/* * libata-eh.c - libata error handling * * Maintained by: Tejun Heo * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2006 Tejun Heo * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, * USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include #include #include #include #include #include #include #include "../scsi/scsi_transport_api.h" #include #include "libata.h" enum { /* speed down verdicts */ ATA_EH_SPDN_NCQ_OFF = (1 << 0), ATA_EH_SPDN_SPEED_DOWN = (1 << 1), ATA_EH_SPDN_FALLBACK_TO_PIO = (1 << 2), ATA_EH_SPDN_KEEP_ERRORS = (1 << 3), /* error flags */ ATA_EFLAG_IS_IO = (1 << 0), ATA_EFLAG_DUBIOUS_XFER = (1 << 1), ATA_EFLAG_OLD_ER = (1 << 31), /* error categories */ ATA_ECAT_NONE = 0, ATA_ECAT_ATA_BUS = 1, ATA_ECAT_TOUT_HSM = 2, ATA_ECAT_UNK_DEV = 3, ATA_ECAT_DUBIOUS_NONE = 4, ATA_ECAT_DUBIOUS_ATA_BUS = 5, ATA_ECAT_DUBIOUS_TOUT_HSM = 6, ATA_ECAT_DUBIOUS_UNK_DEV = 7, ATA_ECAT_NR = 8, ATA_EH_CMD_DFL_TIMEOUT = 5000, /* always put at least this amount of time between resets */ ATA_EH_RESET_COOL_DOWN = 5000, /* Waiting in ->prereset can never be reliable. It's * sometimes nice to wait there but it can't be depended upon; * otherwise, we wouldn't be resetting. Just give it enough * time for most drives to spin up. */ ATA_EH_PRERESET_TIMEOUT = 10000, ATA_EH_FASTDRAIN_INTERVAL = 3000, ATA_EH_UA_TRIES = 5, /* probe speed down parameters, see ata_eh_schedule_probe() */ ATA_EH_PROBE_TRIAL_INTERVAL = 60000, /* 1 min */ ATA_EH_PROBE_TRIALS = 2, }; /* The following table determines how we sequence resets. Each entry * represents timeout for that try. The first try can be soft or * hardreset. All others are hardreset if available. In most cases * the first reset w/ 10sec timeout should succeed. Following entries * are mostly for error handling, hotplug and those outlier devices that * take an exceptionally long time to recover from reset. */ static const unsigned long ata_eh_reset_timeouts[] = { 10000, /* most drives spin up by 10sec */ 10000, /* > 99% working drives spin up before 20sec */ 35000, /* give > 30 secs of idleness for outlier devices */ 5000, /* and sweet one last chance */ ULONG_MAX, /* > 1 min has elapsed, give up */ }; static const unsigned long ata_eh_identify_timeouts[] = { 5000, /* covers > 99% of successes and not too boring on failures */ 10000, /* combined time till here is enough even for media access */ 30000, /* for true idiots */ ULONG_MAX, }; static const unsigned long ata_eh_flush_timeouts[] = { 15000, /* be generous with flush */ 15000, /* ditto */ 30000, /* and even more generous */ ULONG_MAX, }; static const unsigned long ata_eh_other_timeouts[] = { 5000, /* same rationale as identify timeout */ 10000, /* ditto */ /* but no merciful 30sec for other commands, it just isn't worth it */ ULONG_MAX, }; struct ata_eh_cmd_timeout_ent { const u8 *commands; const unsigned long *timeouts; }; /* The following table determines timeouts to use for EH internal * commands. Each table entry is a command class and matches the * commands the entry applies to and the timeout table to use. * * On the retry after a command timed out, the next timeout value from * the table is used. If the table doesn't contain further entries, * the last value is used. * * ehc->cmd_timeout_idx keeps track of which timeout to use per * command class, so if SET_FEATURES times out on the first try, the * next try will use the second timeout value only for that class. */ #define CMDS(cmds...) (const u8 []){ cmds, 0 } static const struct ata_eh_cmd_timeout_ent ata_eh_cmd_timeout_table[ATA_EH_CMD_TIMEOUT_TABLE_SIZE] = { { .commands = CMDS(ATA_CMD_ID_ATA, ATA_CMD_ID_ATAPI), .timeouts = ata_eh_identify_timeouts, }, { .commands = CMDS(ATA_CMD_READ_NATIVE_MAX, ATA_CMD_READ_NATIVE_MAX_EXT), .timeouts = ata_eh_other_timeouts, }, { .commands = CMDS(ATA_CMD_SET_MAX, ATA_CMD_SET_MAX_EXT), .timeouts = ata_eh_other_timeouts, }, { .commands = CMDS(ATA_CMD_SET_FEATURES), .timeouts = ata_eh_other_timeouts, }, { .commands = CMDS(ATA_CMD_INIT_DEV_PARAMS), .timeouts = ata_eh_other_timeouts, }, { .commands = CMDS(ATA_CMD_FLUSH, ATA_CMD_FLUSH_EXT), .timeouts = ata_eh_flush_timeouts }, }; #undef CMDS static void __ata_port_freeze(struct ata_port *ap); #ifdef CONFIG_PM static void ata_eh_handle_port_suspend(struct ata_port *ap); static void ata_eh_handle_port_resume(struct ata_port *ap); #else /* CONFIG_PM */ static void ata_eh_handle_port_suspend(struct ata_port *ap) { } static void ata_eh_handle_port_resume(struct ata_port *ap) { } #endif /* CONFIG_PM */ static void __ata_ehi_pushv_desc(struct ata_eh_info *ehi, const char *fmt, va_list args) { ehi->desc_len += vscnprintf(ehi->desc + ehi->desc_len, ATA_EH_DESC_LEN - ehi->desc_len, fmt, args); } /** * __ata_ehi_push_desc - push error description without adding separator * @ehi: target EHI * @fmt: printf format string * * Format string according to @fmt and append it to @ehi->desc. * * LOCKING: * spin_lock_irqsave(host lock) */ void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...) { va_list args; va_start(args, fmt); __ata_ehi_pushv_desc(ehi, fmt, args); va_end(args); } /** * ata_ehi_push_desc - push error description with separator * @ehi: target EHI * @fmt: printf format string * * Format string according to @fmt and append it to @ehi->desc. * If @ehi->desc is not empty, ", " is added in-between. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...) { va_list args; if (ehi->desc_len) __ata_ehi_push_desc(ehi, ", "); va_start(args, fmt); __ata_ehi_pushv_desc(ehi, fmt, args); va_end(args); } /** * ata_ehi_clear_desc - clean error description * @ehi: target EHI * * Clear @ehi->desc. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_ehi_clear_desc(struct ata_eh_info *ehi) { ehi->desc[0] = '\0'; ehi->desc_len = 0; } /** * ata_port_desc - append port description * @ap: target ATA port * @fmt: printf format string * * Format string according to @fmt and append it to port * description. If port description is not empty, " " is added * in-between. This function is to be used while initializing * ata_host. The description is printed on host registration. * * LOCKING: * None. */ void ata_port_desc(struct ata_port *ap, const char *fmt, ...) { va_list args; WARN_ON(!(ap->pflags & ATA_PFLAG_INITIALIZING)); if (ap->link.eh_info.desc_len) __ata_ehi_push_desc(&ap->link.eh_info, " "); va_start(args, fmt); __ata_ehi_pushv_desc(&ap->link.eh_info, fmt, args); va_end(args); } #ifdef CONFIG_PCI /** * ata_port_pbar_desc - append PCI BAR description * @ap: target ATA port * @bar: target PCI BAR * @offset: offset into PCI BAR * @name: name of the area * * If @offset is negative, this function formats a string which * contains the name, address, size and type of the BAR and * appends it to the port description. If @offset is zero or * positive, only name and offsetted address is appended. * * LOCKING: * None. */ void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset, const char *name) { struct pci_dev *pdev = to_pci_dev(ap->host->dev); char *type = ""; unsigned long long start, len; if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) type = "m"; else if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) type = "i"; start = (unsigned long long)pci_resource_start(pdev, bar); len = (unsigned long long)pci_resource_len(pdev, bar); if (offset < 0) ata_port_desc(ap, "%s %s%llu@0x%llx", name, type, len, start); else ata_port_desc(ap, "%s 0x%llx", name, start + (unsigned long long)offset); } #endif /* CONFIG_PCI */ static int ata_lookup_timeout_table(u8 cmd) { int i; for (i = 0; i < ATA_EH_CMD_TIMEOUT_TABLE_SIZE; i++) { const u8 *cur; for (cur = ata_eh_cmd_timeout_table[i].commands; *cur; cur++) if (*cur == cmd) return i; } return -1; } /** * ata_internal_cmd_timeout - determine timeout for an internal command * @dev: target device * @cmd: internal command to be issued * * Determine timeout for internal command @cmd for @dev. * * LOCKING: * EH context. * * RETURNS: * Determined timeout. */ unsigned long ata_internal_cmd_timeout(struct ata_device *dev, u8 cmd) { struct ata_eh_context *ehc = &dev->link->eh_context; int ent = ata_lookup_timeout_table(cmd); int idx; if (ent < 0) return ATA_EH_CMD_DFL_TIMEOUT; idx = ehc->cmd_timeout_idx[dev->devno][ent]; return ata_eh_cmd_timeout_table[ent].timeouts[idx]; } /** * ata_internal_cmd_timed_out - notification for internal command timeout * @dev: target device * @cmd: internal command which timed out * * Notify EH that internal command @cmd for @dev timed out. This * function should be called only for commands whose timeouts are * determined using ata_internal_cmd_timeout(). * * LOCKING: * EH context. */ void ata_internal_cmd_timed_out(struct ata_device *dev, u8 cmd) { struct ata_eh_context *ehc = &dev->link->eh_context; int ent = ata_lookup_timeout_table(cmd); int idx; if (ent < 0) return; idx = ehc->cmd_timeout_idx[dev->devno][ent]; if (ata_eh_cmd_timeout_table[ent].timeouts[idx + 1] != ULONG_MAX) ehc->cmd_timeout_idx[dev->devno][ent]++; } static void ata_ering_record(struct ata_ering *ering, unsigned int eflags, unsigned int err_mask) { struct ata_ering_entry *ent; WARN_ON(!err_mask); ering->cursor++; ering->cursor %= ATA_ERING_SIZE; ent = &ering->ring[ering->cursor]; ent->eflags = eflags; ent->err_mask = err_mask; ent->timestamp = get_jiffies_64(); } static struct ata_ering_entry *ata_ering_top(struct ata_ering *ering) { struct ata_ering_entry *ent = &ering->ring[ering->cursor]; if (ent->err_mask) return ent; return NULL; } int ata_ering_map(struct ata_ering *ering, int (*map_fn)(struct ata_ering_entry *, void *), void *arg) { int idx, rc = 0; struct ata_ering_entry *ent; idx = ering->cursor; do { ent = &ering->ring[idx]; if (!ent->err_mask) break; rc = map_fn(ent, arg); if (rc) break; idx = (idx - 1 + ATA_ERING_SIZE) % ATA_ERING_SIZE; } while (idx != ering->cursor); return rc; } static int ata_ering_clear_cb(struct ata_ering_entry *ent, void *void_arg) { ent->eflags |= ATA_EFLAG_OLD_ER; return 0; } static void ata_ering_clear(struct ata_ering *ering) { ata_ering_map(ering, ata_ering_clear_cb, NULL); } static unsigned int ata_eh_dev_action(struct ata_device *dev) { struct ata_eh_context *ehc = &dev->link->eh_context; return ehc->i.action | ehc->i.dev_action[dev->devno]; } static void ata_eh_clear_action(struct ata_link *link, struct ata_device *dev, struct ata_eh_info *ehi, unsigned int action) { struct ata_device *tdev; if (!dev) { ehi->action &= ~action; ata_for_each_dev(tdev, link, ALL) ehi->dev_action[tdev->devno] &= ~action; } else { /* doesn't make sense for port-wide EH actions */ WARN_ON(!(action & ATA_EH_PERDEV_MASK)); /* break ehi->action into ehi->dev_action */ if (ehi->action & action) { ata_for_each_dev(tdev, link, ALL) ehi->dev_action[tdev->devno] |= ehi->action & action; ehi->action &= ~action; } /* turn off the specified per-dev action */ ehi->dev_action[dev->devno] &= ~action; } } /** * ata_eh_acquire - acquire EH ownership * @ap: ATA port to acquire EH ownership for * * Acquire EH ownership for @ap. This is the basic exclusion * mechanism for ports sharing a host. Only one port hanging off * the same host can claim the ownership of EH. * * LOCKING: * EH context. */ void ata_eh_acquire(struct ata_port *ap) { mutex_lock(&ap->host->eh_mutex); WARN_ON_ONCE(ap->host->eh_owner); ap->host->eh_owner = current; } /** * ata_eh_release - release EH ownership * @ap: ATA port to release EH ownership for * * Release EH ownership for @ap if the caller. The caller must * have acquired EH ownership using ata_eh_acquire() previously. * * LOCKING: * EH context. */ void ata_eh_release(struct ata_port *ap) { WARN_ON_ONCE(ap->host->eh_owner != current); ap->host->eh_owner = NULL; mutex_unlock(&ap->host->eh_mutex); } /** * ata_scsi_timed_out - SCSI layer time out callback * @cmd: timed out SCSI command * * Handles SCSI layer timeout. We race with normal completion of * the qc for @cmd. If the qc is already gone, we lose and let * the scsi command finish (EH_HANDLED). Otherwise, the qc has * timed out and EH should be invoked. Prevent ata_qc_complete() * from finishing it by setting EH_SCHEDULED and return * EH_NOT_HANDLED. * * TODO: kill this function once old EH is gone. * * LOCKING: * Called from timer context * * RETURNS: * EH_HANDLED or EH_NOT_HANDLED */ enum blk_eh_timer_return ata_scsi_timed_out(struct scsi_cmnd *cmd) { struct Scsi_Host *host = cmd->device->host; struct ata_port *ap = ata_shost_to_port(host); unsigned long flags; struct ata_queued_cmd *qc; enum blk_eh_timer_return ret; DPRINTK("ENTER\n"); if (ap->ops->error_handler) { ret = BLK_EH_NOT_HANDLED; goto out; } ret = BLK_EH_HANDLED; spin_lock_irqsave(ap->lock, flags); qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc) { WARN_ON(qc->scsicmd != cmd); qc->flags |= ATA_QCFLAG_EH_SCHEDULED; qc->err_mask |= AC_ERR_TIMEOUT; ret = BLK_EH_NOT_HANDLED; } spin_unlock_irqrestore(ap->lock, flags); out: DPRINTK("EXIT, ret=%d\n", ret); return ret; } static void ata_eh_unload(struct ata_port *ap) { struct ata_link *link; struct ata_device *dev; unsigned long flags; /* Restore SControl IPM and SPD