/* * offload engine driver for the Marvell XOR engine * Copyright (C) 2007, 2008, Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/init.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/memory.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/irqdomain.h> #include <linux/cpumask.h> #include <linux/platform_data/dma-mv_xor.h> #include "dmaengine.h" #include "mv_xor.h" enum mv_xor_type { XOR_ORION, XOR_ARMADA_38X, XOR_ARMADA_37XX, }; enum mv_xor_mode { XOR_MODE_IN_REG, XOR_MODE_IN_DESC, }; static void mv_xor_issue_pending(struct dma_chan *chan); #define to_mv_xor_chan(chan) \ container_of(chan, struct mv_xor_chan, dmachan) #define to_mv_xor_slot(tx) \ container_of(tx, struct mv_xor_desc_slot, async_tx) #define mv_chan_to_devp(chan) \ ((chan)->dmadev.dev) static void mv_desc_init(struct mv_xor_desc_slot *desc, dma_addr_t addr, u32 byte_count, enum dma_ctrl_flags flags) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->status = XOR_DESC_DMA_OWNED; hw_desc->phy_next_desc = 0; /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */ hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ? XOR_DESC_EOD_INT_EN : 0; hw_desc->phy_dest_addr = addr; hw_desc->byte_count = byte_count; } static void mv_desc_set_mode(struct mv_xor_desc_slot *desc) { struct mv_xor_desc *hw_desc = desc->hw_desc; switch (desc->type) { case DMA_XOR: case DMA_INTERRUPT: hw_desc->desc_command |= XOR_DESC_OPERATION_XOR; break; case DMA_MEMCPY: hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY; break; default: BUG(); return; } } static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc, u32 next_desc_addr) { struct mv_xor_desc *hw_desc = desc->hw_desc; BUG_ON(hw_desc->phy_next_desc); hw_desc->phy_next_desc = next_desc_addr; } static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc, int index, dma_addr_t addr) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr; if (desc->type == DMA_XOR) hw_desc->desc_command |= (1 << index); } static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan) { return readl_relaxed(XOR_CURR_DESC(chan)); } static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan, u32 next_desc_addr) { writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan)); } static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan) { u32 val = readl_relaxed(XOR_INTR_MASK(chan)); val |= XOR_INTR_MASK_VALUE << (chan->idx * 16); writel_relaxed(val, XOR_INTR_MASK(chan)); } static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan) { u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan)); intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF; return intr_cause; } static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan) { u32 val; val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED; val = ~(val << (chan->idx * 16)); dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val); writel_relaxed(val, XOR_INTR_CAUSE(chan)); } static void mv_chan_clear_err_status(struct mv_xor_chan *chan) { u32 val = 0xFFFF0000 >> (chan->idx * 16); writel_relaxed(val, XOR_INTR_CAUSE(chan)); } static void mv_chan_set_mode(struct mv_xor_chan *chan, u32 op_mode) { u32 config = readl_relaxed(XOR_CONFIG(chan)); config &= ~0x7; config |= op_mode; #if defined(__BIG_ENDIAN) config |= XOR_DESCRIPTOR_SWAP; #else config &= ~XOR_DESCRIPTOR_SWAP; #endif writel_relaxed(config, XOR_CONFIG(chan)); } static void mv_chan_activate(struct mv_xor_chan *chan) { dev_dbg(mv_chan_to_devp(chan), " activate chan.\n"); /* writel ensures all descriptors are flushed before activation */ writel(BIT(0), XOR_ACTIVATION(chan)); } static char mv_chan_is_busy(struct mv_xor_chan *chan) { u32 state = readl_relaxed(XOR_ACTIVATION(chan)); state = (state >> 4) & 0x3; return (state == 1) ? 