/* * core.h - DesignWare HS OTG Controller common declarations * * Copyright (C) 2004-2013 Synopsys, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __DWC2_CORE_H__ #define __DWC2_CORE_H__ #include #include #include #include #include #include "hw.h" /* * Suggested defines for tracers: * - no_printk: Disable tracing * - pr_info: Print this info to the console * - trace_printk: Print this info to trace buffer (good for verbose logging) */ #define DWC2_TRACE_SCHEDULER no_printk #define DWC2_TRACE_SCHEDULER_VB no_printk /* Detailed scheduler tracing, but won't overwhelm console */ #define dwc2_sch_dbg(hsotg, fmt, ...) \ DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \ dev_name(hsotg->dev), ##__VA_ARGS__) /* Verbose scheduler tracing */ #define dwc2_sch_vdbg(hsotg, fmt, ...) \ DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \ dev_name(hsotg->dev), ##__VA_ARGS__) #ifdef CONFIG_MIPS /* * There are some MIPS machines that can run in either big-endian * or little-endian mode and that use the dwc2 register without * a byteswap in both ways. * Unlike other architectures, MIPS apparently does not require a * barrier before the __raw_writel() to synchronize with DMA but does * require the barrier after the __raw_writel() to serialize a set of * writes. This set of operations was added specifically for MIPS and * should only be used there. */ static inline u32 dwc2_readl(const void __iomem *addr) { u32 value = __raw_readl(addr); /* In order to preserve endianness __raw_* operation is used. Therefore * a barrier is needed to ensure IO access is not re-ordered across * reads or writes */ mb(); return value; } static inline void dwc2_writel(u32 value, void __iomem *addr) { __raw_writel(value, addr); /* * In order to preserve endianness __raw_* operation is used. Therefore * a barrier is needed to ensure IO access is not re-ordered across * reads or writes */ mb(); #ifdef DWC2_LOG_WRITES pr_info("INFO:: wrote %08x to %p\n", value, addr); #endif } #else /* Normal architectures just use readl/write */ static inline u32 dwc2_readl(const void __iomem *addr) { return readl(addr); } static inline void dwc2_writel(u32 value, void __iomem *addr) { writel(value, addr); #ifdef DWC2_LOG_WRITES pr_info("info:: wrote %08x to %p\n", value, addr); #endif } #endif /* Maximum number of Endpoints/HostChannels */ #define MAX_EPS_CHANNELS 16 /* dwc2-hsotg declarations */ static const char * const dwc2_hsotg_supply_names[] = { "vusb_d", /* digital USB supply, 1.2V */ "vusb_a", /* analog USB supply, 1.1V */ }; #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names) /* * EP0_MPS_LIMIT * * Unfortunately there seems to be a limit of the amount of data that can * be transferred by IN transactions on EP0. This is either 127 bytes or 3 * packets (which practically means 1 packet and 63 bytes of data) when the * MPS is set to 64. * * This means if we are wanting to move >127 bytes of data, we need to * split the transactions up, but just doing one packet at a time does * not work (this may be an implicit DATA0 PID on first packet of the * transaction) and doing 2 packets is outside the controller's limits. * * If we try to lower the MPS size for EP0, then no transfers work properly * for EP0, and the system will fail basic enumeration. As no cause for this * has currently been found, we cannot support any large IN transfers for * EP0. */ #define EP0_MPS_LIMIT 64 struct dwc2_hsotg; struct dwc2_hsotg_req; /** * struct dwc2_hsotg_ep - driver endpoint definition. * @ep: The gadget layer representation of the endpoint. * @name: The driver generated name for the endpoint. * @queue: Queue of requests for this endpoint. * @parent: Reference back to the parent device structure. * @req: The current request that the endpoint is processing. This is * used to indicate an request has been loaded onto the endpoint * and has yet to be completed (maybe due to data move, or simply * awaiting an ack from the core all the data has been completed). * @debugfs: File entry for debugfs file for this endpoint. * @lock: State lock to protect contents of endpoint. * @dir_in: Set to true if this endpoint is of the IN direction, which * means that it is sending data to the Host. * @index: The index for the endpoint registers. * @mc: Multi Count - number of transactions per microframe * @interval - Interval for