for the next driver and * disable attached devices. */ ata_for_each_link(link, ap, PMP_FIRST) { sata_scr_write(link, SCR_CONTROL, link->saved_scontrol & 0xff0); ata_for_each_dev(dev, link, ALL) ata_dev_disable(dev); } /* freeze and set UNLOADED */ spin_lock_irqsave(ap->lock, flags); ata_port_freeze(ap); /* won't be thawed */ ap->pflags &= ~ATA_PFLAG_EH_PENDING; /* clear pending from freeze */ ap->pflags |= ATA_PFLAG_UNLOADED; spin_unlock_irqrestore(ap->lock, flags); } /** * ata_scsi_error - SCSI layer error handler callback * @host: SCSI host on which error occurred * * Handles SCSI-layer-thrown error events. * * LOCKING: * Inherited from SCSI layer (none, can sleep) * * RETURNS: * Zero. */ void ata_scsi_error(struct Scsi_Host *host) { struct ata_port *ap = ata_shost_to_port(host); unsigned long flags; LIST_HEAD(eh_work_q); DPRINTK("ENTER\n"); spin_lock_irqsave(host->host_lock, flags); list_splice_init(&host->eh_cmd_q, &eh_work_q); spin_unlock_irqrestore(host->host_lock, flags); ata_scsi_cmd_error_handler(host, ap, &eh_work_q); /* If we timed raced normal completion and there is nothing to recover nr_timedout == 0 why exactly are we doing error recovery ? */ ata_scsi_port_error_handler(host, ap); /* finish or retry handled scmd's and clean up */ WARN_ON(host->host_failed || !list_empty(&eh_work_q)); DPRINTK("EXIT\n"); } /** * ata_scsi_cmd_error_handler - error callback for a list of commands * @host: scsi host containing the port * @ap: ATA port within the host * @eh_work_q: list of commands to process * * process the given list of commands and return those finished to the * ap->eh_done_q. This function is the first part of the libata error * handler which processes a given list of failed commands. */ void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap, struct list_head *eh_work_q) { int i; unsigned long flags; /* make sure sff pio task is not running */ ata_sff_flush_pio_task(ap); /* synchronize with host lock and sort out timeouts */ /* For new EH, all qcs are finished in one of three ways - * normal completion, error completion, and SCSI timeout. * Both completions can race against SCSI timeout. When normal * completion wins, the qc never reaches EH. When error * completion wins, the qc has ATA_QCFLAG_FAILED set. * * When SCSI timeout wins, things are a bit more complex. * Normal or error completion can occur after the timeout but * before this point. In such cases, both types of * completions are honored. A scmd is determined to have * timed out iff its associated qc is active and not failed. */ if (ap->ops->error_handler) { struct scsi_cmnd *scmd, *tmp; int nr_timedout = 0; spin_lock_irqsave(ap->lock, flags); /* This must occur under the ap->lock as we don't want a polled recovery to race the real interrupt handler The lost_interrupt handler checks for any completed but non-notified command and completes much like an IRQ handler. We then fall into the error recovery code which will treat this as if normal completion won the race */ if (ap->ops->lost_interrupt) ap->ops->lost_interrupt(ap); list_for_each_entry_safe(scmd, tmp, eh_work_q, eh_entry) { struct ata_queued_cmd *qc; for (i = 0; i < ATA_MAX_QUEUE; i++) { qc = __ata_qc_from_tag(ap, i); if (qc->flags & ATA_QCFLAG_ACTIVE && qc->scsicmd == scmd) break; } if (i < ATA_MAX_QUEUE) { /* the scmd has an associated qc */ if (!(qc->flags & ATA_QCFLAG_FAILED)) { /* which hasn't failed yet, timeout */ qc->err_mask |= AC_ERR_TIMEOUT; qc->flags |= ATA_QCFLAG_FAILED; nr_timedout++; } } else { /* Normal completion occurred after * SCSI timeout but before this point. * Successfully complete it. */ scmd->retries = scmd->allowed; scsi_eh_finish_cmd(scmd, &ap->eh_done_q); } } /* If we have timed out qcs. They belong to EH from * this point but the state of the controller is * unknown. Freeze the port to make sure the IRQ * handler doesn't diddle with those qcs. This must * be done atomically w.r.t. setting QCFLAG_FAILED. */ if (nr_timedout) __ata_port_freeze(ap); spin_unlock_irqrestore(ap->lock, flags); /* initialize eh_tries */ ap->eh_tries = ATA_EH_MAX_TRIES; } else spin_unlock_wait(ap->lock); } EXPORT_SYMBOL(ata_scsi_cmd_error_handler); /** * ata_scsi_port_error_handler - recover the port after the commands * @host: SCSI host containing the port * @ap: the ATA port * * Handle the recovery of the port @ap after all the commands * have been recovered. */ void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap) { unsigned long flags; /* invoke error handler */ if (ap->ops->error_handler) { struct ata_link *link; /* acquire EH ownership */ ata_eh_acquire(ap); repeat: /* kill fast drain timer */ del_timer_sync(&ap->fastdrain_timer); /* process port resume request */ ata_eh_handle_port_resume(ap); /* fetch & clear EH info */ spin_lock_irqsave(ap->lock, flags); ata_for_each_link(link, ap, HOST_FIRST) { struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev; memset(&link->eh_context, 0, sizeof(link->eh_context)); link->eh_context.i = link->eh_info; memset(&link->eh_info, 0, sizeof(link->eh_info)); ata_for_each_dev(dev, link, ENABLED) { int devno = dev->devno; ehc->saved_xfer_mode[devno] = dev->xfer_mode; if (ata_ncq_enabled(dev)) ehc->saved_ncq_enabled |= 1 << devno; } } ap->pflags |= ATA_PFLAG_EH_IN_PROGRESS; ap->pflags &= ~ATA_PFLAG_EH_PENDING; ap->excl_link = NULL; /* don't maintain exclusion over EH */ spin_unlock_irqrestore(ap->lock, flags); /* invoke EH, skip if unloading or suspended */ if (!(ap->pflags & (ATA_PFLAG_UNLOADING | ATA_PFLAG_SUSPENDED))) ap->ops->error_handler(ap); else { /* if unloading, commence suicide */ if ((ap->pflags & ATA_PFLAG_UNLOADING) && !(ap->pflags & ATA_PFLAG_UNLOADED)) ata_eh_unload(ap); ata_eh_finish(ap); } /* process port suspend request */ ata_eh_handle_port_suspend(ap); /* Exception might have happened after ->error_handler * recovered the port but before this point. Repeat * EH in such case. */ spin_lock_irqsave(ap->lock, flags); if (ap->pflags & ATA_PFLAG_EH_PENDING) { if (--ap->eh_tries) { spin_unlock_irqrestore(ap->lock, flags); goto repeat; } ata_port_err(ap, "EH pending after %d tries, giving up\n", ATA_EH_MAX_TRIES); ap->pflags &= ~ATA_PFLAG_EH_PENDING; } /* this run is complete, make sure EH info is clear */ ata_for_each_link(link, ap, HOST_FIRST) memset(&link->eh_info, 0, sizeof(link->eh_info)); /* end eh (clear host_eh_scheduled) while holding * ap->lock such that if exception occurs after this * point but before EH completion, SCSI midlayer will * re-initiate EH. */ ap->ops->end_eh(ap); spin_unlock_irqrestore(ap->lock, flags); ata_eh_release(ap); } else { WARN_ON(ata_qc_from_tag(ap, ap->link.active_tag) == NULL); ap->ops->eng_timeout(ap); } scsi_eh_flush_done_q(&ap->eh_done_q); /* clean up */ spin_lock_irqsave(ap->lock, flags); if (ap->pflags & ATA_PFLAG_LOADING) ap->pflags &= ~ATA_PFLAG_LOADING; else if (ap->pflags & ATA_PFLAG_SCSI_HOTPLUG) schedule_delayed_work(&ap->hotplug_task, 0); if (ap->pflags & ATA_PFLAG_RECOVERED) ata_port_info(ap, "EH complete\n"); ap->pflags &= ~(ATA_PFLAG_SCSI_HOTPLUG | ATA_PFLAG_RECOVERED); /* tell wait_eh that we're done */ ap->pflags &= ~ATA_PFLAG_EH_IN_PROGRESS; wake_up_all(&ap->eh_wait_q); spin_unlock_irqrestore(ap->lock, flags); } EXPORT_SYMBOL_GPL(ata_scsi_port_error_handler); /** * ata_port_wait_eh - Wait for the currently pending EH to complete * @ap: Port to wait EH for * * Wait until the currently pending EH is complete. * * LOCKING: * Kernel thread context (may sleep). */ void ata_port_wait_eh(struct ata_port *ap) { unsigned long flags; DEFINE_WAIT(wait); retry: spin_lock_irqsave(ap->lock, flags); while (ap->pflags & (ATA_PFLAG_EH_PENDING | ATA_PFLAG_EH_IN_PROGRESS)) { prepare_to_wait(&ap->eh_wait_q, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irqrestore(ap->lock, flags); schedule(); spin_lock_irqsave(ap->lock, flags); } finish_wait(&ap->eh_wait_q, &wait); spin_unlock_irqrestore(ap->lock, flags); /* make sure SCSI EH is complete */ if (scsi_host_in_recovery(ap->scsi_host)) { ata_msleep(ap, 10); goto retry; } } EXPORT_SYMBOL_GPL(ata_port_wait_eh); static int ata_eh_nr_in_flight(struct ata_port *ap) { unsigned int tag; int nr = 0; /* count only non-internal commands */ for (tag = 0; tag < ATA_MAX_QUEUE - 1; tag++) if (ata_qc_from_tag(ap, tag)) nr++; return nr; } void ata_eh_fastdrain_timerfn(unsigned long arg) { struct ata_port *ap = (void *)arg; unsigned long flags; int cnt; spin_lock_irqsave(ap->lock, flags); cnt = ata_eh_nr_in_flight(ap); /* are we done? */ if (!cnt) goto out_unlock; if (cnt == ap->fastdrain_cnt) { unsigned int tag; /* No progress during the last interval, tag all * in-flight qcs as timed out and freeze the port. */ for (tag = 0; tag < ATA_MAX_QUEUE - 1; tag++) { struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); if (qc) qc->err_mask |= AC_ERR_TIMEOUT; } ata_port_freeze(ap); } else { /* some qcs have finished, give it another chance */ ap->fastdrain_cnt = cnt; ap->fastdrain_timer.expires = ata_deadline(jiffies, ATA_EH_FASTDRAIN_INTERVAL); add_timer(&ap->fastdrain_timer); } out_unlock: spin_unlock_irqrestore(ap->lock, flags); } /** * ata_eh_set_pending - set ATA_PFLAG_EH_PENDING and activate fast drain * @ap: target ATA port * @fastdrain: activate fast drain * * Set ATA_PFLAG_EH_PENDING and activate fast drain if @fastdrain * is non-zero and EH wasn't pending before. Fast drain ensures * that EH kicks in in timely manner. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_eh_set_pending(struct ata_port *ap, int fastdrain) { int cnt; /* already scheduled? */ if (ap->pflags & ATA_PFLAG_EH_PENDING) return; ap->pflags |= ATA_PFLAG_EH_PENDING; if (!fastdrain) return; /* do we have in-flight qcs? */ cnt = ata_eh_nr_in_flight(ap); if (!cnt) return; /* activate fast drain */ ap->fastdrain_cnt = cnt; ap->fastdrain_timer.expires = ata_deadline(jiffies, ATA_EH_FASTDRAIN_INTERVAL); add_timer(&ap->fastdrain_timer); } /** * ata_qc_schedule_eh - schedule qc for error handling * @qc: command to schedule error handling for * * Schedule error handling for @qc. EH will kick in as soon as * other commands are drained. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_qc_schedule_eh(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct request_queue *q = qc->scsicmd->device->request_queue; unsigned long flags; WARN_ON(!ap->ops->error_handler); qc->flags |= ATA_QCFLAG_FAILED; ata_eh_set_pending(ap, 1); /* The following will fail if timeout has already expired. * ata_scsi_error() takes care of such scmds on EH entry. * Note that ATA_QCFLAG_FAILED is unconditionally set after * this function completes. */ spin_lock_irqsave(q->queue_lock, flags); blk_abort_request(qc->scsicmd->request); spin_unlock_irqrestore(q->queue_lock, flags); } /** * ata_std_sched_eh - non-libsas ata_ports issue eh with this common routine * @ap: ATA port to schedule EH for * * LOCKING: inherited from ata_port_schedule_eh * spin_lock_irqsave(host lock) */ void ata_std_sched_eh(struct ata_port *ap) { WARN_ON(!ap->ops->error_handler); if (ap->pflags & ATA_PFLAG_INITIALIZING) return; ata_eh_set_pending(ap, 1); scsi_schedule_eh(ap->scsi_host); DPRINTK("port EH scheduled\n"); } EXPORT_SYMBOL_GPL(ata_std_sched_eh); /** * ata_std_end_eh - non-libsas ata_ports complete eh with this common routine * @ap: ATA port to end EH for * * In the libata object model there is a 1:1 mapping of ata_port to * shost, so host fields can be directly manipulated under ap->lock, in * the libsas case we need to hold a lock at the ha->level to coordinate * these events. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_std_end_eh(struct ata_port *ap) { struct Scsi_Host *host = ap->scsi_host; host->host_eh_scheduled = 0; } EXPORT_SYMBOL(ata_std_end_eh); /** * ata_port_schedule_eh - schedule error handling without a qc * @ap: ATA port to schedule EH for * * Schedule error handling for @ap. EH will kick in as soon as * all commands are drained. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_port_schedule_eh(struct ata_port *ap) { /* see: ata_std_sched_eh, unless you know better */ ap->ops->sched_eh(ap); } static int ata_do_link_abort(struct ata_port *ap, struct ata_link *link) { int tag, nr_aborted = 0; WARN_ON(!ap->ops->error_handler); /* we're gonna abort all commands, no need for fast drain */ ata_eh_set_pending(ap, 0); for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); if (qc && (!link || qc->dev->link == link)) { qc->flags |= ATA_QCFLAG_FAILED; ata_qc_complete(qc); nr_aborted++; } } if (!nr_aborted) ata_port_schedule_eh(ap); return nr_aborted; } /** * ata_link_abort - abort all qc's on the link * @link: ATA link to abort qc's for * * Abort all active qc's active on @link and schedule EH. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Number of aborted qc's. */ int ata_link_abort(struct ata_link *link) { return ata_do_link_abort(link->ap, link); } /** * ata_port_abort - abort all qc's on the port * @ap: ATA port to abort qc's for * * Abort all active qc's of @ap and schedule EH. