// SPDX-License-Identifier: GPL-2.0-or-later /* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * file.c - operations for regular (text) files. * * Based on sysfs: * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel * * configfs Copyright (C) 2005 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include "configfs_internal.h" /* * A simple attribute can only be 4096 characters. Why 4k? Because the * original code limited it to PAGE_SIZE. That's a bad idea, though, * because an attribute of 16k on ia64 won't work on x86. So we limit to * 4k, our minimum common page size. */ #define SIMPLE_ATTR_SIZE 4096 struct configfs_buffer { size_t count; loff_t pos; char * page; struct configfs_item_operations * ops; struct mutex mutex; int needs_read_fill; bool read_in_progress; bool write_in_progress; char *bin_buffer; int bin_buffer_size; int cb_max_size; struct config_item *item; struct module *owner; union { struct configfs_attribute *attr; struct configfs_bin_attribute *bin_attr; }; }; static int fill_read_buffer(struct configfs_buffer * buffer) { ssize_t count; if (!buffer->page) buffer->page = (char *) get_zeroed_page(GFP_KERNEL); if (!buffer->page) return -ENOMEM; count = buffer->attr->show(buffer->item, buffer->page); if (count < 0) return count; if (WARN_ON_ONCE(count > (ssize_t)SIMPLE_ATTR_SIZE)) return -EIO; buffer->needs_read_fill = 0; buffer->count = count; return 0; } /** * configfs_read_file - read an attribute. * @file: file pointer. * @buf: buffer to fill. * @count: number of bytes to read. * @ppos: starting offset in file. * * Userspace wants to read an attribute file. The attribute descriptor * is in the file's ->d_fsdata. The target item is in the directory's * ->d_fsdata. * * We call fill_read_buffer() to allocate and fill the buffer from the * item's show() method exactly once (if the read is happening from * the beginning of the file). That should fill the entire buffer with * all the data the item has to offer for that attribute. * We then call flush_read_buffer() to copy the buffer to userspace * in the increments specified. */ static ssize_t configfs_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct configfs_buffer *buffer = file->private_data; ssize_t retval = 0; mutex_lock(&buffer->mutex); if (buffer->needs_read_fill) { retval = fill_read_buffer(buffer); if (retval) goto out; } pr_debug("%s: count = %zd, ppos = %lld, buf = %s\n", __func__, count, *ppos, buffer->page); retval = simple_read_from_buffer(buf, count, ppos, buffer->page, buffer->count); out: mutex_unlock(&buffer->mutex); return retval; } /** * configfs_read_bin_file - read a binary attribute. * @file: file pointer. * @buf: buffer to fill. * @count: number of bytes to read. * @ppos: starting offset in file. * * Userspace wants to read a binary attribute file. The attribute * descriptor is in the file's ->d_fsdata. The target item is in the * directory's ->d_fsdata. * * We check whether we need to refill the buffer. If so we will * call the attributes' attr->read() twice. The first time we * will pass a NULL as a buffer pointer, which the attributes' method * will use to return the size of the buffer required. If no error * occurs we will allocate the buffer using vmalloc and call * attr->read() again passing that buffer as an argument. * Then we just copy to user-space using simple_read_from_buffer. */ static ssize_t configfs_read_bin_file(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct configfs_buffer *buffer = file->private_data; ssize_t retval = 0; ssize_t len = min_t(size_t, count, PAGE_SIZE); mutex_lock(&buffer->mutex); /* we don't support switching read/write modes */ if (buffer->write_in_progress) { retval = -ETXTBSY; goto out; } buffer->read_in_progress = true; if (buffer->needs_read_fill) { /* perform first read with buf == NULL to get extent */ len = buffer->bin_attr->read(buffer->item, NULL, 0); if (len <= 0) { retval = len; goto out; } /* do not exceed the maximum value */ if (buffer->cb_max_size && len > buffer->cb_max_size) { retval = -EFBIG; goto out; } buffer->bin_buffer = vmalloc(len); if (buffer->bin_buffer == NULL) { retval = -ENOMEM; goto out; } buffer->bin_buffer_size = len; /* perform second read to fill buffer */ len = buffer->bin_attr->read(buffer->item, buffer->bin_buffer, len); if (len < 0) { retval = len; vfree(buffer->bin_buffer); buffer->bin_buffer_size = 0; buffer->bin_buffer = NULL; goto out; } buffer->needs_read_fill = 0; } retval = simple_read_from_buffer(buf, count, ppos, buffer->bin_buffer, buffer->bin_buffer_size); out: mutex_unlock(&buffer->mutex); return retval; } /** * fill_write_buffer - copy buffer from userspace. * @buffer: data buffer for file. * @buf: data from user. * @count: number of bytes in @userbuf. * * Allocate @buffer->page if it hasn't been already, then * copy the user-supplied buffer into it. */ static int fill_write_buffer(struct configfs_buffer * buffer, const char __user * buf, size_t count) { int error; if (!buffer->page) buffer->page = (char *)__get_free_pages(GFP_KERNEL, 0); if (!buffer->page) return -ENOMEM; if (count >= SIMPLE_ATTR_SIZE) count = SIMPLE_ATTR_SIZE - 1; error = copy_from_user(buffer->page,buf,count); buffer->needs_read_fill = 1; /* if buf is assumed to contain a string, terminate it by \0, * so e.g. sscanf() can scan the string easily */ buffer->page[count] = 0; return error ? -EFAULT : count; } static int flush_write_buffer(struct configfs_buffer *buffer, size_t count) { return buffer->attr->store(buffer->item, buffer->page, count); } /** * configfs_write_file - write an attribute. * @file: file pointer * @buf: data to write * @count: number of bytes * @ppos: starting offset * * Similar to configfs_read_file(), though working in the opposite direction. * We allocate and fill the data from the user in fill_write_buffer(), * then push it to the config_item in flush_write_buffer(). * There is no easy way for us to know if userspace is only doing a partial * write, so we don't support them. We expect the entire buffer to come * on the first write. * Hint: if you're writing a value, first read the file, modify only the * the value you're changing, then write entire buffer back. */ static ssize_t configfs_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct configfs_buffer *buffer = file->private_data; ssize_t len; mutex_lock(&buffer->mutex); len = fill_write_buffer(buffer, buf, count); if (len > 0) len = flush_write_buffer(buffer, len); if (len > 0) *ppos += len; mutex_unlock(&buffer->mutex); return len; } /** * configfs_write_bin_file - write a binary attribute. * @file: file pointer * @buf: data to write * @count: number of bytes * @ppos: starting offset * * Writing to a binary attribute file is similar to a normal read. * We buffer the consecutive writes (binary attribute files do not * support lseek) in a continuously growing buffer, but we don't * commit until the close of the file. */ static ssize_t configfs_write_bin_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct configfs_buffer *buffer = file->private_data; void *tbuf = NULL; ssize_t len; mutex_lock(&buffer->mutex); /* we don't support switching read/write modes */ if (buffer->read_in_progress) { len = -ETXTBSY; goto out; } buffer->write_in_progress = true; /* buffer grows? */ if (*ppos + count > buffer->bin_buffer_size) { if (buffer->cb_max_size && *ppos + count > buffer->cb_max_size) { len = -EFBIG; goto out; } tbuf = vmalloc(*ppos + count); if (tbuf == NULL) { len = -ENOMEM; goto out; } /* copy old contents */ if (buffer->bin_buffer) { memcpy(tbuf, buffer->bin_buffer, buffer->bin_buffer_size); vfree(buffer->bin_buffer); } /* clear the new area */ memset(tbuf + buffer->bin_buffer_size, 0, *ppos + count - buffer->bin_buffer_size); buffer->bin_buffer = tbuf; buffer->bin_buffer_size = *ppos + count; } len = simple_write_to_buffer(buffer->bin_buffer, buffer->bin_buffer_size, ppos, buf, count); out: mutex_unlock(&buffer->mutex); return len; } static int __configfs_open_file(struct inode *inode, struct file *file, int type) { struct dentry *dentry = file->f_path.dentry; struct configfs_attribute *attr; struct configfs_buffer *buffer; int error; error = -ENOMEM; buffer = kzalloc(sizeof(struct configfs_buffer), GFP_KERNEL); if (!buffer) goto out; error = -EINVAL; buffer->item = configfs_get_config_item(dentry->d_parent); if (!buffer->item) goto out_free_buffer; attr = to_attr(dentry); if (!attr) goto out_put_item; if (type & CONFIGFS_ITEM_BIN_ATTR) { buffer->bin_attr = to_bin_attr(dentry); buffer->cb_max_size = buffer->bin_attr->cb_max_size; } else { buffer->attr = attr; } buffer->owner = attr->ca_owner; /* Grab the module reference for this attribute if we have one */ error = -ENODEV; if (!try_module_get(buffer->owner)) goto out_put_item; error = -EACCES; if (!buffer->item->ci_type) goto out_put_module; buffer->ops = buffer->item->ci_type->ct_item_ops; /* File needs write support. * The inode's perms must say it's ok, * and we must have a store method. */ if (file->f_mode & FMODE_WRITE) { if (!