1 : 0; } /* * mv_chan_start_new_chain - program the engine to operate on new * chain headed by sw_desc * Caller must hold &mv_chan->lock while calling this function */ static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan, struct mv_xor_desc_slot *sw_desc) { dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n", __func__, __LINE__, sw_desc); /* set the hardware chain */ mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys); mv_chan->pending++; mv_xor_issue_pending(&mv_chan->dmachan); } static dma_cookie_t mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc, struct mv_xor_chan *mv_chan, dma_cookie_t cookie) { BUG_ON(desc->async_tx.cookie < 0); if (desc->async_tx.cookie > 0) { cookie = desc->async_tx.cookie; dma_descriptor_unmap(&desc->async_tx); /* call the callback (must not sleep or submit new * operations to this channel) */ dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL); } /* run dependent operations */ dma_run_dependencies(&desc->async_tx); return cookie; } static int mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan) { struct mv_xor_desc_slot *iter, *_iter; dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__); list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, node) { if (async_tx_test_ack(&iter->async_tx)) list_move_tail(&iter->node, &mv_chan->free_slots); } return 0; } static int mv_desc_clean_slot(struct mv_xor_desc_slot *desc, struct mv_xor_chan *mv_chan) { dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n", __func__, __LINE__, desc, desc->async_tx.flags); /* the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->async_tx)) /* move this slot to the completed_slots */ list_move_tail(&desc->node, &mv_chan->completed_slots); else list_move_tail(&desc->node, &mv_chan->free_slots); return 0; } /* This function must be called with the mv_xor_chan spinlock held */ static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan) { struct mv_xor_desc_slot *iter, *_iter; dma_cookie_t cookie = 0; int busy = mv_chan_is_busy(mv_chan); u32 current_desc = mv_chan_get_current_desc(mv_chan); int current_cleaned = 0; struct mv_xor_desc *hw_desc; dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__); dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc); mv_chan_clean_completed_slots(mv_chan); /* free completed slots from the chain starting with * the oldest descriptor */ list_for_each_entry_safe(iter, _iter, &mv_chan->chain, node) { /* clean finished descriptors */ hw_desc = iter->hw_desc; if (hw_desc->status & XOR_DESC_SUCCESS) { cookie = mv_desc_run_tx_complete_actions(iter, mv_chan, cookie); /* done processing desc, clean slot */ mv_desc_clean_slot(iter, mv_chan); /* break if we did cleaned the current */ if (iter->async_tx.phys == current_desc) { current_cleaned = 1; break; } } else { if (iter->async_tx.phys == current_desc) { current_cleaned = 0; break; } } } if ((busy == 0) && !list_empty(&mv_chan->chain)) { if (current_cleaned) { /* * current descriptor cleaned and removed, run * from list head */ iter = list_entry(mv_chan->chain.next, struct mv_xor_desc_slot, node); mv_chan_start_new_chain(mv_chan, iter); } else { if (!list_is_last(&iter->node, &mv_chan->chain)) { /* * descriptors are still waiting after * current, trigger them */ iter = list_entry(iter->node.next, struct mv_xor_desc_slot, node); mv_chan_start_new_chain(mv_chan, iter); } else { /* * some descriptors are still waiting * to be cleaned */ tasklet_schedule(&mv_chan->irq_tasklet); } } } if (cookie > 0) mv_chan->dmachan.completed_cookie = cookie; } static void mv_xor_tasklet(unsigned long data) { struct mv_xor_chan *chan = (struct mv_xor_chan *) data; spin_lock_bh(&chan->lock); mv_chan_slot_cleanup(chan); spin_unlock_bh(&chan->lock); } static struct mv_xor_desc_slot * mv_chan_alloc_slot(struct mv_xor_chan *mv_chan) { struct mv_xor_desc_slot *iter; spin_lock_bh(&mv_chan->lock); if (!list_empty(&mv_chan->free_slots)) { iter = list_first_entry(&mv_chan->free_slots, struct mv_xor_desc_slot, node); list_move_tail(&iter->node, &mv_chan->allocated_slots); spin_unlock_bh(&mv_chan->lock); /* pre-ack descriptor */ async_tx_ack(&iter->async_tx); iter->async_tx.cookie = -EBUSY; return iter; } spin_unlock_bh(&mv_chan->lock); /* try to free some slots if the allocation fails */ tasklet_schedule(&mv_chan->irq_tasklet); return NULL; } /************************ DMA engine API functions ****************************/ static dma_cookie_t mv_xor_tx_submit(struct dma_async_tx_descriptor *tx) { struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx); struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan); struct mv_xor_desc_slot *old_chain_tail; dma_cookie_t cookie; int new_hw_chain = 1; dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p: async_tx %p\n", __func__, sw_desc, &sw_desc->async_tx); spin_lock_bh(&mv_chan->lock); cookie = dma_cookie_assign(tx); if (list_empty(&mv_chan->chain)) list_move_tail(&sw_desc->node, &mv_chan->chain); else { new_hw_chain = 0; old_chain_tail = list_entry(mv_chan->chain.prev, struct mv_xor_desc_slot, node); list_move_tail(&sw_desc->node, &mv_chan->chain); dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n", &old_chain_tail->async_tx.phys); /* fix up the hardware chain */ mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys); /* if the channel is not busy */ if (!mv_chan_is_busy(mv_chan)) { u32 current_desc = mv_chan_get_current_desc(mv_chan); /* * and the curren desc is the end of the chain before * the append, then we need to start the channel */ if (current_desc == old_chain_tail->async_tx.phys) new_hw_chain = 1; } } if (new_hw_chain) mv_chan_start_new_chain(mv_chan, sw_desc); spin_unlock_bh(&mv_chan->lock); return cookie; } /* returns the number of allocated descriptors */ static int mv_xor_alloc_chan_resources(struct dma_chan *chan) { void *virt_desc; dma_addr_t dma_desc; int idx; struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *slot = NULL; int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE; /* Allocate descriptor slots */ idx = mv_chan->slots_allocated; while (idx < num_descs_in_pool) { slot = kzalloc(sizeof(*slot), GFP_KERNEL); if (!slot) { dev_info(mv_chan_to_devp(mv_chan), "channel only initialized %d descriptor slots", idx); break; } virt_desc = mv_chan->dma_desc_pool_virt; slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE; dma_async_tx_descriptor_init(&slot->async_tx, chan); slot->async_tx.tx_submit = mv_xor_tx_submit; INIT_LIST_HEAD(&slot->node); dma_desc = mv_chan->dma_desc_pool; slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE; slot->idx = idx++; spin_lock_bh(&mv_chan->lock); mv_chan->slots_allocated = idx; list_add_tail(&slot->node, &mv_chan->free_slots); spin_unlock_bh(&mv_chan->lock); } dev_dbg(mv_chan_to_devp(mv_chan), "allocated %d descriptor slots\n", mv_chan->slots_allocated); return mv_chan->slots_allocated ? : -ENOMEM; } /* * Check if source or destination is an PCIe/IO address (non-SDRAM) and add * a new MBus window if necessary. Use a cache for these check so that * the MMIO mapped registers don't have to be accessed for this check * to speed up this process. */ static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr) { struct mv_xor_device *xordev = mv_chan->xordev; void __iomem *base = mv_chan->mmr_high_base; u32 win_enable; u32 size; u8 target, attr; int ret; int i; /* Nothing needs to get done for the Armada 3700 */ if (xordev->xor_type == XOR_ARMADA_37XX) return 0; /* * Loop over the cached windows to check, if the requested area * is already mapped. If this the case, nothing needs to be done * and we can return. */ for (i = 0; i < WINDOW_COUNT; i++) { if (addr >= xordev->win_start[i] && addr <= xordev->win_end[i]) { /* Window is already mapped */ return 0; } } /* * The window is not mapped, so we need to create the new mapping */ /* If no IO window is found that addr has to be located in SDRAM */ ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr); if (ret < 0) return 0; /* * Mask the base addr 'addr' according to 'size' read back from the * MBus window. Otherwise we might end up with an address located * somewhere in the middle of this area here. */ size -= 1; addr &= ~size; /* * Reading one of both enabled register is enough, as they are always * programmed to the identical values */ win_enable = readl(base + WINDOW_BAR_ENABLE(0)); /* Set 'i' to the first free window to write the new values to */ i = ffs(~win_enable) - 1; if (i >= WINDOW_COUNT) return -ENOMEM; writel((addr & 0xffff0000) | (attr << 8) | target, base + WINDOW_BASE(i)); writel(size & 0xffff0000, base + WINDOW_SIZE(i)); /* Fill the caching variables for later use */ xordev->win_start[i] = addr; xordev->win_end[i] = addr + size; win_enable |= (1 << i); win_enable |= 3 << (16 + (2 * i)); writel(win_enable, base + WINDOW_BAR_ENABLE(0)); writel(win_enable, base + WINDOW_BAR_ENABLE(1)); return 0; } static struct dma_async_tx_descriptor * mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *sw_desc; int ret; if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) return