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Number of aborted qc's. */ int ata_port_abort(struct ata_port *ap) { return ata_do_link_abort(ap, NULL); } /** * __ata_port_freeze - freeze port * @ap: ATA port to freeze * * This function is called when HSM violation or some other * condition disrupts normal operation of the port. Frozen port * is not allowed to perform any operation until the port is * thawed, which usually follows a successful reset. * * ap->ops->freeze() callback can be used for freezing the port * hardware-wise (e.g. mask interrupt and stop DMA engine). If a * port cannot be frozen hardware-wise, the interrupt handler * must ack and clear interrupts unconditionally while the port * is frozen. * * LOCKING: * spin_lock_irqsave(host lock) */ static void __ata_port_freeze(struct ata_port *ap) { WARN_ON(!ap->ops->error_handler); if (ap->ops->freeze) ap->ops->freeze(ap); ap->pflags |= ATA_PFLAG_FROZEN; DPRINTK("ata%u port frozen\n", ap->print_id); } /** * ata_port_freeze - abort & freeze port * @ap: ATA port to freeze * * Abort and freeze @ap. The freeze operation must be called * first, because some hardware requires special operations * before the taskfile registers are accessible. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Number of aborted commands. */ int ata_port_freeze(struct ata_port *ap) { int nr_aborted; WARN_ON(!ap->ops->error_handler); __ata_port_freeze(ap); nr_aborted = ata_port_abort(ap); return nr_aborted; } /** * sata_async_notification - SATA async notification handler * @ap: ATA port where async notification is received * * Handler to be called when async notification via SDB FIS is * received. This function schedules EH if necessary. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if EH is scheduled, 0 otherwise. */ int sata_async_notification(struct ata_port *ap) { u32 sntf; int rc; if (!(ap->flags & ATA_FLAG_AN)) return 0; rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf); if (rc == 0) sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf); if (!sata_pmp_attached(ap) || rc) { /* PMP is not attached or SNTF is not available */ if (!sata_pmp_attached(ap)) { /* PMP is not attached. Check whether ATAPI * AN is configured. If so, notify media * change. */ struct ata_device *dev = ap->link.device; if ((dev->class == ATA_DEV_ATAPI) && (dev->flags & ATA_DFLAG_AN)) ata_scsi_media_change_notify(dev); return 0; } else { /* PMP is attached but SNTF is not available. * ATAPI async media change notification is * not used. The PMP must be reporting PHY * status change, schedule EH. */ ata_port_schedule_eh(ap); return 1; } } else { /* PMP is attached and SNTF is available */ struct ata_link *link; /* check and notify ATAPI AN */ ata_for_each_link(link, ap, EDGE) { if (!(sntf & (1 << link->pmp))) continue; if ((link->device->class == ATA_DEV_ATAPI) && (link->device->flags & ATA_DFLAG_AN)) ata_scsi_media_change_notify(link->device); } /* If PMP is reporting that PHY status of some * downstream ports has changed, schedule EH. */ if (sntf & (1 << SATA_PMP_CTRL_PORT)) { ata_port_schedule_eh(ap); return 1; } return 0; } } /** * ata_eh_freeze_port - EH helper to freeze port * @ap: ATA port to freeze * * Freeze @ap. * * LOCKING: * None. */ void ata_eh_freeze_port(struct ata_port *ap) { unsigned long flags; if (!ap->ops->error_handler) return; spin_lock_irqsave(ap->lock, flags); __ata_port_freeze(ap); spin_unlock_irqrestore(ap->lock, flags); } /** * ata_port_thaw_port - EH helper to thaw port * @ap: ATA port to thaw * * Thaw frozen port @ap. * * LOCKING: * None. */ void ata_eh_thaw_port(struct ata_port *ap) { unsigned long flags; if (!ap->ops->error_handler) return; spin_lock_irqsave(ap->lock, flags); ap->pflags &= ~ATA_PFLAG_FROZEN; if (ap->ops->thaw) ap->ops->thaw(ap); spin_unlock_irqrestore(ap->lock, flags); DPRINTK("ata%u port thawed\n", ap->print_id); } static void ata_eh_scsidone(struct scsi_cmnd *scmd) { /* nada */ } static void __ata_eh_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scsi_cmnd *scmd = qc->scsicmd; unsigned long flags; spin_lock_irqsave(ap->lock, flags); qc->scsidone = ata_eh_scsidone; __ata_qc_complete(qc); WARN_ON(ata_tag_valid(qc->tag)); spin_unlock_irqrestore(ap->lock, flags); scsi_eh_finish_cmd(scmd, &ap->eh_done_q); } /** * ata_eh_qc_complete - Complete an active ATA command from EH * @qc: Command to complete * * Indicate to the mid and upper layers that an ATA command has * completed. To be used from EH. */ void ata_eh_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; scmd->retries = scmd->allowed; __ata_eh_qc_complete(qc); } /** * ata_eh_qc_retry - Tell midlayer to retry an ATA command after EH * @qc: Command to retry * * Indicate to the mid and upper layers that an ATA command * should be retried. To be used from EH. * * SCSI midlayer limits the number of retries to scmd->allowed. * scmd->allowed is incremented for commands which get retried * due to unrelated failures (qc->err_mask is zero). */ void ata_eh_qc_retry(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; if (!qc->err_mask) scmd->allowed++; __ata_eh_qc_complete(qc); } /** * ata_dev_disable - disable ATA device * @dev: ATA device to disable * * Disable @dev. * * Locking: * EH context. */ void ata_dev_disable(struct ata_device *dev) { if (!ata_dev_enabled(dev)) return; if (ata_msg_drv(dev->link->ap)) ata_dev_warn(dev, "disabled\n"); ata_acpi_on_disable(dev); ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | ATA_DNXFER_QUIET); dev->class++; /* From now till the next successful probe, ering is used to * track probe failures. Clear accumulated device error info. */ ata_ering_clear(&dev->ering); } /** * ata_eh_detach_dev - detach ATA device * @dev: ATA device to detach * * Detach @dev. * * LOCKING: * None. */ void ata_eh_detach_dev(struct ata_device *dev) { struct ata_link *link = dev->link; struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; unsigned long flags; ata_dev_disable(dev); spin_lock_irqsave(ap->lock, flags); dev->flags &= ~ATA_DFLAG_DETACH; if (ata_scsi_offline_dev(dev)) { dev->flags |= ATA_DFLAG_DETACHED; ap->pflags |= ATA_PFLAG_SCSI_HOTPLUG; } /* clear per-dev EH info */ ata_eh_clear_action(link, dev, &link->eh_info, ATA_EH_PERDEV_MASK); ata_eh_clear_action(link, dev, &link->eh_context.i, ATA_EH_PERDEV_MASK); ehc->saved_xfer_mode[dev->devno] = 0; ehc->saved_ncq_enabled &= ~(1 << dev->devno); spin_unlock_irqrestore(ap->lock, flags); } /** * ata_eh_about_to_do - about to perform eh_action * @link: target ATA link * @dev: target ATA dev for per-dev action (can be NULL) * @action: action about to be performed * * Called just before performing EH actions to clear related bits * in @link->eh_info such that eh actions are not unnecessarily * repeated. * * LOCKING: * None. */ void ata_eh_about_to_do(struct ata_link *link, struct ata_device *dev, unsigned int action) { struct ata_port *ap = link->ap; struct ata_eh_info *ehi = &link->eh_info; struct ata_eh_context *ehc = &link->eh_context; unsigned long flags; spin_lock_irqsave(ap->lock, flags); ata_eh_clear_action(link, dev, ehi, action); /* About to take EH action, set RECOVERED. Ignore actions on * slave links as master will do them again. */ if (!(ehc->i.flags & ATA_EHI_QUIET) && link != ap->slave_link) ap->pflags |= ATA_PFLAG_RECOVERED; spin_unlock_irqrestore(ap->lock, flags); } /** * ata_eh_done - EH action complete * @ap: target ATA port * @dev: target ATA dev for per-dev action (can be NULL) * @action: action just completed * * Called right after performing EH actions to clear related bits * in @link->eh_context. * * LOCKING: * None. */ void ata_eh_done(struct ata_link *link, struct ata_device *dev, unsigned int action) { struct ata_eh_context *ehc = &link->eh_context; ata_eh_clear_action(link, dev, &ehc->i, action); } /** * ata_err_string - convert err_mask to descriptive string * @err_mask: error mask to convert to string * * Convert @err_mask to descriptive string. Errors are * prioritized according to severity and only the most severe * error is reported. * * LOCKING: * None. * * RETURNS: * Descriptive string for @err_mask */ static const char *ata_err_string(unsigned int err_mask) { if (err_mask & AC_ERR_HOST_BUS) return "host bus error"; if (err_mask & AC_ERR_ATA_BUS) return "ATA bus error"; if (err_mask & AC_ERR_TIMEOUT) return "timeout"; if (err_mask & AC_ERR_HSM) return "HSM violation"; if (err_mask & AC_ERR_SYSTEM) return "internal error"; if (err_mask & AC_ERR_MEDIA) return "media error"; if (err_mask & AC_ERR_INVALID) return "invalid argument"; if (err_mask & AC_ERR_DEV) return "device error"; return "unknown error"; } /** * ata_read_log_page - read a specific log page * @dev: target device * @log: log to read * @page: page to read * @buf: buffer to store read page * @sectors: number of sectors to read * * Read log page using READ_LOG_EXT command. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, AC_ERR_* mask otherwise. */ unsigned int ata_read_log_page(struct ata_device *dev, u8 log, u8 page, void *buf, unsigned int sectors) { struct ata_taskfile tf; unsigned int err_mask; DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); ata_tf_init(dev, &tf); if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id)) { tf.command = ATA_CMD_READ_LOG_DMA_EXT; tf.protocol = ATA_PROT_DMA; } else { tf.command = ATA_CMD_READ_LOG_EXT; tf.protocol = ATA_PROT_PIO; } tf.lbal = log; tf.lbam = page; tf.nsect = sectors; tf.hob_nsect = sectors >> 8; tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, buf, sectors * ATA_SECT_SIZE, 0); DPRINTK("EXIT, err_mask=%x\n", err_mask); return err_mask; } /** * ata_eh_read_log_10h - Read log page 10h for NCQ error details * @dev: Device to read log page 10h from * @tag: Resulting tag of the failed command * @tf: Resulting taskfile registers of the failed command * * Read log page 10h to obtain NCQ error details and clear error * condition. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ static int ata_eh_read_log_10h(struct ata_device *dev, int *tag, struct ata_taskfile *tf) { u8 *buf = dev->link->ap->sector_buf; unsigned int err_mask; u8 csum; int i; err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1); if (err_mask) return -EIO; csum = 0; for (i = 0; i < ATA_SECT_SIZE; i++) csum += buf[i]; if (csum) ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n", csum); if (buf[0] & 0x80) return -ENOENT; *tag = buf[0] & 0x1f; tf->command = buf[2]; tf->feature = buf[3]; tf->lbal = buf[4]; tf->lbam = buf[5]; tf->lbah = buf[6]; tf->device = buf[7]; tf->hob_lbal = buf[8]; tf->hob_lbam = buf[9]; tf->hob_lbah = buf[10]; tf->nsect = buf[12]; tf->hob_nsect = buf[13]; if (ata_id_has_ncq_autosense(dev->id)) tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16]; return 0; } /** * atapi_eh_tur - perform ATAPI TEST_UNIT_READY * @dev: target ATAPI device * @r_sense_key: out parameter for sense_key * * Perform ATAPI TEST_UNIT_READY. * * LOCKING: * EH context (may sleep). * * RETURNS: * 0 on success, AC_ERR_* mask on failure. */ unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key) { u8 cdb[ATAPI_CDB_LEN] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 }; struct ata_taskfile tf; unsigned int err_mask; ata_tf_init(dev, &tf); tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.command = ATA_CMD_PACKET; tf.protocol = ATAPI_PROT_NODATA; err_mask = ata_exec_internal(dev, &tf, cdb, DMA_NONE, NULL, 0, 0); if (err_mask == AC_ERR_DEV) *r_sense_key = tf.feature >> 4; return err_mask; } /** * ata_eh_request_sense - perform REQUEST_SENSE_DATA_EXT * @dev: device to perform REQUEST_SENSE_SENSE_DATA_EXT to * @sense_buf: result sense data buffer (SCSI_SENSE_BUFFERSIZE bytes long) * @dfl_sense_key: default sense key to use * * Perform REQUEST_SENSE_DATA_EXT after the device reported CHECK * SENSE. This function is EH helper. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * encoded sense data on success, 0 on failure or if sense data * is not available. */ static u32 ata_eh_request_sense(struct ata_queued_cmd *qc, struct scsi_cmnd *cmd) { struct ata_device *dev = qc->dev; struct ata_taskfile tf; unsigned int err_mask; if (!cmd) return 0; DPRINTK("ATA request sense\n"); ata_dev_warn(dev, "request sense\n"); if (!ata_id_sense_reporting_enabled(dev->id)) { ata_dev_warn(qc->dev, "sense data reporting disabled\n"); return 0; } ata_tf_init(dev, &tf); tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; tf.command = ATA_CMD_REQ_SENSE_DATA; tf.protocol = ATA_PROT_NODATA; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); /* * ACS-4 states: * The device may set the SENSE DATA AVAILABLE bit to one in the * STATUS field and clear the ERROR bit to zero in the STATUS field * to indicate that the command returned completion without an error * and the sense data described in table 306 is available. * * IOW the 'ATA_SENSE' bit might not be set even though valid * sense data is available. * So check for both. */ if ((tf.command & ATA_SENSE) || tf.lbah != 0 || tf.lbam != 0 || tf.lbal != 0) { ata_scsi_set_sense(cmd, tf.lbah, tf.lbam, tf.lbal); qc->flags |= ATA_QCFLAG_SENSE_VALID; ata_dev_warn(dev, "sense data %02x/%02x/%02x\n", tf.lbah, tf.lbam, tf.lbal); } else { ata_dev_warn(dev, "request sense failed stat %02x emask %x\n", tf.command, err_mask); } return err_mask; } /** * atapi_eh_request_sense - perform ATAPI REQUEST_SENSE * @dev: device to perform REQUEST_SENSE to * @sense_buf: result sense data buffer (SCSI_SENSE_BUFFERSIZE bytes long) * @dfl_sense_key: default sense key to use * * Perform ATAPI REQUEST_SENSE after the device reported CHECK * SENSE. This function is EH helper. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, AC_ERR_* mask on failure */ unsigned int atapi_eh_request_sense(struct ata_device *dev, u8 *sense_buf, u8 dfl_sense_key) { u8 cdb[ATAPI_CDB_LEN] = { REQUEST_SENSE, 0, 0, 0, SCSI_SENSE_BUFFERSIZE, 0 }; struct ata_port *ap = dev->link->ap; struct ata_taskfile tf; DPRINTK("ATAPI request sense\n"); memset(sense_buf, 0, SCSI_SENSE_BUFFERSIZE); /* initialize sense_buf with the error register, * for the case where they are -not- overwritten */ sense_buf[0] = 0x70; sense_buf[2] = dfl_sense_key; /* some devices time out if garbage left in tf */ ata_tf_init(dev, &tf); tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf.command = ATA_CMD_PACKET; /* is it pointless to prefer PIO for "safety reasons"? */ if (ap->flags & ATA_FLAG_PIO_DMA) { tf.protocol = ATAPI_PROT_DMA; tf.feature |= ATAPI_PKT_DMA; } else { tf.protocol = ATAPI_PROT_PIO; tf.lbam = SCSI_SENSE_BUFFERSIZE; tf.lbah = 0; } return ata_exec_internal(dev, &tf, cdb, DMA_FROM_DEVICE, sense_buf, SCSI_SENSE_BUFFERSIZE, 0); } /** * ata_eh_analyze_serror - analyze SError for a failed port * @link: ATA link to analyze SError for * * Analyze SError if available and further determine cause of * failure. * * LOCKING: * None. */ static void ata_eh_analyze_serror(struct ata_link *link) { struct ata_eh_context *ehc = &link->eh_context; u32 serror = ehc->i.serror; unsigned int err_mask = 0, action = 0; u32 hotplug_mask; if (serror & (SERR_PERSISTENT | SERR_DATA)) { err_mask |= AC_ERR_ATA_BUS; action |= ATA_EH_RESET; } if (serror & SERR_PROTOCOL) { err_mask |= AC_ERR_HSM; action |= ATA_EH_RESET; } if (serror & SERR_INTERNAL) { err_mask |= AC_ERR_SYSTEM; action |= ATA_EH_RESET; } /* Determine whether a hotplug event has occurred. Both * SError.N/X are considered hotplug events for enabled or * host links. For disabled PMP links, only N bit is * considered as X bit is left at 1 for link plugging. */ if (link->lpm_policy > ATA_LPM_MAX_POWER) hotplug_mask = 0; /* hotplug doesn't work w/ LPM */ else if (!(link->flags & ATA_LFLAG_DISABLED) || ata_is_host_link(link)) hotplug_mask = SERR_PHYRDY_CHG | SERR_DEV_XCHG; else hotplug_mask = SERR_PHYRDY_CHG; if (serror & hotplug_mask) ata_ehi_hotplugged(&ehc->i); ehc->i.err_mask |= err_mask; ehc->i.action |= action; } /** * ata_eh_analyze_ncq_error - analyze NCQ error * @link: ATA link to analyze NCQ error for * * Read log page 10h, determine the offending qc and acquire * error status TF. For NCQ device errors, all LLDDs have to do * is setting AC_ERR_DEV in ehi->err_mask. This function takes * care of the rest. * * LOCKING: * Kernel thread context (may sleep). */ void ata_eh_analyze_ncq_error(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev = link->device; struct ata_queued_cmd *qc; struct ata_taskfile tf; int tag, rc; /* if frozen, we can't do much */ if (ap->pflags & ATA_PFLAG_FROZEN) return; /* is it NCQ device error? */ if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV)) return; /* has LLDD analyzed already? */ for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { qc = __ata_qc_from_tag(ap, tag); if (!(qc->flags & ATA_QCFLAG_FAILED)) continue; if (qc->err_mask) return; } /* okay, this error is ours */ memset(&tf, 0, sizeof(tf)); rc = ata_eh_read_log_10h(dev, &tag, &tf); if (rc) { ata_link_err(link, "failed to read log page 10h (errno=%d)\n", rc); return; } if (!(link->sactive & (1 << tag))) { ata_link_err(link, "log page 10h reported inactive tag %d\n", tag); return; } /* we've got the perpetrator, condemn it */ qc = __ata_qc_from_tag(ap, tag); memcpy(&qc->result_tf, &tf, sizeof(tf)); qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48; qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ; if (qc->result_tf.auxiliary) { char sense_key, asc, ascq; sense_key = (qc->result_tf.auxiliary >> 16) & 0xff; asc = (qc->result_tf.auxiliary >> 8) & 0xff; ascq = qc->result_tf.auxiliary & 0xff; ata_dev_dbg(dev, "NCQ Autosense %02x/%02x/%02x\n", sense_key, asc, ascq); ata_scsi_set_sense(qc->scsicmd, sense_key, asc, ascq); qc->flags |= ATA_QCFLAG_SENSE_VALID; } ehc->i.err_mask &= ~AC_ERR_DEV; } /** * ata_eh_analyze_tf - analyze taskfile of a failed qc * @qc: qc to analyze * @tf: Taskfile registers to analyze * * Analyze taskfile of @qc and further determine cause of * failure. This function also requests ATAPI sense data if * available. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * Determined recovery action */ static unsigned int ata_eh_analyze_tf(struct ata_queued_cmd *qc, const struct ata_taskfile *tf) { unsigned int tmp, action = 0; u8 stat = tf->command, err = tf->feature; if ((stat & (ATA_BUSY | ATA_DRQ | ATA_DRDY)) != ATA_DRDY) { qc->err_mask |= AC_ERR_HSM; return ATA_EH_RESET; } /* * Sense data reporting does not work if the * device fault bit is set. */ if ((stat & ATA_SENSE) && !(stat & ATA_DF) && !(qc->flags & ATA_QCFLAG_SENSE_VALID)) { if (!(qc->ap->pflags & ATA_PFLAG_FROZEN)) { tmp = ata_eh_request_sense(qc, qc->scsicmd); if (tmp) qc->err_mask |= tmp; } else { ata_dev_warn(qc->dev, "sense data available but port frozen\n"); } } /* Set by NCQ autosense or request sense above */ if (qc->flags & ATA_QCFLAG_SENSE_VALID) return 0; if (stat & (ATA_ERR | ATA_DF)) qc->err_mask |= AC_ERR_DEV; else return 0; switch (qc->dev->class) { case ATA_DEV_ATA: case ATA_DEV_ZAC: if (err & ATA_ICRC) qc->err_mask |= AC_ERR_ATA_BUS; if (err & (ATA_UNC | ATA_AMNF)) qc->err_mask |= AC_ERR_MEDIA; if (err & ATA_IDNF) qc->err_mask |= AC_ERR_INVALID; break; case ATA_DEV_ATAPI: if (!(qc->ap->pflags & ATA_PFLAG_FROZEN)) { tmp = atapi_eh_request_sense(qc->dev, qc->scsicmd->sense_buffer, qc->result_tf.feature >> 4); if (!tmp) { /* ATA_QCFLAG_SENSE_VALID is used to * tell atapi_qc_complete() that sense * data is already valid. * * TODO: interpret sense data and set * appropriate err_mask. */ qc->flags |= ATA_QCFLAG_SENSE_VALID; } else qc->err_mask |= tmp; } } if (qc->err_mask & (AC_ERR_HSM | AC_ERR_TIMEOUT | AC_ERR_ATA_BUS)) action |= ATA_EH_RESET; return action; } static int ata_eh_categorize_error(unsigned int eflags, unsigned int err_mask, int *xfer_ok) { int base = 0; if (!(eflags & ATA_EFLAG_DUBIOUS_XFER)) *xfer_ok = 1; if (!*xfer_ok) base = ATA_ECAT_DUBIOUS_NONE; if (err_mask & AC_ERR_ATA_BUS) return base + ATA_ECAT_ATA_BUS; if (err_mask & AC_ERR_TIMEOUT) return base + ATA_ECAT_TOUT_HSM; if (eflags & ATA_EFLAG_IS_IO) { if (err_mask & AC_ERR_HSM) return base + ATA_ECAT_TOUT_HSM; if ((err_mask & (AC_ERR_DEV|AC_ERR_MEDIA|AC_ERR_INVALID)) == AC_ERR_DEV) return base + ATA_ECAT_UNK_DEV; } return 0; } struct speed_down_verdict_arg { u64 since; int xfer_ok; int nr_errors[ATA_ECAT_NR]; }; static int speed_down_verdict_cb(struct ata_ering_entry *ent, void *void_arg) { struct speed_down_verdict_arg *arg = void_arg; int cat; if ((ent->eflags & ATA_EFLAG_OLD_ER) || (ent->timestamp < arg->since)) return -1; cat = ata_eh_categorize_error(ent->eflags, ent->err_mask, &arg->xfer_ok); arg->nr_errors[cat]++; return 0; } /** * ata_eh_speed_down_verdict - Determine speed down verdict * @dev: Device of interest * * This function examines error ring of @dev and determines * whether NCQ needs to be turned off, transfer speed should be * stepped down, or falling back to PIO is necessary. * * ECAT_ATA_BUS : ATA_BUS error for any command * * ECAT_TOUT_HSM : TIMEOUT for any command or HSM violation for * IO commands * * ECAT_UNK_DEV : Unknown DEV error for IO commands * * ECAT_DUBIOUS_* : Identical to above three but occurred while * data transfer hasn't been verified. * * Verdicts are * * NCQ_OFF : Turn off NCQ. * * SPEED_DOWN : Speed down transfer speed but don't fall back * to PIO. * * FALLBACK_TO_PIO : Fall back to PIO. * * Even if multiple verdicts are returned, only one action is * taken per error. An action triggered by non-DUBIOUS errors * clears ering, while one triggered by DUBIOUS_* errors doesn't. * This is to expedite speed down decisions right after device is * initially configured. * * The followings are speed down rules. #1 and #2 deal with * DUBIOUS errors. * * 1. If more than one DUBIOUS_ATA_BUS or DUBIOUS_TOUT_HSM errors * occurred during last 5 mins, SPEED_DOWN and FALLBACK_TO_PIO. * * 2. If more than one DUBIOUS_TOUT_HSM or DUBIOUS_UNK_DEV errors * occurred during last 5 mins, NCQ_OFF. * * 3. If more than 8 ATA_BUS, TOUT_HSM or UNK_DEV errors * occurred during last 5 mins, FALLBACK_TO_PIO * * 4. If more than 3 TOUT_HSM or UNK_DEV errors occurred * during last 10 mins, NCQ_OFF. * * 5. If more than 3 ATA_BUS or TOUT_HSM errors, or more than 6 * UNK_DEV errors occurred during last 10 mins, SPEED_DOWN. * * LOCKING: * Inherited from caller. * * RETURNS: * OR of ATA_EH_SPDN_* flags. */ static unsigned int ata_eh_speed_down_verdict(struct ata_device *dev) { const u64 j5mins = 5LLU * 60 * HZ, j10mins = 10LLU * 60 * HZ; u64 j64 = get_jiffies_64(); struct speed_down_verdict_arg arg; unsigned int verdict = 0; /* scan past 5 mins of error history */ memset(&arg, 0, sizeof(arg)); arg.since = j64 - min(j64, j5mins); ata_ering_map(&dev->ering, speed_down_verdict_cb, &arg); if (arg.nr_errors[ATA_ECAT_DUBIOUS_ATA_BUS] + arg.nr_errors[ATA_ECAT_DUBIOUS_TOUT_HSM] > 1) verdict |= ATA_EH_SPDN_SPEED_DOWN | ATA_EH_SPDN_FALLBACK_TO_PIO | ATA_EH_SPDN_KEEP_ERRORS; if (arg.nr_errors[ATA_ECAT_DUBIOUS_TOUT_HSM] + arg.nr_errors[ATA_ECAT_DUBIOUS_UNK_DEV] > 1) verdict |= ATA_EH_SPDN_NCQ_OFF | ATA_EH_SPDN_KEEP_ERRORS; if (arg.nr_errors[ATA_ECAT_ATA_BUS] + arg.nr_errors[ATA_ECAT_TOUT_HSM] + arg.nr_errors[ATA_ECAT_UNK_DEV] > 6) verdict |= ATA_EH_SPDN_FALLBACK_TO_PIO; /* scan past 10 mins of error history */ memset(&arg, 0, sizeof(arg)); arg.since = j64 - min(j64, j10mins); ata_ering_map(&dev->ering, speed_down_verdict_cb, &arg); if (arg.nr_errors[ATA_ECAT_TOUT_HSM] + arg.nr_errors[ATA_ECAT_UNK_DEV] > 3) verdict |= ATA_EH_SPDN_NCQ_OFF; if (arg.nr_errors[ATA_ECAT_ATA_BUS] + arg.nr_errors[ATA_ECAT_TOUT_HSM] > 3 || arg.nr_errors[ATA_ECAT_UNK_DEV] > 6) verdict |= ATA_EH_SPDN_SPEED_DOWN; return verdict; } /** * ata_eh_speed_down - record error and speed down if necessary * @dev: Failed device * @eflags: mask of ATA_EFLAG_* flags * @err_mask: err_mask of the error * * Record error and examine error history to determine whether * adjusting transmission speed is necessary. It also sets * transmission limits appropriately if such adjustment is * necessary. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * Determined recovery action. */ static unsigned int ata_eh_speed_down(struct ata_device *dev, unsigned int eflags, unsigned int err_mask) { struct ata_link *link = ata_dev_phys_link(dev); int xfer_ok = 0; unsigned int verdict; unsigned int action = 0; /* don't bother if Cat-0 error */ if (ata_eh_categorize_error(eflags, err_mask, &xfer_ok) == 0) return 0; /* record error and determine whether speed down is necessary */ ata_ering_record(&dev->ering, eflags, err_mask); verdict = ata_eh_speed_down_verdict(dev); /* turn off NCQ? */ if ((verdict & ATA_EH_SPDN_NCQ_OFF) && (dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ | ATA_DFLAG_NCQ_OFF)) == ATA_DFLAG_NCQ) { dev->flags |= ATA_DFLAG_NCQ_OFF; ata_dev_warn(dev, "NCQ disabled due to excessive errors\n"); goto done; } /* speed down? */ if (verdict & ATA_EH_SPDN_SPEED_DOWN) { /* speed down SATA link speed if possible */ if (sata_down_spd_limit(link, 0) == 0) { action |= ATA_EH_RESET; goto done; } /* lower transfer mode */ if (dev->spdn_cnt < 2) { static const int dma_dnxfer_sel[] = { ATA_DNXFER_DMA, ATA_DNXFER_40C }; static const int pio_dnxfer_sel[] = { ATA_DNXFER_PIO, ATA_DNXFER_FORCE_PIO0 }; int sel; if (dev->xfer_shift != ATA_SHIFT_PIO) sel = dma_dnxfer_sel[dev->spdn_cnt]; else sel = pio_dnxfer_sel[dev->spdn_cnt]; dev->spdn_cnt++; if (ata_down_xfermask_limit(dev, sel) == 0) { action |= ATA_EH_RESET; goto done; } } } /* Fall back to PIO? Slowing down to PIO is meaningless for * SATA ATA devices. Consider it only for PATA and SATAPI. */ if ((verdict & ATA_EH_SPDN_FALLBACK_TO_PIO) && (dev->spdn_cnt >= 2) && (link->ap->cbl != ATA_CBL_SATA || dev->class == ATA_DEV_ATAPI) && (dev->xfer_shift != ATA_SHIFT_PIO)) { if (ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO) == 0) { dev->spdn_cnt = 0; action |= ATA_EH_RESET; goto done; } } return 0; done: /* device has been slowed down, blow error history */ if (!