insn_state[w] = DISCOVERED; if (cur_stack >= env->prog->len) return -E2BIG; insn_stack[cur_stack++] = w; return 1; } else if ((insn_state[w] & 0xF0) == DISCOVERED) { verbose("back-edge from insn %d to %d\n", t, w); return -EINVAL; } else if (insn_state[w] == EXPLORED) { /* forward- or cross-edge */ insn_state[t] = DISCOVERED | e; } else { verbose("insn state internal bug\n"); return -EFAULT; } return 0; } /* non-recursive depth-first-search to detect loops in BPF program * loop == back-edge in directed graph */ static int check_cfg(struct verifier_env *env) { struct bpf_insn *insns = env->prog->insnsi; int insn_cnt = env->prog->len; int ret = 0; int i, t; insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); if (!insn_state) return -ENOMEM; insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); if (!insn_stack) { kfree(insn_state); return -ENOMEM; } insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ insn_stack[0] = 0; /* 0 is the first instruction */ cur_stack = 1; peek_stack: if (cur_stack == 0) goto check_state; t = insn_stack[cur_stack - 1]; if (BPF_CLASS(insns[t].code) == BPF_JMP) { u8 opcode = BPF_OP(insns[t].code); if (opcode == BPF_EXIT) { goto mark_explored; } else if (opcode == BPF_CALL) { ret = push_insn(t, t + 1, FALLTHROUGH, env); if (ret == 1) goto peek_stack; else if (ret < 0) goto err_free; } else if (opcode == BPF_JA) { if (BPF_SRC(insns[t].code) != BPF_K) { ret = -EINVAL; goto err_free; } /* unconditional jump with single edge */ ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env); if (ret == 1) goto peek_stack; else if (ret < 0) goto err_free; /* tell verifier to check for equivalent states * after every call and jump */ if (t + 1 < insn_cnt) env->explored_states[t + 1] = STATE_LIST_MARK; } else { /* conditional jump with two edges */ ret = push_insn(t, t + 1, FALLTHROUGH, env); if (ret == 1) goto peek_stack; else if (ret < 0) goto err_free; ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); if (ret == 1) goto peek_stack; else if (ret < 0) goto err_free; } } else { /* all other non-branch instructions with single * fall-through edge */ ret = push_insn(t, t + 1, FALLTHROUGH, env); if (ret == 1) goto peek_stack; else if (ret < 0) goto err_free; } mark_explored: insn_state[t] = EXPLORED; if (cur_stack-- <= 0) { verbose("pop stack internal bug\n"); ret = -EFAULT; goto err_free; } goto peek_stack; check_state: for (i = 0; i < insn_cnt; i++) { if (insn_state[i] != EXPLORED) { verbose("unreachable insn %d\n", i); ret = -EINVAL; goto err_free; } } ret = 0; /* cfg looks good */ err_free: kfree(insn_state); kfree(insn_stack); return ret; } /* compare two verifier states * * all states stored in state_list are known to be valid, since * verifier reached 'bpf_exit' instruction through them * * this function is called when verifier exploring different branches of * execution popped from the state stack. If it sees an old state that has * more strict register state and more strict stack state then this execution * branch doesn't need to be explored further, since verifier already * concluded that more strict state leads to valid finish. * * Therefore two states are equivalent if register state is more conservative * and explored stack state is more conservative than the current one. * Example: * explored current * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) * * In other words if current stack state (one being explored) has more * valid slots than old one that already passed validation, it means * the verifier can stop exploring and conclude that current state is valid too * * Similarly with registers. If explored state has register type as invalid * whereas register type in current state is meaningful, it means that * the current state will reach 'bpf_exit' instruction safely */ static bool states_equal(struct verifier_state *old, struct