NULL; BUG_ON(len > MV_XOR_MAX_BYTE_COUNT); dev_dbg(mv_chan_to_devp(mv_chan), "%s src_cnt: %d len: %zu dest %pad flags: %ld\n", __func__, src_cnt, len, &dest, flags); /* Check if a new window needs to get added for 'dest' */ ret = mv_xor_add_io_win(mv_chan, dest); if (ret) return NULL; sw_desc = mv_chan_alloc_slot(mv_chan); if (sw_desc) { sw_desc->type = DMA_XOR; sw_desc->async_tx.flags = flags; mv_desc_init(sw_desc, dest, len, flags); if (mv_chan->op_in_desc == XOR_MODE_IN_DESC) mv_desc_set_mode(sw_desc); while (src_cnt--) { /* Check if a new window needs to get added for 'src' */ ret = mv_xor_add_io_win(mv_chan, src[src_cnt]); if (ret) return NULL; mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]); } } dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p async_tx %p \n", __func__, sw_desc, &sw_desc->async_tx); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { /* * A MEMCPY operation is identical to an XOR operation with only * a single source address. */ return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags); } static struct dma_async_tx_descriptor * mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); dma_addr_t src, dest; size_t len; src = mv_chan->dummy_src_addr; dest = mv_chan->dummy_dst_addr; len = MV_XOR_MIN_BYTE_COUNT; /* * We implement the DMA_INTERRUPT operation as a minimum sized * XOR operation with a single dummy source address. */ return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags); } static void mv_xor_free_chan_resources(struct dma_chan *chan) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *iter, *_iter; int in_use_descs = 0; spin_lock_bh(&mv_chan->lock); mv_chan_slot_cleanup(mv_chan); list_for_each_entry_safe(iter, _iter, &mv_chan->chain, node) { in_use_descs++; list_move_tail(&iter->node, &mv_chan->free_slots); } list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, node) { in_use_descs++; list_move_tail(&iter->node, &mv_chan->free_slots); } list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots, node) { in_use_descs++; list_move_tail(&iter->node, &mv_chan->free_slots); } list_for_each_entry_safe_reverse( iter, _iter, &mv_chan->free_slots, node) { list_del(&iter->node); kfree(iter); mv_chan->slots_allocated--; } dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n", __func__, mv_chan->slots_allocated); spin_unlock_bh(&mv_chan->lock); if (in_use_descs) dev_err(mv_chan_to_devp(mv_chan), "freeing %d in use descriptors!\n", in_use_descs); } /** * mv_xor_status - poll the status of an XOR transaction * @chan: XOR channel handle * @cookie: XOR transaction identifier * @txstate: XOR transactions state holder (or NULL) */ static enum dma_status mv_xor_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); enum dma_status ret; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; spin_lock_bh(&mv_chan->lock); mv_chan_slot_cleanup(mv_chan); spin_unlock_bh(&mv_chan->lock); return dma_cookie_status(chan, cookie, txstate); } static void mv_chan_dump_regs(struct mv_xor_chan *chan) { u32 val; val = readl_relaxed(XOR_CONFIG(chan)); dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val); val = readl_relaxed(XOR_ACTIVATION(chan)); dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val); val = readl_relaxed(XOR_INTR_CAUSE(chan)); dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val); val = readl_relaxed(XOR_INTR_MASK(chan)); dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val); val = readl_relaxed(XOR_ERROR_CAUSE(chan)); dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val); val = readl_relaxed(XOR_ERROR_ADDR(chan)); dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val); } static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan, u32 intr_cause) { if (intr_cause & XOR_INT_ERR_DECODE) { dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n"); return; } dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n", chan->idx, intr_cause); mv_chan_dump_regs(chan); WARN_ON(1); } static irqreturn_t mv_xor_interrupt_handler(int irq, void *data) { struct mv_xor_chan *chan = data; u32 intr_cause = mv_chan_get_intr_cause(chan); dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause); if (intr_cause & XOR_INTR_ERRORS) mv_chan_err_interrupt_handler(chan, intr_cause); tasklet_schedule(&chan->irq_tasklet); mv_chan_clear_eoc_cause(chan); return IRQ_HANDLED; } static void mv_xor_issue_pending(struct dma_chan *chan) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); if (mv_chan->pending >= MV_XOR_THRESHOLD) { mv_chan->pending = 0; mv_chan_activate(mv_chan); } } /* * Perform a transaction to verify the HW works. */ static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan) { int i, ret; void *src, *dest; dma_addr_t src_dma, dest_dma; struct dma_chan *dma_chan; dma_cookie_t cookie; struct dma_async_tx_descriptor *tx; struct dmaengine_unmap_data *unmap; int err = 0; src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL); if (!src) return -ENOMEM; dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL); if (!dest) { kfree(src); return -ENOMEM; } /* Fill in src buffer */ for (i = 0; i < PAGE_SIZE; i++) ((u8 *) src)[i] = (u8)i; dma_chan = &mv_chan->dmachan; if (mv_xor_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL); if (!unmap) { err = -ENOMEM; goto free_resources; } src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src), (size_t)src & ~PAGE_MASK, PAGE_SIZE, DMA_TO_DEVICE); unmap->addr[0] = src_dma; ret = dma_mapping_error(dma_chan->device->dev, src_dma); if (ret) { err = -ENOMEM; goto free_resources; } unmap->to_cnt = 1; dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest), (size_t)dest & ~PAGE_MASK, PAGE_SIZE, DMA_FROM_DEVICE); unmap->addr[1] = dest_dma; ret = dma_mapping_error(dma_chan->device->dev, dest_dma); if (ret) { err = -ENOMEM; goto free_resources; } unmap->from_cnt = 1; unmap->len = PAGE_SIZE; tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma, PAGE_SIZE, 0); if (!tx) { dev_err(dma_chan->device->dev, "Self-test cannot prepare operation, disabling\n"); err = -ENODEV; goto free_resources; } cookie = mv_xor_tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(dma_chan->device->dev, "Self-test submit error, disabling\n"); err = -ENODEV; goto free_resources; } mv_xor_issue_pending(dma_chan); async_tx_ack(tx); msleep(1); if (mv_xor_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dma_chan->device->dev, "Self-test copy timed out, disabling\n"); err = -ENODEV; goto free_resources; } dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); if (memcmp(src, dest, PAGE_SIZE)) { dev_err(dma_chan->device->dev, "Self-test copy failed compare, disabling\n"); err = -ENODEV; goto free_resources; } free_resources: dmaengine_unmap_put(unmap); mv_xor_free_chan_resources(dma_chan); out: kfree(src); kfree(dest); return err; } #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */ static int mv_chan_xor_self_test(struct mv_xor_chan *mv_chan) { int i, src_idx, ret; struct page *dest; struct page *xor_srcs[MV_XOR_NUM_SRC_TEST]; dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST]; dma_addr_t dest_dma; struct dma_async_tx_descriptor *tx; struct dmaengine_unmap_data *unmap; struct dma_chan *dma_chan; dma_cookie_t cookie; u8 cmp_byte = 0; u32 cmp_word; int err = 0; int src_count = MV_XOR_NUM_SRC_TEST; for (src_idx = 0; src_idx < src_count; src_idx++) { xor_srcs[src_idx] = alloc_page(GFP_KERNEL); if (!xor_srcs[src_idx]) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } } dest = alloc_page(GFP_KERNEL); if (!dest) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } /* Fill in src buffers */ for (src_idx = 0; src_idx < src_count; src_idx++) { u8 *ptr = page_address(xor_srcs[src_idx]); for (i = 0; i < PAGE_SIZE; i++) ptr[i] = (1 << src_idx); } for (src_idx = 0; src_idx < src_count; src_idx++) cmp_byte ^= (u8) (1 << src_idx); cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | (cmp_byte << 8) | cmp_byte; memset(page_address(dest), 0, PAGE_SIZE); dma_chan = &mv_chan->dmachan; if (mv_xor_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1, GFP_KERNEL); if (!unmap) { err = -ENOMEM; goto free_resources; } /* test xor */ for (i = 0; i < src_count; i++) { unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); dma_srcs[i] = unmap->addr[i]; ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]); if (ret) { err = -ENOMEM; goto free_resources; } unmap->to_cnt++; } unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); dest_dma = unmap->addr[src_count]; ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]); if (ret) { err = -ENOMEM; goto free_resources; } unmap->from_cnt = 1; unmap->len = PAGE_SIZE; tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs, src_count, PAGE_SIZE, 0); if (!tx) { dev_err(dma_chan->device->dev, "Self-test cannot prepare operation, disabling\n"); err = -ENODEV; goto free_resources; } cookie = mv_xor_tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(dma_chan->device->dev, "Self-test submit error, disabling\n"); err = -ENODEV; goto free_resources; } mv_xor_issue_pending(dma_chan); async_tx_ack(tx); msleep(8); if (mv_xor_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dma_chan->device->dev, "Self-test xor timed out, disabling\n"); err = -ENODEV; goto free_resources; } dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { u32 *ptr = page_address(dest); if (ptr[i] != cmp_word) { dev_err(dma_chan->device->dev, "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n", i, ptr[i], cmp_word); err = -ENODEV; goto free_resources; } } free_resources: dmaengine_unmap_put(unmap); mv_xor_free_chan_resources(dma_chan); out: src_idx = src_count; while (src_idx--) __free_page(xor_srcs[src_idx]); __free_page(dest); return err; } static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan) { struct dma_chan *chan, *_chan; struct device *dev = mv_chan->dmadev.dev; dma_async_device_unregister(&mv_chan->dmadev); dma_free_coherent(dev, MV_XOR_POOL_SIZE, mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool); dma_unmap_single(dev, mv_chan->dummy_src_addr, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE); dma_unmap_single(dev, mv_chan->dummy_dst_addr, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE); list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels, device_node) { list_del(&chan->device_node); } free_irq(mv_chan->irq, mv_chan); return 0; } static struct mv_xor_chan * mv_xor_channel_add(struct mv_xor_device *xordev, struct platform_device *pdev, int idx, dma_cap_mask_t cap_mask, int irq) { int ret = 0; struct mv_xor_chan *mv_chan; struct dma_device *dma_dev; mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL); if (!mv_chan) return ERR_PTR(-ENOMEM); mv_chan->idx = idx; mv_chan->irq = irq; if (xordev->xor_type == XOR_ORION) mv_chan->op_in_desc = XOR_MODE_IN_REG; else mv_chan->op_in_desc = XOR_MODE_IN_DESC; dma_dev = &mv_chan->dmadev; mv_chan->xordev = xordev; /* * These source and destination dummy buffers are used to implement * a DMA_INTERRUPT operation as a minimum-sized XOR operation. * Hence, we only need to map the buffers at initialization-time. */ mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev, mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE); mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev, mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE); /* allocate coherent memory for hardware descriptors * note: writecombine gives slightly better performance, but * requires that we explicitly flush the writes */ mv_chan->dma_desc_pool_virt = dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool, GFP_KERNEL); if (!mv_chan->dma_desc_pool_virt) return ERR_PTR(-ENOMEM); /* discover transaction capabilites from the platform data */ dma_dev->cap_mask = cap_mask; INIT_LIST_HEAD(&dma_dev->channels); /* set base routines */ dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources; dma_dev->device_free_chan_resources = mv_xor_free_chan_resources; dma_dev->device_tx_status = mv_xor_status; dma_dev->device_issue_pending = mv_xor_issue_pending; dma_dev->dev = &pdev->dev; /* set prep routines based on capability */ if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask)) dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt; if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy; if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { dma_dev->max_xor = 8; dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor; } mv_chan->mmr_base = xordev->xor_base; mv_chan->mmr_high_base = xordev->xor_high_base; tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long) mv_chan); /* clear errors before enabling interrupts */ mv_chan_clear_err_status(mv_chan); ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler, 0, dev_name(&pdev->dev), mv_chan); if (ret) goto