periodic endpoints, in frames or microframes. * @name: The name array passed to the USB core. * @halted: Set if the endpoint has been halted. * @periodic: Set if this is a periodic ep, such as Interrupt * @isochronous: Set if this is a isochronous ep * @send_zlp: Set if we need to send a zero-length packet. * @desc_list_dma: The DMA address of descriptor chain currently in use. * @desc_list: Pointer to descriptor DMA chain head currently in use. * @desc_count: Count of entries within the DMA descriptor chain of EP. * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1. * @next_desc: index of next free descriptor in the ISOC chain under SW control. * @total_data: The total number of data bytes done. * @fifo_size: The size of the FIFO (for periodic IN endpoints) * @fifo_load: The amount of data loaded into the FIFO (periodic IN) * @last_load: The offset of data for the last start of request. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN * @target_frame: Targeted frame num to setup next ISOC transfer * @frame_overrun: Indicates SOF number overrun in DSTS * * This is the driver's state for each registered enpoint, allowing it * to keep track of transactions that need doing. Each endpoint has a * lock to protect the state, to try and avoid using an overall lock * for the host controller as much as possible. * * For periodic IN endpoints, we have fifo_size and fifo_load to try * and keep track of the amount of data in the periodic FIFO for each * of these as we don't have a status register that tells us how much * is in each of them. (note, this may actually be useless information * as in shared-fifo mode periodic in acts like a single-frame packet * buffer than a fifo) */ struct dwc2_hsotg_ep { struct usb_ep ep; struct list_head queue; struct dwc2_hsotg *parent; struct dwc2_hsotg_req *req; struct dentry *debugfs; unsigned long total_data; unsigned int size_loaded; unsigned int last_load; unsigned int fifo_load; unsigned short fifo_size; unsigned short fifo_index; unsigned char dir_in; unsigned char index; unsigned char mc; unsigned char interval; unsigned int halted:1; unsigned int periodic:1; unsigned int isochronous:1; unsigned int send_zlp:1; unsigned int target_frame; #define TARGET_FRAME_INITIAL 0xFFFFFFFF bool frame_overrun; dma_addr_t desc_list_dma; struct dwc2_dma_desc *desc_list; u8 desc_count; unsigned char isoc_chain_num; unsigned int next_desc; char name[10]; }; /** * struct dwc2_hsotg_req - data transfer request * @req: The USB gadget request * @queue: The list of requests for the endpoint this is queued for. * @saved_req_buf: variable to save req.buf when bounce buffers are used. */ struct dwc2_hsotg_req { struct usb_request req; struct list_head queue; void *saved_req_buf; }; #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) #define call_gadget(_hs, _entry) \ do { \ if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ (_hs)->driver && (_hs)->driver->_entry) { \ spin_unlock(&_hs->lock); \ (_hs)->driver->_entry(&(_hs)->gadget); \ spin_lock(&_hs->lock); \ } \ } while (0) #else #define call_gadget(_hs, _entry) do {} while (0) #endif struct dwc2_hsotg; struct dwc2_host_chan; /* Device States */ enum dwc2_lx_state { DWC2_L0, /* On state */ DWC2_L1, /* LPM sleep state */ DWC2_L2, /* USB suspend state */ DWC2_L3, /* Off state */ }; /* * Gadget periodic tx fifo sizes as used by legacy driver * EP0 is not included */ #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \ 768, 0, 0, 0, 0, 0, 0, 0} /* Gadget ep0 states */ enum dwc2_ep0_state { DWC2_EP0_SETUP, DWC2_EP0_DATA_IN, DWC2_EP0_DATA_OUT, DWC2_EP0_STATUS_IN, DWC2_EP0_STATUS_OUT, }; /** * struct dwc2_core_params - Parameters for configuring the core * * @otg_cap: Specifies the OTG capabilities. * 0 - HNP and SRP capable * 1 - SRP Only capable * 2 - No HNP/SRP capable (always available) * Defaults to best available option (0, 1, then 2) * @host_dma: Specifies whether to use slave or DMA mode for accessing * the data FIFOs. The driver will automatically detect the * value for this parameter if none is specified. * 0 - Slave (always available) * 1 - DMA (default, if available) * @dma_desc_enable: When DMA mode is enabled, specifies whether to use * address DMA mode or descriptor DMA mode for accessing * the data FIFOs. The driver will automatically detect the * value for this if none is