/* TDA10021 - Single Chip Cable Channel Receiver driver module used on the the Siemens DVB-C cards Copyright (C) 1999 Convergence Integrated Media GmbH Copyright (C) 2004 Markus Schulz Support for TDA10021 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "tda10021.h" struct tda10021_state { struct i2c_adapter* i2c; /* configuration settings */ const struct tda10021_config* config; struct dvb_frontend frontend; u8 pwm; u8 reg0; }; #if 0 #define dprintk(x...) printk(x) #else #define dprintk(x...) #endif static int verbose; #define XIN 57840000UL #define DISABLE_INVERSION(reg0) do { reg0 |= 0x20; } while (0) #define ENABLE_INVERSION(reg0) do { reg0 &= ~0x20; } while (0) #define HAS_INVERSION(reg0) (!(reg0 & 0x20)) #define FIN (XIN >> 4) static int tda10021_inittab_size = 0x40; static u8 tda10021_inittab[0x40]= { 0x73, 0x6a, 0x23, 0x0a, 0x02, 0x37, 0x77, 0x1a, 0x37, 0x6a, 0x17, 0x8a, 0x1e, 0x86, 0x43, 0x40, 0xb8, 0x3f, 0xa1, 0x00, 0xcd, 0x01, 0x00, 0xff, 0x11, 0x00, 0x7c, 0x31, 0x30, 0x20, 0x00, 0x00, 0x02, 0x00, 0x00, 0x7d, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x33, 0x11, 0x0d, 0x95, 0x08, 0x58, 0x00, 0x00, 0x80, 0x00, 0x80, 0xff, 0x00, 0x00, 0x04, 0x2d, 0x2f, 0xff, 0x00, 0x00, 0x00, 0x00, }; static int _tda10021_writereg (struct tda10021_state* state, u8 reg, u8 data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int ret; ret = i2c_transfer (state->i2c, &msg, 1); if (ret != 1) printk("DVB: TDA10021(%d): %s, writereg error " "(reg == 0x%02x, val == 0x%02x, ret == %i)\n", state->frontend.dvb->num, __FUNCTION__, reg, data, ret); msleep(10); return (ret != 1) ? -EREMOTEIO : 0; } static u8 tda10021_readreg (struct tda10021_state* state, u8 reg) { u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; int ret; ret = i2c_transfer (state->i2c, msg, 2); if (ret != 2) printk("DVB: TDA10021: %s: readreg error (ret == %i)\n", __FUNCTION__, ret); return b1[0]; } //get access to tuner static int lock_tuner(struct tda10021_state* state) { u8 buf[2] = { 0x0f, tda10021_inittab[0x0f] | 0x80 }; struct i2c_msg msg = {.addr=state->config->demod_address, .flags=0, .buf=buf, .len=2}; if(i2c_transfer(state->i2c, &msg, 1) != 1) { printk("tda10021: lock tuner fails\n"); return -EREMOTEIO; } return 0; } //release access from tuner static int unlock_tuner(struct tda10021_state* state) { u8 buf[2] = { 0x0f, tda10021_inittab[0x0f] & 0x7f }; struct i2c_msg msg_post={.addr=state->config->demod_address, .flags=0, .buf=buf, .len=2}; if(i2c_transfer(state->i2c, &msg_post, 1) != 1) { printk("tda10021: unlock tuner fails\n"); return -EREMOTEIO; } return 0; } static int tda10021_setup_reg0 (struct tda10021_state* state, u8 reg0, fe_spectral_inversion_t inversion) { reg0 |= state->reg0 & 0x63; if (INVERSION_ON == inversion) ENABLE_INVERSION(reg0); else if (INVERSION_OFF == inversion) DISABLE_INVERSION(reg0); _tda10021_writereg (state, 0x00, reg0 & 0xfe); _tda10021_writereg (state, 0x00, reg0 | 0x01); state->reg0 = reg0; return 0; } static int tda10021_set_symbolrate (struct tda10021_state* state, u32 symbolrate) { s32 BDR; s32 BDRI; s16 SFIL=0; u16 NDEC = 0; u32 tmp, ratio; if (symbolrate > XIN/2) symbolrate = XIN/2; if (symbolrate < 500000) symbolrate = 500000; if (symbolrate < XIN/16) NDEC = 1; if (symbolrate < XIN/32) NDEC = 2; if (symbolrate < XIN/64) NDEC = 3; if (symbolrate < (u32)(XIN/12.3)) SFIL = 1; if (symbolrate < (u32)(XIN/16)) SFIL = 0; if (symbolrate < (u32)(XIN/24.6)) SFIL = 1; if (symbolrate < (u32)(XIN/32)) SFIL = 0; if (symbolrate < (u32)(XIN/49.2)) SFIL = 1; if (symbolrate < (u32)(XIN/64)) SFIL = 0; if (symbolrate < (u32)(XIN/98.4)) SFIL = 1; symbolrate <<= NDEC; ratio = (symbolrate << 4) / FIN; tmp = ((symbolrate << 4) % FIN) << 8; ratio = (ratio << 8) + tmp / FIN; tmp = (tmp % FIN) << 8; ratio = (ratio << 8) + (tmp + FIN/2) / FIN; BDR = ratio; BDRI = (((XIN << 5) / symbolrate) + 1) / 2; if (BDRI > 0xFF) BDRI = 0xFF; SFIL = (SFIL << 4) | tda10021_inittab[0x0E]; NDEC = (NDEC << 6) | tda10021_inittab[0x03]; _tda10021_writereg (state, 0x03, NDEC); _tda10021_writereg (state, 0x0a, BDR&0xff); _tda10021_writereg (state, 0x0b, (BDR>> 8)&0xff); _tda10021_writereg (state, 0x0c, (BDR>>16)&0x3f); _tda10021_writereg (state, 0x0d, BDRI); _tda10021_writereg (state, 0x0e, SFIL); return 0; } static int tda10021_init (struct dvb_frontend *fe) { struct tda10021_state* state = fe->demodulator_priv; int i; dprintk("DVB: TDA10021(%d): init chip\n", fe->adapter->num); //_tda10021_writereg (fe, 0, 0); for (i=0; ipwm); //Comment by markus //0x2A[3-0] == PDIV -> P multiplaying factor (P=PDIV+1)(default 0) //0x2A[4] == BYPPLL -> Power down mode (default 1) //0x2A[5] == LCK -> PLL Lock Flag //0x2A[6] == POLAXIN -> Polarity of the input reference clock (default 0) //Activate PLL _tda10021_writereg(state, 0x2a, tda10021_inittab[0x2a] & 0xef); return 0; } static int tda10021_set_parameters (struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct tda10021_state* state = fe->demodulator_priv; //table for QAM4-QAM256 ready QAM4 QAM16 QAM32 QAM64 QAM128 QAM256 //CONF static const u8 reg0x00 [] = { 0x14, 0x00, 0x04, 0x08, 0x0c, 0x10 }; //AGCREF value static const u8 reg0x01 [] = { 0x78, 0x8c, 0x8c, 0x6a, 0x78, 0x5c }; //LTHR value static const u8 reg0x05 [] = { 0x78, 0x87, 0x64, 0x46, 0x36, 0x26 }; //MSETH static const u8 reg0x08 [] = { 0x8c, 0xa2, 0x74, 0x43, 0x34, 0x23 }; //AREF static const u8 reg0x09 [] = { 0x96, 0x91, 0x96, 0x6a, 0x7e, 0x6b }; int qam = p->u.qam.modulation; if (qam < 0 || qam > 5) return -EINVAL; //printk("tda10021: set frequency to %d qam=%d symrate=%d\n", p->frequency,qam,p->u.qam.symbol_rate); if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe, p); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } tda10021_set_symbolrate (state, p->u.qam.symbol_rate); _tda10021_writereg (state, 0x34, state->pwm); _tda10021_writereg (state, 0x01, reg0x01[qam]); _tda10021_writereg (state, 0x05, reg0x05[qam]); _tda10021_writereg (state, 0x08, reg0x08[qam]); _tda10021_writereg (state, 0x09, reg0x09[qam]); tda10021_setup_reg0 (state, reg0x00[qam], p->inversion); return 0; } static int tda10021_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct tda10021_state* state = fe->demodulator_priv; int sync; *status = 0; //0x11[0] == EQALGO -> Equalizer algorithms state //0x11[1] == CARLOCK -> Carrier locked //0x11[2] == FSYNC -> Frame synchronisation //0x11[3] == FEL -> Front End locked //0x11[6] == NODVB -> DVB Mode Information sync = tda10021_readreg (state, 0x11); if (sync & 2) *status |= FE_HAS_SIGNAL|FE_HAS_CARRIER; if (sync & 4) *status |= FE_HAS_SYNC|FE_HAS_VITERBI; if (sync & 8) *status |= FE_HAS_LOCK; return 0; } static int tda10021_read_ber(struct dvb_frontend* fe, u32* ber) { struct tda10021_state* state = fe->demodulator_priv; u32 _ber = tda10021_readreg(state, 0x14) | (tda10021_readreg(state, 0x15) << 8) | ((tda10021_readreg(state, 0x16) & 0x0f) << 16); *ber = 10 * _ber; return 0; } static int tda10021_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct tda10021_state* state = fe->demodulator_priv; u8 gain = tda10021_readreg(state, 0x17); *strength = (gain << 8) | gain; return 0; } static int tda10021_read_snr(struct dvb_frontend* fe, u16* snr) { struct