(verdict & ATA_EH_SPDN_KEEP_ERRORS)) ata_ering_clear(&dev->ering); return action; } /** * ata_eh_worth_retry - analyze error and decide whether to retry * @qc: qc to possibly retry * * Look at the cause of the error and decide if a retry * might be useful or not. We don't want to retry media errors * because the drive itself has probably already taken 10-30 seconds * doing its own internal retries before reporting the failure. */ static inline int ata_eh_worth_retry(struct ata_queued_cmd *qc) { if (qc->err_mask & AC_ERR_MEDIA) return 0; /* don't retry media errors */ if (qc->flags & ATA_QCFLAG_IO) return 1; /* otherwise retry anything from fs stack */ if (qc->err_mask & AC_ERR_INVALID) return 0; /* don't retry these */ return qc->err_mask != AC_ERR_DEV; /* retry if not dev error */ } /** * ata_eh_link_autopsy - analyze error and determine recovery action * @link: host link to perform autopsy on * * Analyze why @link failed and determine which recovery actions * are needed. This function also sets more detailed AC_ERR_* * values and fills sense data for ATAPI CHECK SENSE. * * LOCKING: * Kernel thread context (may sleep). */ static void ata_eh_link_autopsy(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev; unsigned int all_err_mask = 0, eflags = 0; int tag; u32 serror; int rc; DPRINTK("ENTER\n"); if (ehc->i.flags & ATA_EHI_NO_AUTOPSY) return; /* obtain and analyze SError */ rc = sata_scr_read(link, SCR_ERROR, &serror); if (rc == 0) { ehc->i.serror |= serror; ata_eh_analyze_serror(link); } else if (rc != -EOPNOTSUPP) { /* SError read failed, force reset and probing */ ehc->i.probe_mask |= ATA_ALL_DEVICES; ehc->i.action |= ATA_EH_RESET; ehc->i.err_mask |= AC_ERR_OTHER; } /* analyze NCQ failure */ ata_eh_analyze_ncq_error(link); /* any real error trumps AC_ERR_OTHER */ if (ehc->i.err_mask & ~AC_ERR_OTHER) ehc->i.err_mask &= ~AC_ERR_OTHER; all_err_mask |= ehc->i.err_mask; for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (!(qc->flags & ATA_QCFLAG_FAILED) || ata_dev_phys_link(qc->dev) != link) continue; /* inherit upper level err_mask */ qc->err_mask |= ehc->i.err_mask; /* analyze TF */ ehc->i.action |= ata_eh_analyze_tf(qc, &qc->result_tf); /* DEV errors are probably spurious in case of ATA_BUS error */ if (qc->err_mask & AC_ERR_ATA_BUS) qc->err_mask &= ~(AC_ERR_DEV | AC_ERR_MEDIA | AC_ERR_INVALID); /* any real error trumps unknown error */ if (qc->err_mask & ~AC_ERR_OTHER) qc->err_mask &= ~AC_ERR_OTHER; /* SENSE_VALID trumps dev/unknown error and revalidation */ if (qc->flags & ATA_QCFLAG_SENSE_VALID) qc->err_mask &= ~(AC_ERR_DEV | AC_ERR_OTHER); /* determine whether the command is worth retrying */ if (ata_eh_worth_retry(qc)) qc->flags |= ATA_QCFLAG_RETRY; /* accumulate error info */ ehc->i.dev = qc->dev; all_err_mask |= qc->err_mask; if (qc->flags & ATA_QCFLAG_IO) eflags |= ATA_EFLAG_IS_IO; } /* enforce default EH actions */ if (ap->pflags & ATA_PFLAG_FROZEN || all_err_mask & (AC_ERR_HSM | AC_ERR_TIMEOUT)) ehc->i.action |= ATA_EH_RESET; else if (((eflags & ATA_EFLAG_IS_IO) && all_err_mask) || (!(eflags & ATA_EFLAG_IS_IO) && (all_err_mask & ~AC_ERR_DEV))) ehc->i.action |= ATA_EH_REVALIDATE; /* If we have offending qcs and the associated failed device, * perform per-dev EH action only on the offending device. */ if (ehc->i.dev) { ehc->i.dev_action[ehc->i.dev->devno] |= ehc->i.action & ATA_EH_PERDEV_MASK; ehc->i.action &= ~ATA_EH_PERDEV_MASK; } /* propagate timeout to host link */ if ((all_err_mask & AC_ERR_TIMEOUT) && !ata_is_host_link(link)) ap->link.eh_context.i.err_mask |= AC_ERR_TIMEOUT; /* record error and consider speeding down */ dev = ehc->i.dev; if (!dev && ((ata_link_max_devices(link) == 1 && ata_dev_enabled(link->device)))) dev = link->device; if (dev) { if (dev->flags & ATA_DFLAG_DUBIOUS_XFER) eflags |= ATA_EFLAG_DUBIOUS_XFER; ehc->i.action |= ata_eh_speed_down(dev, eflags, all_err_mask); } DPRINTK("EXIT\n"); } /** * ata_eh_autopsy - analyze error and determine recovery action * @ap: host port to perform autopsy on * * Analyze all links of @ap and determine why they failed and * which recovery actions are needed. * * LOCKING: * Kernel thread context (may sleep). */ void ata_eh_autopsy(struct ata_port *ap) { struct ata_link *link; ata_for_each_link(link, ap, EDGE) ata_eh_link_autopsy(link); /* Handle the frigging slave link. Autopsy is done similarly * but actions and flags are transferred over to the master * link and handled from there. */ if (ap->slave_link) { struct ata_eh_context *mehc = &ap->link.eh_context; struct ata_eh_context *sehc = &ap->slave_link->eh_context; /* transfer control flags from master to slave */ sehc->i.flags |= mehc->i.flags & ATA_EHI_TO_SLAVE_MASK; /* perform autopsy on the slave link */ ata_eh_link_autopsy(ap->slave_link); /* transfer actions from slave to master and clear slave */ ata_eh_about_to_do(ap->slave_link, NULL, ATA_EH_ALL_ACTIONS); mehc->i.action |= sehc->i.action; mehc->i.dev_action[1] |= sehc->i.dev_action[1]; mehc->i.flags |= sehc->i.flags; ata_eh_done(ap->slave_link, NULL, ATA_EH_ALL_ACTIONS); } /* Autopsy of fanout ports can affect host link autopsy. * Perform host link autopsy last. */ if (sata_pmp_attached(ap)) ata_eh_link_autopsy(&ap->link); } /** * ata_get_cmd_descript - get description for ATA command * @command: ATA command code to get description for * * Return a textual description of the given command, or NULL if the * command is not known. * * LOCKING: * None */ const char *ata_get_cmd_descript(u8 command) { #ifdef CONFIG_ATA_VERBOSE_ERROR static const struct { u8 command; const char *text; } cmd_descr[] = { { ATA_CMD_DEV_RESET, "DEVICE RESET" }, { ATA_CMD_CHK_POWER, "CHECK POWER MODE" }, { ATA_CMD_STANDBY, "STANDBY" }, { ATA_CMD_IDLE, "IDLE" }, { ATA_CMD_EDD, "EXECUTE DEVICE DIAGNOSTIC" }, { ATA_CMD_DOWNLOAD_MICRO, "DOWNLOAD MICROCODE" }, { ATA_CMD_DOWNLOAD_MICRO_DMA, "DOWNLOAD MICROCODE DMA" }, { ATA_CMD_NOP, "NOP" }, { ATA_CMD_FLUSH, "FLUSH CACHE" }, { ATA_CMD_FLUSH_EXT, "FLUSH CACHE EXT" }, { ATA_CMD_ID_ATA, "IDENTIFY DEVICE" }, { ATA_CMD_ID_ATAPI, "IDENTIFY PACKET DEVICE" }, { ATA_CMD_SERVICE, "SERVICE" }, { ATA_CMD_READ, "READ DMA" }, { ATA_CMD_READ_EXT, "READ DMA EXT" }, { ATA_CMD_READ_QUEUED, "READ DMA QUEUED" }, { ATA_CMD_READ_STREAM_EXT, "READ STREAM EXT" }, { ATA_CMD_READ_STREAM_DMA_EXT, "READ STREAM DMA EXT" }, { ATA_CMD_WRITE, "WRITE DMA" }, { ATA_CMD_WRITE_EXT, "WRITE DMA EXT" }, { ATA_CMD_WRITE_QUEUED, "WRITE DMA QUEUED EXT" }, { ATA_CMD_WRITE_STREAM_EXT, "WRITE STREAM EXT" }, { ATA_CMD_WRITE_STREAM_DMA_EXT, "WRITE STREAM DMA EXT" }, { ATA_CMD_WRITE_FUA_EXT, "WRITE DMA FUA EXT" }, { ATA_CMD_WRITE_QUEUED_FUA_EXT, "WRITE DMA QUEUED FUA EXT" }, { ATA_CMD_FPDMA_READ, "READ FPDMA QUEUED" }, { ATA_CMD_FPDMA_WRITE, "WRITE FPDMA QUEUED" }, { ATA_CMD_FPDMA_SEND, "SEND FPDMA QUEUED" }, { ATA_CMD_FPDMA_RECV, "RECEIVE FPDMA QUEUED" }, { ATA_CMD_PIO_READ, "READ SECTOR(S)" }, { ATA_CMD_PIO_READ_EXT, "READ SECTOR(S) EXT" }, { ATA_CMD_PIO_WRITE, "WRITE SECTOR(S)" }, { ATA_CMD_PIO_WRITE_EXT, "WRITE SECTOR(S) EXT" }, { ATA_CMD_READ_MULTI, "READ MULTIPLE" }, { ATA_CMD_READ_MULTI_EXT, "READ MULTIPLE EXT" }, { ATA_CMD_WRITE_MULTI, "WRITE MULTIPLE" }, { ATA_CMD_WRITE_MULTI_EXT, "WRITE MULTIPLE EXT" }, { ATA_CMD_WRITE_MULTI_FUA_EXT, "WRITE MULTIPLE FUA EXT" }, { ATA_CMD_SET_FEATURES, "SET FEATURES" }, { ATA_CMD_SET_MULTI, "SET MULTIPLE MODE" }, { ATA_CMD_VERIFY, "READ VERIFY SECTOR(S)" }, { ATA_CMD_VERIFY_EXT, "READ VERIFY SECTOR(S) EXT" }, { ATA_CMD_WRITE_UNCORR_EXT, "WRITE UNCORRECTABLE EXT" }, { ATA_CMD_STANDBYNOW1, "STANDBY IMMEDIATE" }, { ATA_CMD_IDLEIMMEDIATE, "IDLE IMMEDIATE" }, { ATA_CMD_SLEEP, "SLEEP" }, { ATA_CMD_INIT_DEV_PARAMS, "INITIALIZE DEVICE PARAMETERS" }, { ATA_CMD_READ_NATIVE_MAX, "READ NATIVE MAX ADDRESS" }, { ATA_CMD_READ_NATIVE_MAX_EXT, "READ NATIVE MAX ADDRESS EXT" }, { ATA_CMD_SET_MAX, "SET MAX ADDRESS" }, { ATA_CMD_SET_MAX_EXT, "SET MAX ADDRESS EXT" }, { ATA_CMD_READ_LOG_EXT, "READ LOG EXT" }, { ATA_CMD_WRITE_LOG_EXT, "WRITE LOG EXT" }, { ATA_CMD_READ_LOG_DMA_EXT, "READ LOG DMA EXT" }, { ATA_CMD_WRITE_LOG_DMA_EXT, "WRITE LOG DMA EXT" }, { ATA_CMD_TRUSTED_NONDATA, "TRUSTED NON-DATA" }, { ATA_CMD_TRUSTED_RCV, "TRUSTED RECEIVE" }, { ATA_CMD_TRUSTED_RCV_DMA, "TRUSTED RECEIVE DMA" }, { ATA_CMD_TRUSTED_SND, "TRUSTED SEND" }, { ATA_CMD_TRUSTED_SND_DMA, "TRUSTED SEND DMA" }, { ATA_CMD_PMP_READ, "READ BUFFER" }, { ATA_CMD_PMP_READ_DMA, "READ BUFFER DMA" }, { ATA_CMD_PMP_WRITE, "WRITE BUFFER" }, { ATA_CMD_PMP_WRITE_DMA, "WRITE BUFFER DMA" }, { ATA_CMD_CONF_OVERLAY, "DEVICE CONFIGURATION OVERLAY" }, { ATA_CMD_SEC_SET_PASS, "SECURITY SET PASSWORD" }, { ATA_CMD_SEC_UNLOCK, "SECURITY UNLOCK" }, { ATA_CMD_SEC_ERASE_PREP, "SECURITY ERASE PREPARE" }, { ATA_CMD_SEC_ERASE_UNIT, "SECURITY ERASE UNIT" }, { ATA_CMD_SEC_FREEZE_LOCK, "SECURITY FREEZE LOCK" }, { ATA_CMD_SEC_DISABLE_PASS, "SECURITY DISABLE PASSWORD" }, { ATA_CMD_CONFIG_STREAM, "CONFIGURE STREAM" }, { ATA_CMD_SMART, "SMART" }, { ATA_CMD_MEDIA_LOCK, "DOOR LOCK" }, { ATA_CMD_MEDIA_UNLOCK, "DOOR UNLOCK" }, { ATA_CMD_DSM, "DATA SET MANAGEMENT" }, { ATA_CMD_CHK_MED_CRD_TYP, "CHECK MEDIA CARD TYPE" }, { ATA_CMD_CFA_REQ_EXT_ERR, "CFA REQUEST EXTENDED ERROR" }, { ATA_CMD_CFA_WRITE_NE, "CFA WRITE SECTORS WITHOUT ERASE" }, { ATA_CMD_CFA_TRANS_SECT, "CFA TRANSLATE SECTOR" }, { ATA_CMD_CFA_ERASE, "CFA ERASE SECTORS" }, { ATA_CMD_CFA_WRITE_MULT_NE, "CFA WRITE MULTIPLE WITHOUT ERASE" }, { ATA_CMD_REQ_SENSE_DATA, "REQUEST SENSE DATA EXT" }, { ATA_CMD_SANITIZE_DEVICE, "SANITIZE DEVICE" }, { ATA_CMD_READ_LONG, "READ LONG (with retries)" }, { ATA_CMD_READ_LONG_ONCE, "READ LONG (without retries)" }, { ATA_CMD_WRITE_LONG, "WRITE LONG (with retries)" }, { ATA_CMD_WRITE_LONG_ONCE, "WRITE LONG (without retries)" }, { ATA_CMD_RESTORE, "RECALIBRATE" }, { 0, NULL } /* terminate list */ }; unsigned int i; for (i = 0; cmd_descr[i].text; i++) if (cmd_descr[i].command == command) return cmd_descr[i].text; #endif return NULL; } EXPORT_SYMBOL_GPL(ata_get_cmd_descript); /** * ata_eh_link_report - report error handling to user * @link: ATA link EH is going on * * Report EH to user. * * LOCKING: * None. */ static void ata_eh_link_report(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; const char *frozen, *desc; char tries_buf[6] = ""; int tag, nr_failed = 0; if (ehc->i.flags & ATA_EHI_QUIET) return; desc = NULL; if (ehc->i.desc[0] != '\0') desc = ehc->i.desc; for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (!(qc->flags & ATA_QCFLAG_FAILED) || ata_dev_phys_link(qc->dev) != link || ((qc->flags & ATA_QCFLAG_QUIET) && qc->err_mask == AC_ERR_DEV)) continue; if (qc->flags & ATA_QCFLAG_SENSE_VALID && !qc->err_mask) continue; nr_failed++; } if (!nr_failed && !ehc->i.err_mask) return; frozen = ""; if (ap->pflags & ATA_PFLAG_FROZEN) frozen = " frozen"; if (ap->eh_tries < ATA_EH_MAX_TRIES) snprintf(tries_buf, sizeof(tries_buf), " t%d", ap->eh_tries); if (ehc->i.dev) { ata_dev_err(ehc->i.dev, "exception Emask 0x%x " "SAct 0x%x SErr 0x%x action 0x%x%s%s\n", ehc->i.err_mask, link->sactive, ehc->i.serror, ehc->i.action, frozen, tries_buf); if (desc) ata_dev_err(ehc->i.dev, "%s\n", desc); } else { ata_link_err(link, "exception Emask 0x%x " "SAct 0x%x SErr 0x%x action 0x%x%s%s\n", ehc->i.err_mask, link->sactive, ehc->i.serror, ehc->i.action, frozen, tries_buf); if (desc) ata_link_err(link, "%s\n", desc); } #ifdef CONFIG_ATA_VERBOSE_ERROR if (ehc->i.serror) ata_link_err(link, "SError: { %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s}\n", ehc->i.serror & SERR_DATA_RECOVERED ? "RecovData " : "", ehc->i.serror & SERR_COMM_RECOVERED ? "RecovComm " : "", ehc->i.serror & SERR_DATA ? "UnrecovData " : "", ehc->i.serror & SERR_PERSISTENT ? "Persist " : "", ehc->i.serror & SERR_PROTOCOL ? "Proto " : "", ehc->i.serror & SERR_INTERNAL ? "HostInt " : "", ehc->i.serror & SERR_PHYRDY_CHG ? "PHYRdyChg " : "", ehc->i.serror & SERR_PHY_INT_ERR ? "PHYInt " : "", ehc->i.serror & SERR_COMM_WAKE ? "CommWake " : "", ehc->i.serror & SERR_10B_8B_ERR ? "10B8B " : "", ehc->i.serror & SERR_DISPARITY ? "Dispar " : "", ehc->i.serror & SERR_CRC ? "BadCRC " : "", ehc->i.serror & SERR_HANDSHAKE ? "Handshk " : "", ehc->i.serror & SERR_LINK_SEQ_ERR ? "LinkSeq " : "", ehc->i.serror & SERR_TRANS_ST_ERROR ? "TrStaTrns " : "", ehc->i.serror & SERR_UNRECOG_FIS ? "UnrecFIS " : "", ehc->i.serror & SERR_DEV_XCHG ? "DevExch " : ""); #endif for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); struct ata_taskfile *cmd = &qc->tf, *res = &qc->result_tf; char data_buf[20] = ""; char cdb_buf[70] = ""; if (!