specified. * 0 - Address DMA * 1 - Descriptor DMA (default, if available) * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use * address DMA mode or descriptor DMA mode for accessing * the data FIFOs in Full Speed mode only. The driver * will automatically detect the value for this if none is * specified. * 0 - Address DMA * 1 - Descriptor DMA in FS (default, if available) * @speed: Specifies the maximum speed of operation in host and * device mode. The actual speed depends on the speed of * the attached device and the value of phy_type. * 0 - High Speed * (default when phy_type is UTMI+ or ULPI) * 1 - Full Speed * (default when phy_type is Full Speed) * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters * 1 - Allow dynamic FIFO sizing (default, if available) * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs * are enabled for non-periodic IN endpoints in device * mode. * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when * dynamic FIFO sizing is enabled * 16 to 32768 * Actual maximum value is autodetected and also * the default. * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO * in host mode when dynamic FIFO sizing is enabled * 16 to 32768 * Actual maximum value is autodetected and also * the default. * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in * host mode when dynamic FIFO sizing is enabled * 16 to 32768 * Actual maximum value is autodetected and also * the default. * @max_transfer_size: The maximum transfer size supported, in bytes * 2047 to 65,535 * Actual maximum value is autodetected and also * the default. * @max_packet_count: The maximum number of packets in a transfer * 15 to 511 * Actual maximum value is autodetected and also * the default. * @host_channels: The number of host channel registers to use * 1 to 16 * Actual maximum value is autodetected and also * the default. * @phy_type: Specifies the type of PHY interface to use. By default, * the driver will automatically detect the phy_type. * 0 - Full Speed Phy * 1 - UTMI+ Phy * 2 - ULPI Phy * Defaults to best available option (2, 1, then 0) * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter * is applicable for a phy_type of UTMI+ or ULPI. (For a * ULPI phy_type, this parameter indicates the data width * between the MAC and the ULPI Wrapper.) Also, this * parameter is applicable only if the OTG_HSPHY_WIDTH cC * parameter was set to "8 and 16 bits", meaning that the * core has been configured to work at either data path * width. * 8 or 16 (default 16 if available) * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single * data rate. This parameter is only applicable if phy_type * is ULPI. * 0 - single data rate ULPI interface with 8 bit wide * data bus (default) * 1 - double data rate ULPI interface with 4 bit wide * data bus * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or * external supply to drive the VBus * 0 - Internal supply (default) * 1 - External supply * @i2c_enable: Specifies whether to use the I2Cinterface for a full * speed PHY. This parameter is only applicable if phy_type * is FS. * 0 - No (default) * 1 - Yes * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only * 0 - No (default) * 1 - Yes * @host_support_fs_ls_low_power: Specifies whether low power mode is supported * when attached to a Full Speed or Low Speed device in * host mode. * 0 - Don't support low power mode (default) * 1 - Support low power mode * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode * when connected to a Low Speed device in host * mode. This parameter is applicable only if * host_support_fs_ls_low_power is enabled. * 0 - 48 MHz * (default when phy_type is UTMI+ or ULPI) * 1 - 6 MHz * (default when phy_type is Full Speed) * @ts_dline: Enable Term Select Dline pulsing * 0 - No (default) * 1 - Yes * @reload_ctl: Allow dynamic reloading of HFIR register during runtime * 0 - No (default for core < 2.92a) * 1 - Yes (default for core >= 2.92a) * @ahbcfg: This field allows the default value of the GAHBCFG * register to be overridden * -1 - GAHBCFG value will be set to 0x06 * (INCR4, default) * all others - GAHBCFG value will be overridden with * this value * Not all bits can be controlled like this, the * bits defined by GAHBCFG_CTRL_MASK are controlled * by the driver and are ignored in this * configuration value. * @uframe_sched: True to enable