tda10021_state* state = fe->demodulator_priv; u8 quality = ~tda10021_readreg(state, 0x18); *snr = (quality << 8) | quality; return 0; } static int tda10021_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct tda10021_state* state = fe->demodulator_priv; *ucblocks = tda10021_readreg (state, 0x13) & 0x7f; if (*ucblocks == 0x7f) *ucblocks = 0xffffffff; /* reset uncorrected block counter */ _tda10021_writereg (state, 0x10, tda10021_inittab[0x10] & 0xdf); _tda10021_writereg (state, 0x10, tda10021_inittab[0x10]); return 0; } static int tda10021_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct tda10021_state* state = fe->demodulator_priv; int sync; s8 afc = 0; sync = tda10021_readreg(state, 0x11); afc = tda10021_readreg(state, 0x19); if (verbose) { /* AFC only valid when carrier has been recovered */ printk(sync & 2 ? "DVB: TDA10021(%d): AFC (%d) %dHz\n" : "DVB: TDA10021(%d): [AFC (%d) %dHz]\n", state->frontend.dvb->num, afc, -((s32)p->u.qam.symbol_rate * afc) >> 10); } p->inversion = HAS_INVERSION(state->reg0) ? INVERSION_ON : INVERSION_OFF; p->u.qam.modulation = ((state->reg0 >> 2) & 7) + QAM_16; p->u.qam.fec_inner = FEC_NONE; p->frequency = ((p->frequency + 31250) / 62500) * 62500; if (sync & 2) p->frequency -= ((s32)p->u.qam.symbol_rate * afc) >> 10; return 0; } static int tda10021_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct tda10021_state* state = fe->demodulator_priv; if (enable) { lock_tuner(state); } else { unlock_tuner(state); } return 0; } static int tda10021_sleep(struct dvb_frontend* fe) { struct tda10021_state* state = fe->demodulator_priv; _tda10021_writereg (state, 0x1b, 0x02); /* pdown ADC */ _tda10021_writereg (state, 0x00, 0x80); /* standby */ return 0; } static void tda10021_release(struct dvb_frontend* fe) { struct tda10021_state* state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops tda10021_ops; struct dvb_frontend* tda10021_attach(const struct tda10021_config* config, struct i2c_adapter* i2c, u8 pwm) { struct tda10021_state* state = NULL; /* allocate memory for the internal state */ state = kmalloc(sizeof(struct tda10021_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->pwm = pwm; state->reg0 = tda10021_inittab[0]; /* check if the demod is there */ if ((tda10021_readreg(state, 0x1a) & 0xf0) != 0x70) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &tda10021_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops tda10021_ops = { .info = { .name = "Philips TDA10021 DVB-C", .type = FE_QAM, .frequency_stepsize = 62500, .frequency_min = 51000000, .frequency_max = 858000000, .symbol_rate_min = (XIN/2)/64, /* SACLK/64 == (XIN/2)/64 */ .symbol_rate_max = (XIN/2)/4, /* SACLK/4 */ #if 0 .frequency_tolerance = ???, .symbol_rate_tolerance = ???, /* ppm */ /* == 8% (spec p. 5) */ #endif .caps = 0x400 | //FE_CAN_QAM_4 FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO }, .release = tda10021_release, .init = tda10021_init, .sleep = tda10021_sleep, .i2c_gate_ctrl = tda10021_i2c_gate_ctrl, .set_frontend = tda10021_set_parameters, .get_frontend = tda10021_get_frontend, .read_status = tda10021_read_status, .read_ber = tda10021_read_ber, .read_signal_strength = tda10021_read_signal_strength, .read_snr = tda10021_read_snr, .read_ucblocks = tda10021_read_ucblocks, }; module_param(verbose, int, 0644); MODULE_PARM_DESC(verbose, "print AFC offset after tuning for debugging the PWM setting"); MODULE_DESCRIPTION("Philips TDA10021 DVB-C demodulator driver"); MODULE_AUTHOR("Ralph Metzler, Holger Waechtler, Markus Schulz"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(tda10021_attach);