(qc->flags & ATA_QCFLAG_FAILED) || ata_dev_phys_link(qc->dev) != link || !qc->err_mask) continue; if (qc->dma_dir != DMA_NONE) { static const char *dma_str[] = { [DMA_BIDIRECTIONAL] = "bidi", [DMA_TO_DEVICE] = "out", [DMA_FROM_DEVICE] = "in", }; static const char *prot_str[] = { [ATA_PROT_PIO] = "pio", [ATA_PROT_DMA] = "dma", [ATA_PROT_NCQ] = "ncq", [ATAPI_PROT_PIO] = "pio", [ATAPI_PROT_DMA] = "dma", }; snprintf(data_buf, sizeof(data_buf), " %s %u %s", prot_str[qc->tf.protocol], qc->nbytes, dma_str[qc->dma_dir]); } if (ata_is_atapi(qc->tf.protocol)) { const u8 *cdb = qc->cdb; size_t cdb_len = qc->dev->cdb_len; if (qc->scsicmd) { cdb = qc->scsicmd->cmnd; cdb_len = qc->scsicmd->cmd_len; } __scsi_format_command(cdb_buf, sizeof(cdb_buf), cdb, cdb_len); } else { const char *descr = ata_get_cmd_descript(cmd->command); if (descr) ata_dev_err(qc->dev, "failed command: %s\n", descr); } ata_dev_err(qc->dev, "cmd %02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x " "tag %d%s\n %s" "res %02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x " "Emask 0x%x (%s)%s\n", cmd->command, cmd->feature, cmd->nsect, cmd->lbal, cmd->lbam, cmd->lbah, cmd->hob_feature, cmd->hob_nsect, cmd->hob_lbal, cmd->hob_lbam, cmd->hob_lbah, cmd->device, qc->tag, data_buf, cdb_buf, res->command, res->feature, res->nsect, res->lbal, res->lbam, res->lbah, res->hob_feature, res->hob_nsect, res->hob_lbal, res->hob_lbam, res->hob_lbah, res->device, qc->err_mask, ata_err_string(qc->err_mask), qc->err_mask & AC_ERR_NCQ ? " " : ""); #ifdef CONFIG_ATA_VERBOSE_ERROR if (res->command & (ATA_BUSY | ATA_DRDY | ATA_DF | ATA_DRQ | ATA_SENSE | ATA_ERR)) { if (res->command & ATA_BUSY) ata_dev_err(qc->dev, "status: { Busy }\n"); else ata_dev_err(qc->dev, "status: { %s%s%s%s%s}\n", res->command & ATA_DRDY ? "DRDY " : "", res->command & ATA_DF ? "DF " : "", res->command & ATA_DRQ ? "DRQ " : "", res->command & ATA_SENSE ? "SENSE " : "", res->command & ATA_ERR ? "ERR " : ""); } if (cmd->command != ATA_CMD_PACKET && (res->feature & (ATA_ICRC | ATA_UNC | ATA_AMNF | ATA_IDNF | ATA_ABORTED))) ata_dev_err(qc->dev, "error: { %s%s%s%s%s}\n", res->feature & ATA_ICRC ? "ICRC " : "", res->feature & ATA_UNC ? "UNC " : "", res->feature & ATA_AMNF ? "AMNF " : "", res->feature & ATA_IDNF ? "IDNF " : "", res->feature & ATA_ABORTED ? "ABRT " : ""); #endif } } /** * ata_eh_report - report error handling to user * @ap: ATA port to report EH about * * Report EH to user. * * LOCKING: * None. */ void ata_eh_report(struct ata_port *ap) { struct ata_link *link; ata_for_each_link(link, ap, HOST_FIRST) ata_eh_link_report(link); } static int ata_do_reset(struct ata_link *link, ata_reset_fn_t reset, unsigned int *classes, unsigned long deadline, bool clear_classes) { struct ata_device *dev; if (clear_classes) ata_for_each_dev(dev, link, ALL) classes[dev->devno] = ATA_DEV_UNKNOWN; return reset(link, classes, deadline); } static int ata_eh_followup_srst_needed(struct ata_link *link, int rc) { if ((link->flags & ATA_LFLAG_NO_SRST) || ata_link_offline(link)) return 0; if (rc == -EAGAIN) return 1; if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) return 1; return 0; } int ata_eh_reset(struct ata_link *link, int classify, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset) { struct ata_port *ap = link->ap; struct ata_link *slave = ap->slave_link; struct ata_eh_context *ehc = &link->eh_context; struct ata_eh_context *sehc = slave ? &slave->eh_context : NULL; unsigned int *classes = ehc->classes; unsigned int lflags = link->flags; int verbose = !(ehc->i.flags & ATA_EHI_QUIET); int max_tries = 0, try = 0; struct ata_link *failed_link; struct ata_device *dev; unsigned long deadline, now; ata_reset_fn_t reset; unsigned long flags; u32 sstatus; int nr_unknown, rc; /* * Prepare to reset */ while (ata_eh_reset_timeouts[max_tries] != ULONG_MAX) max_tries++; if (link->flags & ATA_LFLAG_RST_ONCE) max_tries = 1; if (link->flags & ATA_LFLAG_NO_HRST) hardreset = NULL; if (link->flags & ATA_LFLAG_NO_SRST) softreset = NULL; /* make sure each reset attempt is at least COOL_DOWN apart */ if (ehc->i.flags & ATA_EHI_DID_RESET) { now = jiffies; WARN_ON(time_after(ehc->last_reset, now)); deadline = ata_deadline(ehc->last_reset, ATA_EH_RESET_COOL_DOWN); if (time_before(now, deadline)) schedule_timeout_uninterruptible(deadline - now); } spin_lock_irqsave(ap->lock, flags); ap->pflags |= ATA_PFLAG_RESETTING; spin_unlock_irqrestore(ap->lock, flags); ata_eh_about_to_do(link, NULL, ATA_EH_RESET); ata_for_each_dev(dev, link, ALL) { /* If we issue an SRST then an ATA drive (not ATAPI) * may change configuration and be in PIO0 timing. If * we do a hard reset (or are coming from power on) * this is true for ATA or ATAPI. Until we've set a * suitable controller mode we should not touch the * bus as we may be talking too fast. */ dev->pio_mode = XFER_PIO_0; dev->dma_mode = 0xff; /* If the controller has a pio mode setup function * then use it to set the chipset to rights. Don't * touch the DMA setup as that will be dealt with when * configuring devices. */ if (ap->ops->set_piomode) ap->ops->set_piomode(ap, dev); } /* prefer hardreset */ reset = NULL; ehc->i.action &= ~ATA_EH_RESET; if (hardreset) { reset = hardreset; ehc->i.action |= ATA_EH_HARDRESET; } else if (softreset) { reset = softreset; ehc->i.action |= ATA_EH_SOFTRESET; } if (prereset) { unsigned long deadline = ata_deadline(jiffies, ATA_EH_PRERESET_TIMEOUT); if (slave) { sehc->i.action &= ~ATA_EH_RESET; sehc->i.action |= ehc->i.action; } rc = prereset(link, deadline); /* If present, do prereset on slave link too. Reset * is skipped iff both master and slave links report * -ENOENT or clear ATA_EH_RESET. */ if (slave && (rc == 0 || rc == -ENOENT)) { int tmp; tmp = prereset(slave, deadline); if (tmp != -ENOENT) rc = tmp; ehc->i.action |= sehc->i.action; } if (rc) { if (rc == -ENOENT) { ata_link_dbg(link, "port disabled--ignoring\n"); ehc->i.action &= ~ATA_EH_RESET; ata_for_each_dev(dev, link, ALL) classes[dev->devno] = ATA_DEV_NONE; rc = 0; } else ata_link_err(link, "prereset failed (errno=%d)\n", rc); goto out; } /* prereset() might have cleared ATA_EH_RESET. If so, * bang classes, thaw and return. */ if (reset && !(ehc->i.action & ATA_EH_RESET)) { ata_for_each_dev(dev, link, ALL) classes[dev->devno] = ATA_DEV_NONE; if ((ap->pflags & ATA_PFLAG_FROZEN) && ata_is_host_link(link)) ata_eh_thaw_port(ap); rc = 0; goto out; } } retry: /* * Perform reset */ if (ata_is_host_link(link)) ata_eh_freeze_port(ap); deadline = ata_deadline(jiffies, ata_eh_reset_timeouts[try++]); if (reset) { if (verbose) ata_link_info(link, "%s resetting link\n", reset == softreset ? "soft" : "hard"); /* mark that this EH session started with reset */ ehc->last_reset = jiffies; if (reset == hardreset) ehc->i.flags |= ATA_EHI_DID_HARDRESET; else ehc->i.flags |= ATA_EHI_DID_SOFTRESET; rc = ata_do_reset(link, reset, classes, deadline, true); if (rc && rc != -EAGAIN) { failed_link = link; goto fail; } /* hardreset slave link if existent */ if (slave && reset == hardreset) { int tmp; if (verbose) ata_link_info(slave, "hard resetting link\n"); ata_eh_about_to_do(slave, NULL, ATA_EH_RESET); tmp = ata_do_reset(slave, reset, classes, deadline, false); switch (tmp) { case -EAGAIN: rc = -EAGAIN; case 0: break; default: failed_link = slave; rc = tmp; goto fail; } } /* perform follow-up SRST if necessary */ if (reset == hardreset && ata_eh_followup_srst_needed(link, rc)) { reset = softreset; if (!reset) { ata_link_err(link, "follow-up softreset required but no softreset available\n"); failed_link = link; rc = -EINVAL; goto fail; } ata_eh_about_to_do(link, NULL, ATA_EH_RESET); rc = ata_do_reset(link, reset, classes, deadline, true); if (rc) { failed_link = link; goto fail; } } } else { if (verbose) ata_link_info(link, "no reset method available, skipping reset\n"); if (!(lflags & ATA_LFLAG_ASSUME_CLASS)) lflags |= ATA_LFLAG_ASSUME_ATA; } /* * Post-reset processing */ ata_for_each_dev(dev, link, ALL) { /* After the reset, the device state is PIO 0 and the * controller state is undefined. Reset also wakes up * drives from sleeping mode. */ dev->pio_mode = XFER_PIO_0; dev->flags &= ~ATA_DFLAG_SLEEPING; if (ata_phys_link_offline(ata_dev_phys_link(dev))) continue; /* apply class override */ if (lflags & ATA_LFLAG_ASSUME_ATA) classes[dev->devno] = ATA_DEV_ATA; else if (lflags & ATA_LFLAG_ASSUME_SEMB) classes[dev->devno] = ATA_DEV_SEMB_UNSUP; } /* record current link speed */ if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0) link->sata_spd = (sstatus >> 4) & 0xf; if (slave && sata_scr_read(slave, SCR_STATUS, &sstatus) == 0) slave->sata_spd = (sstatus >> 4) & 0xf; /* thaw the port */ if (ata_is_host_link(link)) ata_eh_thaw_port(ap); /* postreset() should clear hardware SError. Although SError * is cleared during link resume, clearing SError here is * necessary as some PHYs raise hotplug events after SRST. * This introduces race condition where hotplug occurs between * reset and here. This race is mediated by cross checking * link onlineness and classification result later. */ if (postreset) { postreset(link, classes); if (slave) postreset(slave, classes); } /* * Some controllers can't be frozen very well and may set spurious * error conditions during reset. Clear accumulated error * information and re-thaw the port if frozen. As reset is the * final recovery action and we cross check link onlineness against * device classification later, no hotplug event is lost by this. */ spin_lock_irqsave(link->ap->lock, flags); memset(&link->eh_info, 0, sizeof(link->eh_info)); if (slave) memset(&slave->eh_info, 0, sizeof(link->eh_info)); ap->pflags &= ~ATA_PFLAG_EH_PENDING; spin_unlock_irqrestore(link->ap->lock, flags); if (ap->pflags & ATA_PFLAG_FROZEN) ata_eh_thaw_port(ap); /* * Make sure onlineness and classification result correspond. * Hotplug could have happened during reset and some * controllers fail to wait while a drive is spinning up after * being hotplugged causing misdetection. By cross checking * link on/offlineness and classification result, those * conditions can be reliably detected and retried. */ nr_unknown = 0; ata_for_each_dev(dev, link, ALL) { if (ata_phys_link_online(ata_dev_phys_link(dev))) { if (classes[dev->devno] == ATA_DEV_UNKNOWN) { ata_dev_dbg(dev, "link online but device misclassified\n"); classes[dev->devno] = ATA_DEV_NONE; nr_unknown++; } } else if (ata_phys_link_offline(ata_dev_phys_link(dev))) { if (ata_class_enabled(classes[dev->devno])) ata_dev_dbg(dev, "link offline, clearing class %d to NONE\n", classes[dev->devno]); classes[dev->devno] = ATA_DEV_NONE; } else if (classes[dev->devno] == ATA_DEV_UNKNOWN) { ata_dev_dbg(dev, "link status unknown, clearing UNKNOWN to NONE\n"); classes[dev->devno] = ATA_DEV_NONE; } } if (classify && nr_unknown) { if (try < max_tries) { ata_link_warn(link, "link online but %d devices misclassified, retrying\n", nr_unknown); failed_link = link; rc = -EAGAIN; goto fail; } ata_link_warn(link, "link online but %d devices misclassified, " "device detection might fail\n", nr_unknown); } /* reset successful, schedule revalidation */ ata_eh_done(link, NULL, ATA_EH_RESET); if (slave) ata_eh_done(slave, NULL, ATA_EH_RESET); ehc->last_reset = jiffies; /* update to completion time */ ehc->i.action |= ATA_EH_REVALIDATE; link->lpm_policy = ATA_LPM_UNKNOWN; /* reset LPM state */ rc = 0; out: /* clear hotplug flag */ ehc->i.flags &= ~ATA_EHI_HOTPLUGGED; if (slave) sehc->i.flags &= ~ATA_EHI_HOTPLUGGED; spin_lock_irqsave(ap->lock, flags); ap->pflags &= ~ATA_PFLAG_RESETTING; spin_unlock_irqrestore(ap->lock, flags); return rc; fail: /* if SCR isn't accessible on a fan-out port, PMP needs to be reset */ if (!ata_is_host_link(link) && sata_scr_read(link, SCR_STATUS, &sstatus)) rc = -ERESTART; if (try >= max_tries) { /* * Thaw host port even if reset failed, so that the port * can be retried on the next phy event. This risks * repeated EH runs but seems to be a better tradeoff than * shutting down a port after a botched hotplug attempt. */ if (ata_is_host_link(link)) ata_eh_thaw_port(ap); goto out; } now = jiffies; if (time_before(now, deadline)) { unsigned long delta = deadline - now; ata_link_warn(failed_link, "reset failed (errno=%d), retrying in %u secs\n", rc, DIV_ROUND_UP(jiffies_to_msecs(delta), 1000)); ata_eh_release(ap); while (delta) delta = schedule_timeout_uninterruptible(delta); ata_eh_acquire(ap); } /* * While disks spinup behind PMP, some controllers fail sending SRST. * They need to be reset - as well as the PMP - before retrying. */ if (rc == -ERESTART) { if (ata_is_host_link(link)) ata_eh_thaw_port(ap); goto out; } if (try == max_tries - 1) { sata_down_spd_limit(link, 0); if (slave) sata_down_spd_limit(slave, 0); } else if (rc == -EPIPE) sata_down_spd_limit(failed_link, 0); if (hardreset) reset = hardreset; goto retry; } static inline void ata_eh_pull_park_action(struct ata_port *ap) { struct ata_link *link; struct ata_device *dev; unsigned long flags; /* * This function can be thought of as an extended version of * ata_eh_about_to_do() specially crafted to accommodate the * requirements of ATA_EH_PARK handling. Since the EH thread * does not leave the do {} while () loop in ata_eh_recover as * long as the timeout for a park request to *one* device on * the port has not expired, and since we still want to pick * up park requests to other devices on the same port or * timeout updates for the same device, we have to pull * ATA_EH_PARK actions from eh_info into eh_context.i * ourselves at the beginning of each pass over the loop. * * Additionally, all write accesses to &ap->park_req_pending * through reinit_completion() (see below) or complete_all() * (see ata_scsi_park_store()) are protected by the host lock. * As a result we have that park_req_pending.done is zero on * exit from this function, i.e. when ATA_EH_PARK actions for * *all* devices on port ap have been pulled into the * respective eh_context structs. If, and only if, * park_req_pending.done is non-zero by the time we reach * wait_for_completion_timeout(), another ATA_EH_PARK action * has been scheduled for at least one of the devices on port * ap and we have to cycle over the do {} while () loop in * ata_eh_recover() again. */ spin_lock_irqsave(ap->lock, flags); reinit_completion(&ap->park_req_pending); ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ALL) { struct ata_eh_info *ehi = &link->eh_info; link->eh_context.i.dev_action[dev->devno] |= ehi->dev_action[dev->devno] & ATA_EH_PARK; ata_eh_clear_action(link, dev, ehi, ATA_EH_PARK); } } spin_unlock_irqrestore(ap->lock, flags); } static void ata_eh_park_issue_cmd(struct ata_device *dev, int park) { struct ata_eh_context *ehc = &dev->link->eh_context; struct ata_taskfile tf; unsigned int err_mask; ata_tf_init(dev, &tf); if (park) { ehc->unloaded_mask |= 1 << dev->devno; tf.command = ATA_CMD_IDLEIMMEDIATE; tf.feature = 0x44; tf.lbal = 0x4c; tf.lbam = 0x4e; tf.lbah = 0x55; } else { ehc->unloaded_mask &= ~(1 << dev->devno); tf.command = ATA_CMD_CHK_POWER; } tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf.protocol |= ATA_PROT_NODATA; err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); if (park && (err_mask || tf.lbal != 0xc4)) { ata_dev_err(dev, "head unload failed!