the microframe scheduler * @external_id_pin_ctl: Specifies whether ID pin is handled externally. * Disable CONIDSTSCHNG controller interrupt in such * case. * 0 - No (default) * 1 - Yes * @hibernation: Specifies whether the controller support hibernation. * If hibernation is enabled, the controller will enter * hibernation in both peripheral and host mode when * needed. * 0 - No (default) * 1 - Yes * @g_dma: Enables gadget dma usage (default: autodetect). * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect). * @g_rx_fifo_size: The periodic rx fifo size for the device, in * DWORDS from 16-32768 (default: 2048 if * possible, otherwise autodetect). * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in * DWORDS from 16-32768 (default: 1024 if * possible, otherwise autodetect). * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo * mode. Each value corresponds to one EP * starting from EP1 (max 15 values). Sizes are * in DWORDS with possible values from from * 16-32768 (default: 256, 256, 256, 256, 768, * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0). * * The following parameters may be specified when starting the module. These * parameters define how the DWC_otg controller should be configured. A * value of -1 (or any other out of range value) for any parameter means * to read the value from hardware (if possible) or use the builtin * default described above. */ struct dwc2_core_params { int otg_cap; #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 int dma_desc_enable; int dma_desc_fs_enable; int speed; #define DWC2_SPEED_PARAM_HIGH 0 #define DWC2_SPEED_PARAM_FULL 1 #define DWC2_SPEED_PARAM_LOW 2 int enable_dynamic_fifo; int en_multiple_tx_fifo; int host_rx_fifo_size; int host_nperio_tx_fifo_size; int host_perio_tx_fifo_size; int max_transfer_size; int max_packet_count; int host_channels; int phy_type; #define DWC2_PHY_TYPE_PARAM_FS 0 #define DWC2_PHY_TYPE_PARAM_UTMI 1 #define DWC2_PHY_TYPE_PARAM_ULPI 2 int phy_utmi_width; int phy_ulpi_ddr; int phy_ulpi_ext_vbus; #define DWC2_PHY_ULPI_INTERNAL_VBUS 0 #define DWC2_PHY_ULPI_EXTERNAL_VBUS 1 int i2c_enable; int ulpi_fs_ls; int host_support_fs_ls_low_power; int host_ls_low_power_phy_clk; #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 int ts_dline; int reload_ctl; int ahbcfg; int uframe_sched; int external_id_pin_ctl; int hibernation; /* * The following parameters are *only* set via device * properties and cannot be set directly in this structure. */ /* Host parameters */ bool host_dma; /* Gadget parameters */ bool g_dma; bool g_dma_desc; u32 g_rx_fifo_size; u32 g_np_tx_fifo_size; u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; }; /** * struct dwc2_hw_params - Autodetected parameters. * * These parameters are the various parameters read from hardware * registers during initialization. They typically contain the best * supported or maximum value that can be configured in the * corresponding dwc2_core_params value. * * The values that are not in dwc2_core_params are documented below. * * @op_mode Mode of Operation * 0 - HNP- and SRP-Capable OTG (Host & Device) * 1 - SRP-Capable OTG (Host & Device) * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device) * 3 - SRP-Capable Device * 4 - Non-OTG Device * 5 - SRP-Capable Host * 6 - Non-OTG Host * @arch Architecture * 0 - Slave only * 1 - External DMA * 2 - Internal DMA * @power_optimized Are power optimizations enabled? * @num_dev_ep Number of device endpoints available * @num_dev_perio_in_ep Number of device periodic IN endpoints * available * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue * Depth * 0 to 30 * @host_perio_tx_q_depth * Host Mode Periodic Request Queue Depth * 2, 4 or 8 * @nperio_tx_q_depth * Non-Periodic Request Queue Depth * 2, 4 or 8 * @hs_phy_type High-speed PHY interface type * 0 - High-speed interface not supported * 1 - UTMI+ * 2 - ULPI * 3 - UTMI+ and ULPI * @fs_phy_type Full-speed PHY interface type * 0 - Full speed interface not supported * 1 - Dedicated full speed interface * 2 - FS pins shared with UTMI+ pins * 3 - FS pins shared with ULPI pins * @total_fifo_size: Total internal RAM for FIFOs (bytes) * @utmi_phy_data_width UTMI+ PHY data width * 0 - 8 bits * 1 - 16 bits * 2 - 8 or 16 bits * @snpsid: Value from SNPSID register * @dev_ep_dirs: Direction of device endpoints (GHWCFG1) */ struct