/* * handle transition of Linux booting another kernel * Copyright (C) 2002-2005 Eric Biederman * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include #include #include #include #include #include #include #include #include #include static void init_level2_page(pmd_t *level2p, unsigned long addr) { unsigned long end_addr; addr &= PAGE_MASK; end_addr = addr + PUD_SIZE; while (addr < end_addr) { set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); addr += PMD_SIZE; } } static int init_level3_page(struct kimage *image, pud_t *level3p, unsigned long addr, unsigned long last_addr) { unsigned long end_addr; int result; result = 0; addr &= PAGE_MASK; end_addr = addr + PGDIR_SIZE; while ((addr < last_addr) && (addr < end_addr)) { struct page *page; pmd_t *level2p; page = kimage_alloc_control_pages(image, 0); if (!page) { result = -ENOMEM; goto out; } level2p = (pmd_t *)page_address(page); init_level2_page(level2p, addr); set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE)); addr += PUD_SIZE; } /* clear the unused entries */ while (addr < end_addr) { pud_clear(level3p++); addr += PUD_SIZE; } out: return result; } static int init_level4_page(struct kimage *image, pgd_t *level4p, unsigned long addr, unsigned long last_addr) { unsigned long end_addr; int result; result = 0; addr &= PAGE_MASK; end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE); while ((addr < last_addr) && (addr < end_addr)) { struct page *page; pud_t *level3p; page = kimage_alloc_control_pages(image, 0); if (!page) { result = -ENOMEM; goto out; } level3p = (pud_t *)page_address(page); result = init_level3_page(image, level3p, addr, last_addr); if (result) goto out; set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE)); addr += PGDIR_SIZE; } /* clear the unused entries */ while (addr < end_addr) { pgd_clear(level4p++); addr += PGDIR_SIZE; } out: return result; } static void free_transition_pgtable(struct kimage *image) { free_page((unsigned long)image->arch.pud); free_page((unsigned long)image->arch.pmd); free_page((unsigned long)image->arch.pte); } static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) { pud_t *pud; pmd_t *pmd; pte_t *pte; unsigned long vaddr, paddr; int result = -ENOMEM; vaddr = (unsigned long)relocate_kernel; paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); pgd += pgd_index(vaddr); if (!pgd_present(*pgd)) { pud = (pud_t *)get_zeroed_page(GFP_KERNEL); if (!pud) goto err; image->arch.pud = pud; set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); } pud = pud_offset(pgd, vaddr); if (!pud_present(*pud)) { pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); if (!pmd) goto err; image->arch.pmd = pmd; set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); } pmd = pmd_offset(pud, vaddr); if (!pmd_present(*pmd)) { pte = (pte_t *)get_zeroed_page(GFP_KERNEL); if (!pte) goto err; image->arch.pte = pte; set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); } pte = pte_offset_kernel(pmd, vaddr); set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); return 0; err: free_transition_pgtable(image); return result; } static int init_pgtable(struct kimage *image, unsigned long start_pgtable) { pgd_t *level4p; int result; level4p = (pgd_t *)__va(start_pgtable); result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT); if (result) return result; return init_transition_pgtable(image, level4p); } static void set_idt(void *newidt, u16 limit) { struct desc_ptr curidt; /* x86-64 supports unaliged loads & stores */ curidt.size = limit; curidt.address = (unsigned long)newidt; __asm__ __volatile__ ( "lidtq %0\n" : : "m" (curidt) ); }; static void set_gdt(void *newgdt, u16 limit) { struct desc_ptr curgdt; /* x86-64 supports unaligned loads & stores */ curgdt.size = limit; curgdt.address = (unsigned long)newgdt; __asm__ __volatile__ ( "lgdtq %0\n" : : "m" (curgdt) ); }; static void load_segments(void) { __asm__ __volatile__ ( "\tmovl %0,%%ds\n" "\tmovl %0,%%es\n" "\tmovl %0,%%ss\n" "\tmovl %0,%%fs\n" "\tmovl %0,%%gs\n" : : "a" (__KERNEL_DS) : "memory" ); } int machine_kexec_prepare(struct kimage *image) { unsigned long start_pgtable; int result; /* Calculate the offsets */ start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; /* Setup the identity mapped 64bit page table */ result = init_pgtable(image, start_pgtable); if (result) return result; return 0; } void machine_kexec_cleanup(struct kimage *image) { free_transition_pgtable(image); } /* * Do not allocate memory (or fail in any way) in machine_kexec(). * We are past the point of no return, committed to rebooting now. */ void machine_kexec(struct kimage *image) { unsigned long page_list[PAGES_NR]; void *control_page; tracer_disable(); /* Interrupts aren't acceptable while we reboot */ local_irq_disable(); control_page = page_address(image->control_code_page) + PAGE_SIZE; memcpy(control_page, relocate_kernel, PAGE_SIZE); page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); page_list[PA_TABLE_PAGE] = (unsigned long)__pa(page_address(image->control_code_page)); /* * The segment registers are funny things, they have both a * visible and an invisible part. Whenever the visible part is * set to a specific selector, the invisible part is loaded * with from a table in memory. At no other time is the * descriptor table in memory accessed. * * I take advantage of this here by force loading the * segments, before I zap the gdt with an invalid value. */ load_segments(); /* * The gdt & idt are now invalid. * If you want to load them you must set up your own idt & gdt. */ set_gdt(phys_to_virt(0), 0); set_idt(phys_to_virt(0), 0); /* now call it */ relocate_kernel((unsigned long)image->head, (unsigned long)page_list, image->start); } void arch_crash_save_vmcoreinfo(void) { VMCOREINFO_SYMBOL(phys_base); VMCOREINFO_SYMBOL(init_level4_pgt); #ifdef CONFIG_NUMA VMCOREINFO_SYMBOL(node_data); VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); #endif }