\n"); ehc->unloaded_mask &= ~(1 << dev->devno); } } static int ata_eh_revalidate_and_attach(struct ata_link *link, struct ata_device **r_failed_dev) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev; unsigned int new_mask = 0; unsigned long flags; int rc = 0; DPRINTK("ENTER\n"); /* For PATA drive side cable detection to work, IDENTIFY must * be done backwards such that PDIAG- is released by the slave * device before the master device is identified. */ ata_for_each_dev(dev, link, ALL_REVERSE) { unsigned int action = ata_eh_dev_action(dev); unsigned int readid_flags = 0; if (ehc->i.flags & ATA_EHI_DID_RESET) readid_flags |= ATA_READID_POSTRESET; if ((action & ATA_EH_REVALIDATE) && ata_dev_enabled(dev)) { WARN_ON(dev->class == ATA_DEV_PMP); if (ata_phys_link_offline(ata_dev_phys_link(dev))) { rc = -EIO; goto err; } ata_eh_about_to_do(link, dev, ATA_EH_REVALIDATE); rc = ata_dev_revalidate(dev, ehc->classes[dev->devno], readid_flags); if (rc) goto err; ata_eh_done(link, dev, ATA_EH_REVALIDATE); /* Configuration may have changed, reconfigure * transfer mode. */ ehc->i.flags |= ATA_EHI_SETMODE; /* schedule the scsi_rescan_device() here */ schedule_work(&(ap->scsi_rescan_task)); } else if (dev->class == ATA_DEV_UNKNOWN && ehc->tries[dev->devno] && ata_class_enabled(ehc->classes[dev->devno])) { /* Temporarily set dev->class, it will be * permanently set once all configurations are * complete. This is necessary because new * device configuration is done in two * separate loops. */ dev->class = ehc->classes[dev->devno]; if (dev->class == ATA_DEV_PMP) rc = sata_pmp_attach(dev); else rc = ata_dev_read_id(dev, &dev->class, readid_flags, dev->id); /* read_id might have changed class, store and reset */ ehc->classes[dev->devno] = dev->class; dev->class = ATA_DEV_UNKNOWN; switch (rc) { case 0: /* clear error info accumulated during probe */ ata_ering_clear(&dev->ering); new_mask |= 1 << dev->devno; break; case -ENOENT: /* IDENTIFY was issued to non-existent * device. No need to reset. Just * thaw and ignore the device. */ ata_eh_thaw_port(ap); break; default: goto err; } } } /* PDIAG- should have been released, ask cable type if post-reset */ if ((ehc->i.flags & ATA_EHI_DID_RESET) && ata_is_host_link(link)) { if (ap->ops->cable_detect) ap->cbl = ap->ops->cable_detect(ap); ata_force_cbl(ap); } /* Configure new devices forward such that user doesn't see * device detection messages backwards. */ ata_for_each_dev(dev, link, ALL) { if (!(new_mask & (1 << dev->devno))) continue; dev->class = ehc->classes[dev->devno]; if (dev->class == ATA_DEV_PMP) continue; ehc->i.flags |= ATA_EHI_PRINTINFO; rc = ata_dev_configure(dev); ehc->i.flags &= ~ATA_EHI_PRINTINFO; if (rc) { dev->class = ATA_DEV_UNKNOWN; goto err; } spin_lock_irqsave(ap->lock, flags); ap->pflags |= ATA_PFLAG_SCSI_HOTPLUG; spin_unlock_irqrestore(ap->lock, flags); /* new device discovered, configure xfermode */ ehc->i.flags |= ATA_EHI_SETMODE; } return 0; err: *r_failed_dev = dev; DPRINTK("EXIT rc=%d\n", rc); return rc; } /** * ata_set_mode - Program timings and issue SET FEATURES - XFER * @link: link on which timings will be programmed * @r_failed_dev: out parameter for failed device * * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If * ata_set_mode() fails, pointer to the failing device is * returned in @r_failed_dev. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * 0 on success, negative errno otherwise */ int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) { struct ata_port *ap = link->ap; struct ata_device *dev; int rc; /* if data transfer is verified, clear DUBIOUS_XFER on ering top */ ata_for_each_dev(dev, link, ENABLED) { if (!(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) { struct ata_ering_entry *ent; ent = ata_ering_top(&dev->ering); if (ent) ent->eflags &= ~ATA_EFLAG_DUBIOUS_XFER; } } /* has private set_mode? */ if (ap->ops->set_mode) rc = ap->ops->set_mode(link, r_failed_dev); else rc = ata_do_set_mode(link, r_failed_dev); /* if transfer mode has changed, set DUBIOUS_XFER on device */ ata_for_each_dev(dev, link, ENABLED) { struct ata_eh_context *ehc = &link->eh_context; u8 saved_xfer_mode = ehc->saved_xfer_mode[dev->devno]; u8 saved_ncq = !!(ehc->saved_ncq_enabled & (1 << dev->devno)); if (dev->xfer_mode != saved_xfer_mode || ata_ncq_enabled(dev) != saved_ncq) dev->flags |= ATA_DFLAG_DUBIOUS_XFER; } return rc; } /** * atapi_eh_clear_ua - Clear ATAPI UNIT ATTENTION after reset * @dev: ATAPI device to clear UA for * * Resets and other operations can make an ATAPI device raise * UNIT ATTENTION which causes the next operation to fail. This * function clears UA. * * LOCKING: * EH context (may sleep). * * RETURNS: * 0 on success, -errno on failure. */ static int atapi_eh_clear_ua(struct ata_device *dev) { int i; for (i = 0; i < ATA_EH_UA_TRIES; i++) { u8 *sense_buffer = dev->link->ap->sector_buf; u8 sense_key = 0; unsigned int err_mask; err_mask = atapi_eh_tur(dev, &sense_key); if (err_mask != 0 && err_mask != AC_ERR_DEV) { ata_dev_warn(dev, "TEST_UNIT_READY failed (err_mask=0x%x)\n", err_mask); return -EIO; } if (!err_mask || sense_key != UNIT_ATTENTION) return 0; err_mask = atapi_eh_request_sense(dev, sense_buffer, sense_key); if (err_mask) { ata_dev_warn(dev, "failed to clear " "UNIT ATTENTION (err_mask=0x%x)\n", err_mask); return -EIO; } } ata_dev_warn(dev, "UNIT ATTENTION persists after %d tries\n", ATA_EH_UA_TRIES); return 0; } /** * ata_eh_maybe_retry_flush - Retry FLUSH if necessary * @dev: ATA device which may need FLUSH retry * * If @dev failed FLUSH, it needs to be reported upper layer * immediately as it means that @dev failed to remap and already * lost at least a sector and further FLUSH retrials won't make * any difference to the lost sector. However, if FLUSH failed * for other reasons, for example transmission error, FLUSH needs * to be retried. * * This function determines whether FLUSH failure retry is * necessary and performs it if so. * * RETURNS: * 0 if EH can continue, -errno if EH needs to be repeated. */ static int ata_eh_maybe_retry_flush(struct ata_device *dev) { struct ata_link *link = dev->link; struct ata_port *ap = link->ap; struct ata_queued_cmd *qc; struct ata_taskfile tf; unsigned int err_mask; int rc = 0; /* did flush fail for this device? */ if (!ata_tag_valid(link->active_tag)) return 0; qc = __ata_qc_from_tag(ap, link->active_tag); if (qc->dev != dev || (qc->tf.command != ATA_CMD_FLUSH_EXT && qc->tf.command != ATA_CMD_FLUSH)) return 0; /* if the device failed it, it should be reported to upper layers */ if (qc->err_mask & AC_ERR_DEV) return 0; /* flush failed for some other reason, give it another shot */ ata_tf_init(dev, &tf); tf.command = qc->tf.command; tf.flags |= ATA_TFLAG_DEVICE; tf.protocol = ATA_PROT_NODATA; ata_dev_warn(dev, "retrying FLUSH 0x%x Emask 0x%x\n", tf.command, qc->err_mask); err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); if (!err_mask) { /* * FLUSH is complete but there's no way to * successfully complete a failed command from EH. * Making sure retry is allowed at least once and * retrying it should do the trick - whatever was in * the cache is already on the platter and this won't * cause infinite loop. */ qc->scsicmd->allowed = max(qc->scsicmd->allowed, 1); } else { ata_dev_warn(dev, "FLUSH failed Emask 0x%x\n", err_mask); rc = -EIO; /* if device failed it, report it to upper layers */ if (err_mask & AC_ERR_DEV) { qc->err_mask |= AC_ERR_DEV; qc->result_tf = tf; if (!(ap->pflags & ATA_PFLAG_FROZEN)) rc = 0; } } return rc; } /** * ata_eh_set_lpm - configure SATA interface power management * @link: link to configure power management * @policy: the link power management policy * @r_failed_dev: out parameter for failed device * * Enable SATA Interface power management. This will enable * Device Interface Power Management (DIPM) for min_power * policy, and then call driver specific callbacks for * enabling Host Initiated Power management. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -errno on failure. */ static int ata_eh_set_lpm(struct ata_link *link, enum ata_lpm_policy policy, struct ata_device **r_failed_dev) { struct ata_port *ap = ata_is_host_link(link) ? link->ap : NULL; struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev, *link_dev = NULL, *lpm_dev = NULL; enum ata_lpm_policy old_policy = link->lpm_policy; bool no_dipm = link->ap->flags & ATA_FLAG_NO_DIPM; unsigned int hints = ATA_LPM_EMPTY | ATA_LPM_HIPM; unsigned int err_mask; int rc; /* if the link or host doesn't do LPM, noop */ if ((link->flags & ATA_LFLAG_NO_LPM) || (ap && !ap->ops->set_lpm)) return 0; /* * DIPM is enabled only for MIN_POWER as some devices * misbehave when the host NACKs transition to SLUMBER. Order * device and link configurations such that the host always * allows DIPM requests. */ ata_for_each_dev(dev, link, ENABLED) { bool hipm = ata_id_has_hipm(dev->id); bool dipm = ata_id_has_dipm(dev->id) && !no_dipm; /* find the first enabled and LPM enabled devices */ if (!link_dev) link_dev = dev; if (!lpm_dev && (hipm || dipm)) lpm_dev = dev; hints &= ~ATA_LPM_EMPTY; if (!hipm) hints &= ~ATA_LPM_HIPM; /* disable DIPM before changing link config */ if (policy != ATA_LPM_MIN_POWER && dipm) { err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_DISABLE, SATA_DIPM); if (err_mask && err_mask != AC_ERR_DEV) { ata_dev_warn(dev, "failed to disable DIPM, Emask 0x%x\n", err_mask); rc = -EIO; goto fail; } } } if (ap) { rc = ap->ops->set_lpm(link, policy, hints); if (!rc && ap->slave_link) rc = ap->ops->set_lpm(ap->slave_link, policy, hints); } else rc = sata_pmp_set_lpm(link, policy, hints); /* * Attribute link config failure to the first (LPM) enabled * device on the link. */ if (rc) { if (rc == -EOPNOTSUPP) { link->flags |= ATA_LFLAG_NO_LPM; return 0; } dev = lpm_dev ? lpm_dev : link_dev; goto fail; } /* * Low level driver acked the transition. Issue DIPM command * with the new policy set. */ link->lpm_policy = policy; if (ap && ap->slave_link) ap->slave_link->lpm_policy = policy; /* host config updated, enable DIPM if transitioning to MIN_POWER */ ata_for_each_dev(dev, link, ENABLED) { if (policy == ATA_LPM_MIN_POWER && !no_dipm && ata_id_has_dipm(dev->id)) { err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, SATA_DIPM); if (err_mask && err_mask != AC_ERR_DEV) { ata_dev_warn(dev, "failed to enable DIPM, Emask 0x%x\n", err_mask); rc = -EIO; goto fail; } } } return 0; fail: /* restore the old policy */ link->lpm_policy = old_policy; if (ap && ap->slave_link) ap->slave_link->lpm_policy = old_policy; /* if no device or only one more chance is left, disable LPM */ if (!dev || ehc->tries[dev->devno] <= 2) { ata_link_warn(link, "disabling LPM on the link\n"); link->flags |= ATA_LFLAG_NO_LPM; } if (r_failed_dev) *r_failed_dev = dev; return rc; } int ata_link_nr_enabled(struct ata_link *link) { struct ata_device *dev; int cnt = 0; ata_for_each_dev(dev, link, ENABLED) cnt++; return cnt; } static int ata_link_nr_vacant(struct ata_link *link) { struct ata_device *dev; int cnt = 0; ata_for_each_dev(dev, link, ALL) if (dev->class == ATA_DEV_UNKNOWN) cnt++; return cnt; } static int ata_eh_skip_recovery(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; struct ata_device *dev; /* skip disabled links */ if (link->flags & ATA_LFLAG_DISABLED) return 1; /* skip if explicitly requested */ if (ehc->i.flags & ATA_EHI_NO_RECOVERY) return 1; /* thaw frozen port and recover failed devices */ if ((ap->pflags & ATA_PFLAG_FROZEN) || ata_link_nr_enabled(link)) return 0; /* reset at least once if reset is requested */ if ((ehc->i.action & ATA_EH_RESET) && !