(inode->i_mode & S_IWUGO)) goto out_put_module; if ((type & CONFIGFS_ITEM_ATTR) && !attr->store) goto out_put_module; if ((type & CONFIGFS_ITEM_BIN_ATTR) && !buffer->bin_attr->write) goto out_put_module; } /* File needs read support. * The inode's perms must say it's ok, and we there * must be a show method for it. */ if (file->f_mode & FMODE_READ) { if (!(inode->i_mode & S_IRUGO)) goto out_put_module; if ((type & CONFIGFS_ITEM_ATTR) && !attr->show) goto out_put_module; if ((type & CONFIGFS_ITEM_BIN_ATTR) && !buffer->bin_attr->read) goto out_put_module; } mutex_init(&buffer->mutex); buffer->needs_read_fill = 1; buffer->read_in_progress = false; buffer->write_in_progress = false; file->private_data = buffer; return 0; out_put_module: module_put(buffer->owner); out_put_item: config_item_put(buffer->item); out_free_buffer: kfree(buffer); out: return error; } static int configfs_release(struct inode *inode, struct file *filp) { struct configfs_buffer *buffer = filp->private_data; if (buffer->item) config_item_put(buffer->item); module_put(buffer->owner); if (buffer->page) free_page((unsigned long)buffer->page); mutex_destroy(&buffer->mutex); kfree(buffer); return 0; } static int configfs_open_file(struct inode *inode, struct file *filp) { return __configfs_open_file(inode, filp, CONFIGFS_ITEM_ATTR); } static int configfs_open_bin_file(struct inode *inode, struct file *filp) { return __configfs_open_file(inode, filp, CONFIGFS_ITEM_BIN_ATTR); } static int configfs_release_bin_file(struct inode *inode, struct file *file) { struct configfs_buffer *buffer = file->private_data; buffer->read_in_progress = false; if (buffer->write_in_progress) { buffer->write_in_progress = false; /* result of ->release() is ignored */ buffer->bin_attr->write(buffer->item, buffer->bin_buffer, buffer->bin_buffer_size); /* vfree on NULL is safe */ vfree(buffer->bin_buffer); buffer->bin_buffer = NULL; buffer->bin_buffer_size = 0; buffer->needs_read_fill = 1; } configfs_release(inode, file); return 0; } const struct file_operations configfs_file_operations = { .read = configfs_read_file, .write = configfs_write_file, .llseek = generic_file_llseek, .open = configfs_open_file, .release = configfs_release, }; const struct file_operations configfs_bin_file_operations = { .read = configfs_read_bin_file, .write = configfs_write_bin_file, .llseek = NULL, /* bin file is not seekable */ .open = configfs_open_bin_file, .release = configfs_release_bin_file, }; /** * configfs_create_file - create an attribute file for an item. * @item: item we're creating for. * @attr: atrribute descriptor. */ int configfs_create_file(struct config_item * item, const struct configfs_attribute * attr) { struct dentry *dir = item->ci_dentry; struct configfs_dirent *parent_sd = dir->d_fsdata; umode_t mode = (attr->ca_mode & S_IALLUGO) | S_IFREG; int error = 0; inode_lock_nested(d_inode(dir), I_MUTEX_NORMAL); error = configfs_make_dirent(parent_sd, NULL, (void *) attr, mode, CONFIGFS_ITEM_ATTR); inode_unlock(d_inode(dir)); return error; } /** * configfs_create_bin_file - create a binary attribute file for an item. * @item: item we're creating for. * @attr: atrribute descriptor. */ int configfs_create_bin_file(struct config_item *item, const struct configfs_bin_attribute *bin_attr) { struct dentry *dir = item->ci_dentry; struct configfs_dirent *parent_sd = dir->d_fsdata; umode_t mode = (bin_attr->cb_attr.ca_mode & S_IALLUGO) | S_IFREG; int error = 0; inode_lock_nested(dir->d_inode, I_MUTEX_NORMAL); error = configfs_make_dirent(parent_sd, NULL, (void *) bin_attr, mode, CONFIGFS_ITEM_BIN_ATTR); inode_unlock(dir->d_inode); return error; }