verifier_state *cur) { int i; for (i = 0; i < MAX_BPF_REG; i++) { if (memcmp(&old->regs[i], &cur->regs[i], sizeof(old->regs[0])) != 0) { if (old->regs[i].type == NOT_INIT || (old->regs[i].type == UNKNOWN_VALUE && cur->regs[i].type != NOT_INIT)) continue; return false; } } for (i = 0; i < MAX_BPF_STACK; i++) { if (old->stack_slot_type[i] == STACK_INVALID) continue; if (old->stack_slot_type[i] != cur->stack_slot_type[i]) /* Ex: old explored (safe) state has STACK_SPILL in * this stack slot, but current has has STACK_MISC -> * this verifier states are not equivalent, * return false to continue verification of this path */ return false; if (i % BPF_REG_SIZE) continue; if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE], &cur->spilled_regs[i / BPF_REG_SIZE], sizeof(old->spilled_regs[0]))) /* when explored and current stack slot types are * the same, check that stored pointers types * are the same as well. * Ex: explored safe path could have stored * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8} * but current path has stored: * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16} * such verifier states are not equivalent. * return false to continue verification of this path */ return false; else continue; } return true; } static int is_state_visited(struct verifier_env *env, int insn_idx) { struct verifier_state_list *new_sl; struct verifier_state_list *sl; sl = env->explored_states[insn_idx]; if (!sl) /* this 'insn_idx' instruction wasn't marked, so we will not * be doing state search here */ return 0; while (sl != STATE_LIST_MARK) { if (states_equal(&sl->state, &env->cur_state)) /* reached equivalent register/stack state, * prune the search */ return 1; sl = sl->next; } /* there were no equivalent states, remember current one. * technically the current state is not proven to be safe yet, * but it will either reach bpf_exit (which means it's safe) or * it will be rejected. Since there are no loops, we won't be * seeing this 'insn_idx' instruction again on the way to bpf_exit */ new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER); if (!new_sl) return -ENOMEM; /* add new state to the head of linked list */ memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); new_sl->next = env->explored_states[insn_idx]; env->explored_states[insn_idx] = new_sl; return 0; } static int do_check(struct verifier_env *env) { struct verifier_state *state = &env->cur_state; struct bpf_insn *insns = env->prog->insnsi; struct reg_state *regs = state->regs; int insn_cnt = env->prog->len; int insn_idx, prev_insn_idx = 0; int insn_processed = 0; bool do_print_state = false; init_reg_state(regs); insn_idx = 0; for (;;) { struct bpf_insn *insn; u8 class; int err; if (insn_idx >= insn_cnt) { verbose("invalid insn idx %d insn_cnt %d\n", insn_idx, insn_cnt); return -EFAULT; } insn = &insns[insn_idx]; class = BPF_CLASS(insn->code); if (++insn_processed > 32768) { verbose("BPF program is too large. Proccessed %d insn\n", insn_processed); return -E2BIG; } err = is_state_visited(env, insn_idx); if (err < 0) return err; if (err == 1) { /* found equivalent state, can prune the search */ if (log_level) { if (do_print_state) verbose("\nfrom %d to %d: safe\n", prev_insn_idx, insn_idx); else verbose("%d: safe\n", insn_idx); } goto process_bpf_exit; } if (log_level && do_print_state) { verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx); print_verifier_state(env); do_print_state = false; } if (log_level) { verbose("%d: ", insn_idx); print_bpf_insn(insn); } if (class == BPF_ALU || class == BPF_ALU64) { err = check_alu_op(regs, insn); if (err) return err; } else if (class == BPF_LDX) { enum bpf_reg_type src_reg_type; /* check for reserved fields is already done */ /* check src operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); if (err) return err; src_reg_type = regs[insn->src_reg].type; /* check