(ehc->i.flags & ATA_EHI_DID_RESET)) return 0; /* skip if class codes for all vacant slots are ATA_DEV_NONE */ ata_for_each_dev(dev, link, ALL) { if (dev->class == ATA_DEV_UNKNOWN && ehc->classes[dev->devno] != ATA_DEV_NONE) return 0; } return 1; } static int ata_count_probe_trials_cb(struct ata_ering_entry *ent, void *void_arg) { u64 interval = msecs_to_jiffies(ATA_EH_PROBE_TRIAL_INTERVAL); u64 now = get_jiffies_64(); int *trials = void_arg; if ((ent->eflags & ATA_EFLAG_OLD_ER) || (ent->timestamp < now - min(now, interval))) return -1; (*trials)++; return 0; } static int ata_eh_schedule_probe(struct ata_device *dev) { struct ata_eh_context *ehc = &dev->link->eh_context; struct ata_link *link = ata_dev_phys_link(dev); int trials = 0; if (!(ehc->i.probe_mask & (1 << dev->devno)) || (ehc->did_probe_mask & (1 << dev->devno))) return 0; ata_eh_detach_dev(dev); ata_dev_init(dev); ehc->did_probe_mask |= (1 << dev->devno); ehc->i.action |= ATA_EH_RESET; ehc->saved_xfer_mode[dev->devno] = 0; ehc->saved_ncq_enabled &= ~(1 << dev->devno); /* the link maybe in a deep sleep, wake it up */ if (link->lpm_policy > ATA_LPM_MAX_POWER) { if (ata_is_host_link(link)) link->ap->ops->set_lpm(link, ATA_LPM_MAX_POWER, ATA_LPM_EMPTY); else sata_pmp_set_lpm(link, ATA_LPM_MAX_POWER, ATA_LPM_EMPTY); } /* Record and count probe trials on the ering. The specific * error mask used is irrelevant. Because a successful device * detection clears the ering, this count accumulates only if * there are consecutive failed probes. * * If the count is equal to or higher than ATA_EH_PROBE_TRIALS * in the last ATA_EH_PROBE_TRIAL_INTERVAL, link speed is * forced to 1.5Gbps. * * This is to work around cases where failed link speed * negotiation results in device misdetection leading to * infinite DEVXCHG or PHRDY CHG events. */ ata_ering_record(&dev->ering, 0, AC_ERR_OTHER); ata_ering_map(&dev->ering, ata_count_probe_trials_cb, &trials); if (trials > ATA_EH_PROBE_TRIALS) sata_down_spd_limit(link, 1); return 1; } static int ata_eh_handle_dev_fail(struct ata_device *dev, int err) { struct ata_eh_context *ehc = &dev->link->eh_context; /* -EAGAIN from EH routine indicates retry without prejudice. * The requester is responsible for ensuring forward progress. */ if (err != -EAGAIN) ehc->tries[dev->devno]--; switch (err) { case -ENODEV: /* device missing or wrong IDENTIFY data, schedule probing */ ehc->i.probe_mask |= (1 << dev->devno); case -EINVAL: /* give it just one more chance */ ehc->tries[dev->devno] = min(ehc->tries[dev->devno], 1); case -EIO: if (ehc->tries[dev->devno] == 1) { /* This is the last chance, better to slow * down than lose it. */ sata_down_spd_limit(ata_dev_phys_link(dev), 0); if (dev->pio_mode > XFER_PIO_0) ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); } } if (ata_dev_enabled(dev) && !ehc->tries[dev->devno]) { /* disable device if it has used up all its chances */ ata_dev_disable(dev); /* detach if offline */ if (ata_phys_link_offline(ata_dev_phys_link(dev))) ata_eh_detach_dev(dev); /* schedule probe if necessary */ if (ata_eh_schedule_probe(dev)) { ehc->tries[dev->devno] = ATA_EH_DEV_TRIES; memset(ehc->cmd_timeout_idx[dev->devno], 0, sizeof(ehc->cmd_timeout_idx[dev->devno])); } return 1; } else { ehc->i.action |= ATA_EH_RESET; return 0; } } /** * ata_eh_recover - recover host port after error * @ap: host port to recover * @prereset: prereset method (can be NULL) * @softreset: softreset method (can be NULL) * @hardreset: hardreset method (can be NULL) * @postreset: postreset method (can be NULL) * @r_failed_link: out parameter for failed link * * This is the alpha and omega, eum and yang, heart and soul of * libata exception handling. On entry, actions required to * recover each link and hotplug requests are recorded in the * link's eh_context. This function executes all the operations * with appropriate retrials and fallbacks to resurrect failed * devices, detach goners and greet newcomers. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno on failure. */ int ata_eh_recover(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset, struct ata_link **r_failed_link) { struct ata_link *link; struct ata_device *dev; int rc, nr_fails; unsigned long flags, deadline; DPRINTK("ENTER\n"); /* prep for recovery */ ata_for_each_link(link, ap, EDGE) { struct ata_eh_context *ehc = &link->eh_context; /* re-enable link? */ if (ehc->i.action & ATA_EH_ENABLE_LINK) { ata_eh_about_to_do(link, NULL, ATA_EH_ENABLE_LINK); spin_lock_irqsave(ap->lock, flags); link->flags &= ~ATA_LFLAG_DISABLED; spin_unlock_irqrestore(ap->lock, flags); ata_eh_done(link, NULL, ATA_EH_ENABLE_LINK); } ata_for_each_dev(dev, link, ALL) { if (link->flags & ATA_LFLAG_NO_RETRY) ehc->tries[dev->devno] = 1; else ehc->tries[dev->devno] = ATA_EH_DEV_TRIES; /* collect port action mask recorded in dev actions */ ehc->i.action |= ehc->i.dev_action[dev->devno] & ~ATA_EH_PERDEV_MASK; ehc->i.dev_action[dev->devno] &= ATA_EH_PERDEV_MASK; /* process hotplug request */ if (dev->flags & ATA_DFLAG_DETACH) ata_eh_detach_dev(dev); /* schedule probe if necessary */ if (!ata_dev_enabled(dev)) ata_eh_schedule_probe(dev); } } retry: rc = 0; /* if UNLOADING, finish immediately */ if (ap->pflags & ATA_PFLAG_UNLOADING) goto out; /* prep for EH */ ata_for_each_link(link, ap, EDGE) { struct ata_eh_context *ehc = &link->eh_context; /* skip EH if possible. */ if (ata_eh_skip_recovery(link)) ehc->i.action = 0; ata_for_each_dev(dev, link, ALL) ehc->classes[dev->devno] = ATA_DEV_UNKNOWN; } /* reset */ ata_for_each_link(link, ap, EDGE) { struct ata_eh_context *ehc = &link->eh_context; if (!(ehc->i.action & ATA_EH_RESET)) continue; rc = ata_eh_reset(link, ata_link_nr_vacant(link), prereset, softreset, hardreset, postreset); if (rc) { ata_link_err(link, "reset failed, giving up\n"); goto out; } } do { unsigned long now; /* * clears ATA_EH_PARK in eh_info and resets * ap->park_req_pending */ ata_eh_pull_park_action(ap); deadline = jiffies; ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ALL) { struct ata_eh_context *ehc = &link->eh_context; unsigned long tmp; if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) continue; if (!(ehc->i.dev_action[dev->devno] & ATA_EH_PARK)) continue; tmp = dev->unpark_deadline; if (time_before(deadline, tmp)) deadline = tmp; else if (time_before_eq(tmp, jiffies)) continue; if (ehc->unloaded_mask & (1 << dev->devno)) continue; ata_eh_park_issue_cmd(dev, 1); } } now = jiffies; if (time_before_eq(deadline, now)) break; ata_eh_release(ap); deadline = wait_for_completion_timeout(&ap->park_req_pending, deadline - now); ata_eh_acquire(ap); } while (deadline); ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ALL) { if (!(link->eh_context.unloaded_mask & (1 << dev->devno))) continue; ata_eh_park_issue_cmd(dev, 0); ata_eh_done(link, dev, ATA_EH_PARK); } } /* the rest */ nr_fails = 0; ata_for_each_link(link, ap, PMP_FIRST) { struct ata_eh_context *ehc = &link->eh_context; if (sata_pmp_attached(ap) && ata_is_host_link(link)) goto config_lpm; /* revalidate existing devices and attach new ones */ rc = ata_eh_revalidate_and_attach(link, &dev); if (rc) goto rest_fail; /* if PMP got attached, return, pmp EH will take care of it */ if (link->device->class == ATA_DEV_PMP) { ehc->i.action = 0; return 0; } /* configure transfer mode if necessary */ if (ehc->i.flags & ATA_EHI_SETMODE) { rc = ata_set_mode(link, &dev); if (rc) goto rest_fail; ehc->i.flags &= ~ATA_EHI_SETMODE; } /* If reset has been issued, clear UA to avoid * disrupting the current users of the device. */ if (ehc->i.flags & ATA_EHI_DID_RESET) { ata_for_each_dev(dev, link, ALL) { if (dev->class != ATA_DEV_ATAPI) continue; rc = atapi_eh_clear_ua(dev); if (rc) goto rest_fail; if (zpodd_dev_enabled(dev)) zpodd_post_poweron(dev); } } /* retry flush if necessary */ ata_for_each_dev(dev, link, ALL) { if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) continue; rc = ata_eh_maybe_retry_flush(dev); if (rc) goto rest_fail; } config_lpm: /* configure link power saving */ if (link->lpm_policy != ap->target_lpm_policy) { rc = ata_eh_set_lpm(link, ap->target_lpm_policy, &dev); if (rc) goto rest_fail; } /* this link is okay now */ ehc->i.flags = 0; continue; rest_fail: nr_fails++; if (dev) ata_eh_handle_dev_fail(dev, rc); if (ap->pflags & ATA_PFLAG_FROZEN) { /* PMP reset requires working host port. * Can't retry if it's frozen. */ if (sata_pmp_attached(ap)) goto out; break; } } if (nr_fails) goto retry; out: if (rc && r_failed_link) *r_failed_link = link; DPRINTK("EXIT, rc=%d\n", rc); return rc; } /** * ata_eh_finish - finish up EH * @ap: host port to finish EH for * * Recovery is complete. Clean up EH states and retry or finish * failed qcs. * * LOCKING: * None. */ void ata_eh_finish(struct ata_port *ap) { int tag; /* retry or finish qcs */ for (tag = 0; tag < ATA_MAX_QUEUE; tag++) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (!(qc->flags & ATA_QCFLAG_FAILED)) continue; if (qc->err_mask) { /* FIXME: Once EH migration is complete, * generate sense data in this function, * considering both err_mask and tf. */ if (qc->flags & ATA_QCFLAG_RETRY) ata_eh_qc_retry(qc); else ata_eh_qc_complete(qc); } else { if (qc->flags & ATA_QCFLAG_SENSE_VALID) { ata_eh_qc_complete(qc); } else { /* feed zero TF to sense generation */ memset(&qc->result_tf, 0, sizeof(qc->result_tf)); ata_eh_qc_retry(qc); } } } /* make sure nr_active_links is zero after EH */ WARN_ON(ap->nr_active_links); ap->nr_active_links = 0; } /** * ata_do_eh - do standard error handling * @ap: host port to handle error for * * @prereset: prereset method (can be NULL) * @softreset: softreset method (can be NULL) * @hardreset: hardreset method (can be NULL) * @postreset: postreset method (can be NULL) * * Perform standard error handling sequence. * * LOCKING: * Kernel thread context (may sleep). */ void ata_do_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset) { struct ata_device *dev; int rc; ata_eh_autopsy(ap); ata_eh_report(ap); rc = ata_eh_recover(ap, prereset, softreset, hardreset, postreset, NULL); if (rc) { ata_for_each_dev(dev, &ap->link, ALL) ata_dev_disable(dev); } ata_eh_finish(ap); } /** * ata_std_error_handler - standard error handler * @ap: host port to handle error for * * Standard error handler * * LOCKING: * Kernel thread context (may sleep). */ void ata_std_error_handler(struct ata_port *ap) { struct ata_port_operations *ops = ap->ops; ata_reset_fn_t hardreset = ops->hardreset; /* ignore built-in hardreset if SCR access is not available */ if (hardreset == sata_std_hardreset && !sata_scr_valid(&ap->link)) hardreset = NULL; ata_do_eh(ap, ops->prereset, ops->softreset, hardreset, ops->postreset); } #ifdef CONFIG_PM /** * ata_eh_handle_port_suspend - perform port suspend operation * @ap: port to suspend * * Suspend @ap. * * LOCKING: * Kernel thread context (may sleep). */ static void ata_eh_handle_port_suspend(struct ata_port *ap) { unsigned long flags; int rc = 0; struct ata_device *dev; /* are we suspending? */ spin_lock_irqsave(ap->lock, flags); if (!(ap->pflags & ATA_PFLAG_PM_PENDING) || ap->pm_mesg.event & PM_EVENT_RESUME) { spin_unlock_irqrestore(ap->lock, flags); return; } spin_unlock_irqrestore(ap->lock, flags); WARN_ON(ap->pflags & ATA_PFLAG_SUSPENDED); /* * If we have a ZPODD attached, check its zero * power ready status before the port is frozen. * Only needed for runtime suspend. */ if (PMSG_IS_AUTO(ap->pm_mesg)) { ata_for_each_dev(dev, &ap->link, ENABLED) { if (zpodd_dev_enabled(dev)) zpodd_on_suspend(dev); } } /* tell ACPI we're suspending */ rc = ata_acpi_on_suspend(ap); if (rc) goto out; /* suspend */ ata_eh_freeze_port(ap); if (ap->ops->port_suspend) rc = ap->ops->port_suspend(ap, ap->pm_mesg); ata_acpi_set_state(ap, ap->pm_mesg); out: /* update the flags */ spin_lock_irqsave(ap->lock, flags); ap->pflags &= ~ATA_PFLAG_PM_PENDING; if (rc == 0) ap->pflags |= ATA_PFLAG_SUSPENDED; else if (ap->pflags & ATA_PFLAG_FROZEN) ata_port_schedule_eh(ap); spin_unlock_irqrestore(ap->lock, flags); return; } /** * ata_eh_handle_port_resume - perform port resume operation * @ap: port to resume * * Resume @ap. * * LOCKING: * Kernel thread context (may sleep). */ static void ata_eh_handle_port_resume(struct ata_port *ap) { struct ata_link *link; struct ata_device *dev; unsigned long flags; int rc = 0; /* are we resuming? */ spin_lock_irqsave(ap->lock, flags); if (!(ap->pflags & ATA_PFLAG_PM_PENDING) || !(ap->pm_mesg.event & PM_EVENT_RESUME)) { spin_unlock_irqrestore(ap->lock, flags); return; } spin_unlock_irqrestore(ap->lock, flags); WARN_ON(!(ap->pflags & ATA_PFLAG_SUSPENDED)); /* * Error timestamps are in jiffies which doesn't run while * suspended and PHY events during resume isn't too uncommon. * When the two are combined, it can lead to unnecessary speed * downs if the machine is suspended and resumed repeatedly. * Clear error history. */ ata_for_each_link(link, ap, HOST_FIRST) ata_for_each_dev(dev, link, ALL) ata_ering_clear(&dev->ering); ata_acpi_set_state(ap, ap->pm_mesg); if (ap->ops->port_resume) rc = ap->ops->port_resume(ap); /* tell ACPI that we're resuming */ ata_acpi_on_resume(ap); /* update the flags */ spin_lock_irqsave(ap->lock, flags); ap->pflags &= ~(ATA_PFLAG_PM_PENDING | ATA_PFLAG_SUSPENDED); spin_unlock_irqrestore(ap->lock, flags); } #endif /* CONFIG_PM */