dwc2_hw_params { unsigned op_mode:3; unsigned arch:2; unsigned dma_desc_enable:1; unsigned enable_dynamic_fifo:1; unsigned en_multiple_tx_fifo:1; unsigned rx_fifo_size:16; unsigned host_nperio_tx_fifo_size:16; unsigned dev_nperio_tx_fifo_size:16; unsigned host_perio_tx_fifo_size:16; unsigned nperio_tx_q_depth:3; unsigned host_perio_tx_q_depth:3; unsigned dev_token_q_depth:5; unsigned max_transfer_size:26; unsigned max_packet_count:11; unsigned host_channels:5; unsigned hs_phy_type:2; unsigned fs_phy_type:2; unsigned i2c_enable:1; unsigned num_dev_ep:4; unsigned num_dev_perio_in_ep:4; unsigned total_fifo_size:16; unsigned power_optimized:1; unsigned utmi_phy_data_width:2; u32 snpsid; u32 dev_ep_dirs; }; /* Size of control and EP0 buffers */ #define DWC2_CTRL_BUFF_SIZE 8 /** * struct dwc2_gregs_backup - Holds global registers state before * entering partial power down * @gotgctl: Backup of GOTGCTL register * @gintmsk: Backup of GINTMSK register * @gahbcfg: Backup of GAHBCFG register * @gusbcfg: Backup of GUSBCFG register * @grxfsiz: Backup of GRXFSIZ register * @gnptxfsiz: Backup of GNPTXFSIZ register * @gi2cctl: Backup of GI2CCTL register * @hptxfsiz: Backup of HPTXFSIZ register * @gdfifocfg: Backup of GDFIFOCFG register * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint * @gpwrdn: Backup of GPWRDN register */ struct dwc2_gregs_backup { u32 gotgctl; u32 gintmsk; u32 gahbcfg; u32 gusbcfg; u32 grxfsiz; u32 gnptxfsiz; u32 gi2cctl; u32 hptxfsiz; u32 pcgcctl; u32 gdfifocfg; u32 dtxfsiz[MAX_EPS_CHANNELS]; u32 gpwrdn; bool valid; }; /** * struct dwc2_dregs_backup - Holds device registers state before * entering partial power down * @dcfg: Backup of DCFG register * @dctl: Backup of DCTL register * @daintmsk: Backup of DAINTMSK register * @diepmsk: Backup of DIEPMSK register * @doepmsk: Backup of DOEPMSK register * @diepctl: Backup of DIEPCTL register * @dieptsiz: Backup of DIEPTSIZ register * @diepdma: Backup of DIEPDMA register * @doepctl: Backup of DOEPCTL register * @doeptsiz: Backup of DOEPTSIZ register * @doepdma: Backup of DOEPDMA register */ struct dwc2_dregs_backup { u32 dcfg; u32 dctl; u32 daintmsk; u32 diepmsk; u32 doepmsk; u32 diepctl[MAX_EPS_CHANNELS]; u32 dieptsiz[MAX_EPS_CHANNELS]; u32 diepdma[MAX_EPS_CHANNELS]; u32 doepctl[MAX_EPS_CHANNELS]; u32 doeptsiz[MAX_EPS_CHANNELS]; u32 doepdma[MAX_EPS_CHANNELS]; bool valid; }; /** * struct dwc2_hregs_backup - Holds host registers state before * entering partial power down * @hcfg: Backup of HCFG register * @haintmsk: Backup of HAINTMSK register * @hcintmsk: Backup of HCINTMSK register * @hptr0: Backup of HPTR0 register * @hfir: Backup of HFIR register */ struct dwc2_hregs_backup { u32 hcfg; u32 haintmsk; u32 hcintmsk[MAX_EPS_CHANNELS]; u32 hprt0; u32 hfir; bool valid; }; /* * Constants related to high speed periodic scheduling * * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a * reservation point of view it's assumed that the schedule goes right back to * the beginning after the end of the schedule. * * What does that mean for scheduling things with a long interval? It means * we'll reserve time for them in every possible microframe that they could * ever be scheduled in. ...but we'll still only actually schedule them as * often as they were requested. * * We keep our schedule in a "bitmap" structure. This simplifies having * to keep track of and merge intervals: we just let the bitmap code do most * of the heavy lifting. In a way scheduling is much like memory allocation. * * We schedule 100us per uframe or 80% of 125us (the maximum amount you're * supposed to schedule for periodic transfers). That's according to spec. * * Note that though we only schedule 80% of each microframe, the bitmap that we * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of * space for each uFrame). * * Requirements: * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1) * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might * be bugs). The 8 comes from the USB spec: number of microframes per frame. */ #define DWC2_US_PER_UFRAME 125 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100 #define DWC2_HS_SCHEDULE_UFRAMES 8 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \ DWC2_HS_PERIODIC_US_PER_UFRAME) /* * Constants related to low speed scheduling * * For high speed we schedule every 1us. For low speed