err_free_dma; mv_chan_unmask_interrupts(mv_chan); if (mv_chan->op_in_desc == XOR_MODE_IN_DESC) mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC); else mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR); spin_lock_init(&mv_chan->lock); INIT_LIST_HEAD(&mv_chan->chain); INIT_LIST_HEAD(&mv_chan->completed_slots); INIT_LIST_HEAD(&mv_chan->free_slots); INIT_LIST_HEAD(&mv_chan->allocated_slots); mv_chan->dmachan.device = dma_dev; dma_cookie_init(&mv_chan->dmachan); list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels); if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { ret = mv_chan_memcpy_self_test(mv_chan); dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret); if (ret) goto err_free_irq; } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { ret = mv_chan_xor_self_test(mv_chan); dev_dbg(&pdev->dev, "xor self test returned %d\n", ret); if (ret) goto err_free_irq; } dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n", mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode", dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "", dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); dma_async_device_register(dma_dev); return mv_chan; err_free_irq: free_irq(mv_chan->irq, mv_chan); err_free_dma: dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE, mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool); return ERR_PTR(ret); } static void mv_xor_conf_mbus_windows(struct mv_xor_device *xordev, const struct mbus_dram_target_info *dram) { void __iomem *base = xordev->xor_high_base; u32 win_enable = 0; int i; for (i = 0; i < 8; i++) { writel(0, base + WINDOW_BASE(i)); writel(0, base + WINDOW_SIZE(i)); if (i < 4) writel(0, base + WINDOW_REMAP_HIGH(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; writel((cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id, base + WINDOW_BASE(i)); writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i)); /* Fill the caching variables for later use */ xordev->win_start[i] = cs->base; xordev->win_end[i] = cs->base + cs->size - 1; win_enable |= (1 << i); win_enable |= 3 << (16 + (2 * i)); } writel(win_enable, base + WINDOW_BAR_ENABLE(0)); writel(win_enable, base + WINDOW_BAR_ENABLE(1)); writel(0, base + WINDOW_OVERRIDE_CTRL(0)); writel(0, base + WINDOW_OVERRIDE_CTRL(1)); } static void mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev) { void __iomem *base = xordev->xor_high_base; u32 win_enable = 0; int i; for (i = 0; i < 8; i++) { writel(0, base + WINDOW_BASE(i)); writel(0, base + WINDOW_SIZE(i)); if (i < 4) writel(0, base + WINDOW_REMAP_HIGH(i)); } /* * For Armada3700 open default 4GB Mbus window. The dram * related configuration are done at AXIS level. */ writel(0xffff0000, base + WINDOW_SIZE(0)); win_enable |= 1; win_enable |= 3 << 16; writel(win_enable, base + WINDOW_BAR_ENABLE(0)); writel(win_enable, base + WINDOW_BAR_ENABLE(1)); writel(0, base + WINDOW_OVERRIDE_CTRL(0)); writel(0, base + WINDOW_OVERRIDE_CTRL(1)); } /* * Since this XOR driver is basically used only for RAID5, we don't * need to care about synchronizing ->suspend with DMA activity, * because the DMA engine will naturally be quiet due to the block * devices being suspended. */ static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state) { struct mv_xor_device *xordev = platform_get_drvdata(pdev); int i; for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) { struct mv_xor_chan *mv_chan = xordev->channels[i]; if (!mv_chan) continue; mv_chan->saved_config_reg = readl_relaxed(XOR_CONFIG(mv_chan)); mv_chan->saved_int_mask_reg = readl_relaxed(XOR_INTR_MASK(mv_chan)); } return 0; } static int mv_xor_resume(struct platform_device *dev) { struct mv_xor_device *xordev = platform_get_drvdata(dev); const struct mbus_dram_target_info *dram; int i; for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) { struct mv_xor_chan *mv_chan = xordev->channels[i]; if (!mv_chan) continue; writel_relaxed(mv_chan->saved_config_reg, XOR_CONFIG(mv_chan)); writel_relaxed(mv_chan->saved_int_mask_reg, XOR_INTR_MASK(mv_chan)); } if (xordev->xor_type == XOR_ARMADA_37XX) { mv_xor_conf_mbus_windows_a3700(xordev); return 0; } dram = mv_mbus_dram_info(); if (dram) mv_xor_conf_mbus_windows(xordev, dram); return 0; } static const struct of_device_id mv_xor_dt_ids[] = { { .