that memory (src_reg + off) is readable, * the state of dst_reg will be updated by this func */ err = check_mem_access(env, insn->src_reg, insn->off, BPF_SIZE(insn->code), BPF_READ, insn->dst_reg); if (err) return err; if (BPF_SIZE(insn->code) != BPF_W) { insn_idx++; continue; } if (insn->imm == 0) { /* saw a valid insn * dst_reg = *(u32 *)(src_reg + off) * use reserved 'imm' field to mark this insn */ insn->imm = src_reg_type; } else if (src_reg_type != insn->imm && (src_reg_type == PTR_TO_CTX || insn->imm == PTR_TO_CTX)) { /* ABuser program is trying to use the same insn * dst_reg = *(u32*) (src_reg + off) * with different pointer types: * src_reg == ctx in one branch and * src_reg == stack|map in some other branch. * Reject it. */ verbose("same insn cannot be used with different pointers\n"); return -EINVAL; } } else if (class == BPF_STX) { enum bpf_reg_type dst_reg_type; if (BPF_MODE(insn->code) == BPF_XADD) { err = check_xadd(env, insn); if (err) return err; insn_idx++; continue; } /* check src1 operand */ err = check_reg_arg(regs, insn->src_reg, SRC_OP); if (err) return err; /* check src2 operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; dst_reg_type = regs[insn->dst_reg].type; /* check that memory (dst_reg + off) is writeable */ err = check_mem_access(env, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg); if (err) return err; if (insn->imm == 0) { insn->imm = dst_reg_type; } else if (dst_reg_type != insn->imm && (dst_reg_type == PTR_TO_CTX || insn->imm == PTR_TO_CTX)) { verbose("same insn cannot be used with different pointers\n"); return -EINVAL; } } else if (class == BPF_ST) { if (BPF_MODE(insn->code) != BPF_MEM || insn->src_reg != BPF_REG_0) { verbose("BPF_ST uses reserved fields\n"); return -EINVAL; } /* check src operand */ err = check_reg_arg(regs, insn->dst_reg, SRC_OP); if (err) return err; /* check that memory (dst_reg + off) is writeable */ err = check_mem_access(env, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, -1); if (err) return err; } else if (class == BPF_JMP) { u8 opcode = BPF_OP(insn->code); if (opcode == BPF_CALL) { if (BPF_SRC(insn->code) != BPF_K || insn->off != 0 || insn->src_reg != BPF_REG_0 || insn->dst_reg != BPF_REG_0) { verbose("BPF_CALL uses reserved fields\n"); return -EINVAL; } err = check_call(env, insn->imm); if (err) return err; } else if (opcode == BPF_JA) { if (BPF_SRC(insn->code) != BPF_K || insn->imm != 0 || insn->src_reg != BPF_REG_0 || insn->dst_reg != BPF_REG_0) { verbose("BPF_JA uses reserved fields\n"); return -EINVAL; } insn_idx += insn->off + 1; continue; } else if (opcode == BPF_EXIT) { if (BPF_SRC(insn->code) != BPF_K || insn->imm != 0 || insn->src_reg != BPF_REG_0 || insn->dst_reg != BPF_REG_0) { verbose("BPF_EXIT uses reserved fields\n"); return -EINVAL; } /* eBPF calling convetion is such that R0 is used * to return the value from eBPF program. * Make sure that it's readable at this time * of bpf_exit, which means that program wrote * something into it earlier */ err = check_reg_arg(regs, BPF_REG_0, SRC_OP); if (err) return err; process_bpf_exit: insn_idx = pop_stack(env, &prev_insn_idx); if (insn_idx < 0) { break; } else { do_print_state = true; continue; } } else { err = check_cond_jmp_op(env, insn, &insn_idx); if (err) return err; } } else if (class == BPF_LD) { u8 mode = BPF_MODE(insn->code); if (mode == BPF_ABS || mode == BPF_IND) { err = check_ld_abs(env, insn); if (err) return err; } else if (mode == BPF_IMM) { err = check_ld_imm(env, insn); if (err) return err; insn_idx++; } else { verbose("invalid BPF_LD mode\n"); return -EINVAL; } } else { verbose("unknown insn class %d\n", class); return -EINVAL; } insn_idx++; } return 0; } /* look for pseudo eBPF instructions that access map FDs and * replace them with actual map pointers */ static int replace_map_fd_with_map_ptr(struct