that's a bit overkill, * so we make up a unit called a "slice" that's worth 25us. There are 40 * slices in a full frame and we can schedule 36 of those (90%) for periodic * transfers. * * Our low speed schedule can be as short as 1 frame or could be longer. When * we only schedule 1 frame it means that we'll need to reserve a time every * frame even for things that only transfer very rarely, so something that runs * every 2048 frames will get time reserved in every frame. Our low speed * schedule can be longer and we'll be able to handle more overlap, but that * will come at increased memory cost and increased time to schedule. * * Note: one other advantage of a short low speed schedule is that if we mess * up and miss scheduling we can jump in and use any of the slots that we * happened to reserve. * * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for * the schedule. There will be one schedule per TT. * * Requirements: * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME. */ #define DWC2_US_PER_SLICE 25 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE) #define DWC2_ROUND_US_TO_SLICE(us) \ (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \ DWC2_US_PER_SLICE) #define DWC2_LS_PERIODIC_US_PER_FRAME \ 900 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \ (DWC2_LS_PERIODIC_US_PER_FRAME / \ DWC2_US_PER_SLICE) #define DWC2_LS_SCHEDULE_FRAMES 1 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \ DWC2_LS_PERIODIC_SLICES_PER_FRAME) /** * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic * and periodic schedules * * These are common for both host and peripheral modes: * * @dev: The struct device pointer * @regs: Pointer to controller regs * @hw_params: Parameters that were autodetected from the * hardware registers * @core_params: Parameters that define how the core should be configured * @op_state: The operational State, during transitions (a_host=> * a_peripheral and b_device=>b_host) this may not match * the core, but allows the software to determine * transitions * @dr_mode: Requested mode of operation, one of following: * - USB_DR_MODE_PERIPHERAL * - USB_DR_MODE_HOST * - USB_DR_MODE_OTG * @hcd_enabled Host mode sub-driver initialization indicator. * @gadget_enabled Peripheral mode sub-driver initialization indicator. * @ll_hw_enabled Status of low-level hardware resources. * @phy: The otg phy transceiver structure for phy control. * @uphy: The otg phy transceiver structure for old USB phy * control. * @plat: The platform specific configuration data. This can be * removed once all SoCs support usb transceiver. * @supplies: Definition of USB power supplies * @phyif: PHY interface width * @lock: Spinlock that protects all the driver data structures * @priv: Stores a pointer to the struct usb_hcd * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth * transfer are in process of being queued * @srp_success: Stores status of SRP request in the case of a FS PHY * with an I2C interface * @wq_otg: Workqueue object used for handling of some interrupts * @wf_otg: Work object for handling Connector ID Status Change * interrupt * @wkp_timer: Timer object for handling Wakeup Detected interrupt * @lx_state: Lx state of connected device * @gregs_backup: Backup of global registers during suspend * @dregs_backup: Backup of device registers during suspend * @hregs_backup: Backup of host registers during suspend * * These are for host mode: * * @flags: Flags for handling root port state changes * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule. * Transfers associated with these QHs are not currently * assigned to a host channel. * @non_periodic_sched_active: Active QHs in the non-periodic schedule. * Transfers associated with these QHs are currently * assigned to a host channel. * @non_periodic_qh_ptr: Pointer to next QH to process in the active * non-periodic schedule * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a * list of QHs for periodic transfers that are _not_ * scheduled for the next frame. Each QH in the list has an * interval counter that determines when it needs to be * scheduled for execution. This scheduling mechanism * allows only a simple calculation for periodic bandwidth * used (i.e. must assume that all periodic transfers may * need to execute in the same frame). However, it greatly * simplifies scheduling and should