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION }, { .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X }, { .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX }, {}, }; static unsigned int mv_xor_engine_count; static int mv_xor_probe(struct platform_device *pdev) { const struct mbus_dram_target_info *dram; struct mv_xor_device *xordev; struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev); struct resource *res; unsigned int max_engines, max_channels; int i, ret; dev_notice(&pdev->dev, "Marvell shared XOR driver\n"); xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL); if (!xordev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; xordev->xor_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!xordev->xor_base) return -EBUSY; res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) return -ENODEV; xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!xordev->xor_high_base) return -EBUSY; platform_set_drvdata(pdev, xordev); /* * We need to know which type of XOR device we use before * setting up. In non-dt case it can only be the legacy one. */ xordev->xor_type = XOR_ORION; if (pdev->dev.of_node) { const struct of_device_id *of_id = of_match_device(mv_xor_dt_ids, &pdev->dev); xordev->xor_type = (uintptr_t)of_id->data; } /* * (Re-)program MBUS remapping windows if we are asked to. */ if (xordev->xor_type == XOR_ARMADA_37XX) { mv_xor_conf_mbus_windows_a3700(xordev); } else { dram = mv_mbus_dram_info(); if (dram) mv_xor_conf_mbus_windows(xordev, dram); } /* Not all platforms can gate the clock, so it is not * an error if the clock does not exists. */ xordev->clk = clk_get(&pdev->dev, NULL); if (!IS_ERR(xordev->clk)) clk_prepare_enable(xordev->clk); /* * We don't want to have more than one channel per CPU in * order for async_tx to perform well. So we limit the number * of engines and channels so that we take into account this * constraint. Note that we also want to use channels from * separate engines when possible. For dual-CPU Armada 3700 * SoC with single XOR engine allow using its both channels. */ max_engines = num_present_cpus(); if (xordev->xor_type == XOR_ARMADA_37XX) max_channels = num_present_cpus(); else max_channels = min_t(unsigned int, MV_XOR_MAX_CHANNELS, DIV_ROUND_UP(num_present_cpus(), 2)); if (mv_xor_engine_count >= max_engines) return 0; if (pdev->dev.of_node) { struct device_node *np; int i = 0; for_each_child_of_node(pdev->dev.of_node, np) { struct mv_xor_chan *chan; dma_cap_mask_t cap_mask; int irq; if (i >= max_channels) continue; dma_cap_zero(cap_mask); dma_cap_set(DMA_MEMCPY, cap_mask); dma_cap_set(DMA_XOR, cap_mask); dma_cap_set(DMA_INTERRUPT, cap_mask); irq = irq_of_parse_and_map(np, 0); if (!irq) { ret = -ENODEV; goto err_channel_add; } chan = mv_xor_channel_add(xordev, pdev, i, cap_mask, irq); if (IS_ERR(chan)) { ret = PTR_ERR(chan); irq_dispose_mapping(irq); goto err_channel_add; } xordev->channels[i] = chan; i++; } } else if (pdata && pdata->channels) { for (i = 0; i < max_channels; i++) { struct mv_xor_channel_data *cd; struct mv_xor_chan *chan; int irq; cd = &pdata->channels[i]; if (!cd) { ret = -ENODEV; goto err_channel_add; } irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err_channel_add; } chan = mv_xor_channel_add(xordev, pdev, i, cd->cap_mask, irq); if (IS_ERR(chan)) { ret = PTR_ERR(chan); goto err_channel_add; } xordev->channels[i] = chan; } } return 0; err_channel_add: for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) if (xordev->channels[i]) { mv_xor_channel_remove(xordev->channels[i]); if (pdev->dev.of_node) irq_dispose_mapping(xordev->channels[i]->irq); } if (!IS_ERR(xordev->clk)) { clk_disable_unprepare(xordev->clk); clk_put(xordev->clk); } return ret; } static struct platform_driver mv_xor_driver = { .probe = mv_xor_probe, .suspend = mv_xor_suspend, .resume = mv_xor_resume, .driver = { .name = MV_XOR_NAME, .of_match_table = of_match_ptr(mv_xor_dt_ids), }, }; static int __init mv_xor_init(void) { return platform_driver_register(&mv_xor_driver); } device_initcall(mv_xor_init); /* MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>"); MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine"); MODULE_LICENSE("GPL"); */