verifier_env *env) { struct bpf_insn *insn = env->prog->insnsi; int insn_cnt = env->prog->len; int i, j; for (i = 0; i < insn_cnt; i++, insn++) { if (BPF_CLASS(insn->code) == BPF_LDX && (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { verbose("BPF_LDX uses reserved fields\n"); return -EINVAL; } if (BPF_CLASS(insn->code) == BPF_STX && ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { verbose("BPF_STX uses reserved fields\n"); return -EINVAL; } if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { struct bpf_map *map; struct fd f; if (i == insn_cnt - 1 || insn[1].code != 0 || insn[1].dst_reg != 0 || insn[1].src_reg != 0 || insn[1].off != 0) { verbose("invalid bpf_ld_imm64 insn\n"); return -EINVAL; } if (insn->src_reg == 0) /* valid generic load 64-bit imm */ goto next_insn; if (insn->src_reg != BPF_PSEUDO_MAP_FD) { verbose("unrecognized bpf_ld_imm64 insn\n"); return -EINVAL; } f = fdget(insn->imm); map = bpf_map_get(f); if (IS_ERR(map)) { verbose("fd %d is not pointing to valid bpf_map\n", insn->imm); fdput(f); return PTR_ERR(map); } /* store map pointer inside BPF_LD_IMM64 instruction */ insn[0].imm = (u32) (unsigned long) map; insn[1].imm = ((u64) (unsigned long) map) >> 32; /* check whether we recorded this map already */ for (j = 0; j < env->used_map_cnt; j++) if (env->used_maps[j] == map) { fdput(f); goto next_insn; } if (env->used_map_cnt >= MAX_USED_MAPS) { fdput(f); return -E2BIG; } /* remember this map */ env->used_maps[env->used_map_cnt++] = map; /* hold the map. If the program is rejected by verifier, * the map will be released by release_maps() or it * will be used by the valid program until it's unloaded * and all maps are released in free_bpf_prog_info() */ atomic_inc(&map->refcnt); fdput(f); next_insn: insn++; i++; } } /* now all pseudo BPF_LD_IMM64 instructions load valid * 'struct bpf_map *' into a register instead of user map_fd. * These pointers will be used later by verifier to validate map access. */ return 0; } /* drop refcnt of maps used by the rejected program */ static void release_maps(struct verifier_env *env) { int i; for (i = 0; i < env->used_map_cnt; i++) bpf_map_put(env->used_maps[i]); } /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ static void convert_pseudo_ld_imm64(struct verifier_env *env) { struct bpf_insn *insn = env->prog->insnsi; int insn_cnt = env->prog->len; int i; for (i = 0; i < insn_cnt; i++, insn++) if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) insn->src_reg = 0; } static void adjust_branches(struct bpf_prog *prog, int pos, int delta) { struct bpf_insn *insn = prog->insnsi; int insn_cnt = prog->len; int i; for (i = 0; i < insn_cnt; i++, insn++) { if (BPF_CLASS(insn->code) != BPF_JMP || BPF_OP(insn->code) == BPF_CALL || BPF_OP(insn->code) == BPF_EXIT) continue; /* adjust offset of jmps if necessary */ if (i < pos && i + insn->off + 1 > pos) insn->off += delta; else if (i > pos && i + insn->off + 1 < pos) insn->off -= delta; } } /* convert load instructions that access fields of 'struct __sk_buff' * into sequence of instructions that access fields of 'struct sk_buff' */ static int convert_ctx_accesses(struct verifier_env *env) { struct bpf_insn *insn = env->prog->insnsi; int insn_cnt = env->prog->len; struct bpf_insn insn_buf[16]; struct bpf_prog *new_prog; u32 cnt; int i; enum bpf_access_type type; if (!env->prog->aux->ops->convert_ctx_access) return 0; for (i = 0; i < insn_cnt; i++, insn++) { if (insn->code == (BPF_LDX | BPF_MEM | BPF_W)) type = BPF_READ; else if (insn->code == (BPF_STX | BPF_MEM | BPF_W)) type = BPF_WRITE; else continue; if (insn->imm != PTR_TO_CTX) { /* clear internal mark */ insn->imm = 0; continue; } cnt = env->prog->aux->ops-> convert_ctx_access(type, insn->dst_reg, insn->src_reg, insn->off, insn_buf, env->prog); if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { verbose("bpf verifier is misconfigured\n"); return -EINVAL; } if (cnt == 1) { memcpy(insn, insn_buf, sizeof(*insn)); continue; } /* several new insns need to be inserted. Make room for them */ insn_cnt += cnt - 1; new_prog = bpf_prog_realloc(env->prog, bpf_prog_size(insn_cnt), GFP_USER); if (!new_prog) return -ENOMEM; new_prog->len = insn_cnt; memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1, sizeof(*insn) * (insn_cnt - i - cnt)); /* copy substitute insns in place of load instruction */ memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt); /* adjust branches in the whole program */ adjust_branches(new_prog, i, cnt - 1); /* keep walking new program and skip insns we just inserted */ env->prog = new_prog; insn = new_prog->insnsi + i + cnt - 1; i += cnt - 1; } return 0; } static void free_states(struct verifier_env *env) { struct verifier_state_list *sl, *sln; int i; if (!env->explored_states) return; for (i = 0; i < env->prog->len; i++) { sl = env->explored_states[i]; if (sl) while (sl != STATE_LIST_MARK) { sln = sl->next; kfree(sl); sl = sln; } } kfree(env->explored_states); } int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) { char __user *log_ubuf = NULL; struct verifier_env *env; int ret = -EINVAL; if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS) return -E2BIG; /* 'struct verifier_env' can be global, but since it's not small, * allocate/free it every time bpf_check() is called */ env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); if (!env) return -ENOMEM; env->prog = *prog; /* grab the mutex to protect few globals used by verifier */ mutex_lock(&bpf_verifier_lock); if (attr->log_level || attr->log_buf || attr->log_size) { /* user requested verbose verifier output * and supplied buffer to store the verification trace */ log_level = attr->log_level; log_ubuf = (char __user *) (unsigned long) attr->log_buf; log_size = attr->log_size; log_len = 0; ret = -EINVAL; /* log_* values have to be sane */ if (log_size < 128 || log_size > UINT_MAX >> 8 || log_level == 0 || log_ubuf == NULL) goto free_env; ret = -ENOMEM; log_buf = vmalloc(log_size); if (!log_buf) goto free_env; } else { log_level = 0; } ret = replace_map_fd_with_map_ptr(env); if (ret < 0) goto skip_full_check; env->explored_states = kcalloc(env->prog->len, sizeof(struct verifier_state_list *), GFP_USER); ret = -ENOMEM; if (!env->explored_states) goto skip_full_check; ret = check_cfg(env); if (ret < 0) goto skip_full_check; ret = do_check(env); skip_full_check: while (pop_stack(env, NULL) >= 0); free_states(env); if (ret == 0) /* program is valid, convert *(u32*)(ctx + off) accesses */ ret = convert_ctx_accesses(env); if (log_level && log_len >= log_size - 1) { BUG_ON(log_len >= log_size); /* verifier log exceeded user supplied buffer */ ret = -ENOSPC; /* fall through to return what was recorded */ } /* copy verifier log back to user space including trailing zero */ if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { ret = -EFAULT; goto free_log_buf; } if (ret == 0 && env->used_map_cnt) { /* if program passed verifier, update used_maps in bpf_prog_info */ env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, sizeof(env->used_maps[0]), GFP_KERNEL); if (!env->prog->aux->used_maps) { ret = -ENOMEM; goto free_log_buf; } memcpy(env->prog->aux->used_maps, env->used_maps, sizeof(env->used_maps[0]) * env->used_map_cnt); env->prog->aux->used_map_cnt = env->used_map_cnt; /* program is valid. Convert pseudo bpf_ld_imm64 into generic * bpf_ld_imm64 instructions */ convert_pseudo_ld_imm64(env); } free_log_buf: if (log_level) vfree(log_buf); free_env: if (!env->prog->aux->used_maps) /* if we didn't copy map pointers into bpf_prog_info, release * them now. Otherwise free_bpf_prog_info() will release them. */ release_maps(env); *prog = env->prog; kfree(env); mutex_unlock(&bpf_verifier_lock); return ret; }