be sufficient for the * vast majority of OTG hosts, which need to connect to a * small number of peripherals at one time. Items move from * this list to periodic_sched_ready when the QH interval * counter is 0 at SOF. * @periodic_sched_ready: List of periodic QHs that are ready for execution in * the next frame, but have not yet been assigned to host * channels. Items move from this list to * periodic_sched_assigned as host channels become * available during the current frame. * @periodic_sched_assigned: List of periodic QHs to be executed in the next * frame that are assigned to host channels. Items move * from this list to periodic_sched_queued as the * transactions for the QH are queued to the DWC_otg * controller. * @periodic_sched_queued: List of periodic QHs that have been queued for * execution. Items move from this list to either * periodic_sched_inactive or periodic_sched_ready when the * channel associated with the transfer is released. If the * interval for the QH is 1, the item moves to * periodic_sched_ready because it must be rescheduled for * the next frame. Otherwise, the item moves to * periodic_sched_inactive. * @split_order: List keeping track of channels doing splits, in order. * @periodic_usecs: Total bandwidth claimed so far for periodic transfers. * This value is in microseconds per (micro)frame. The * assumption is that all periodic transfers may occur in * the same (micro)frame. * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the * host is in high speed mode; low speed schedules are * stored elsewhere since we need one per TT. * @frame_number: Frame number read from the core at SOF. The value ranges * from 0 to HFNUM_MAX_FRNUM. * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for * SOF enable/disable. * @free_hc_list: Free host channels in the controller. This is a list of * struct dwc2_host_chan items. * @periodic_channels: Number of host channels assigned to periodic transfers. * Currently assuming that there is a dedicated host * channel for each periodic transaction and at least one * host channel is available for non-periodic transactions. * @non_periodic_channels: Number of host channels assigned to non-periodic * transfers * @available_host_channels Number of host channels available for the microframe * scheduler to use * @hc_ptr_array: Array of pointers to the host channel descriptors. * Allows accessing a host channel descriptor given the * host channel number. This is useful in interrupt * handlers. * @status_buf: Buffer used for data received during the status phase of * a control transfer. * @status_buf_dma: DMA address for status_buf * @start_work: Delayed work for handling host A-cable connection * @reset_work: Delayed work for handling a port reset * @otg_port: OTG port number * @frame_list: Frame list * @frame_list_dma: Frame list DMA address * @frame_list_sz: Frame list size * @desc_gen_cache: Kmem cache for generic descriptors * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors * * These are for peripheral mode: * * @driver: USB gadget driver * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. * @num_of_eps: Number of available EPs (excluding EP0) * @debug_root: Root directrory for debugfs. * @debug_file: Main status file for debugfs. * @debug_testmode: Testmode status file for debugfs. * @debug_fifo: FIFO status file for debugfs. * @ep0_reply: Request used for ep0 reply. * @ep0_buff: Buffer for EP0 reply data, if needed. * @ctrl_buff: Buffer for EP0 control requests. * @ctrl_req: Request for EP0 control packets. * @ep0_state: EP0 control transfers state * @test_mode: USB test mode requested by the host * @setup_desc_dma: EP0 setup stage desc chain DMA address * @setup_desc: EP0 setup stage desc chain pointer * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address * @ctrl_in_desc: EP0 IN data phase desc chain pointer * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address * @ctrl_out_desc: EP0 OUT data phase desc chain pointer * @eps: The endpoints being supplied to the gadget framework */ struct dwc2_hsotg { struct device *dev; void __iomem *regs; /** Params detected from hardware */ struct dwc2_hw_params hw_params; /** Params to actually use */ struct dwc2_core_params params; enum usb_otg_state op_state; enum usb_dr_mode dr_mode; unsigned int hcd_enabled:1; unsigned int gadget_enabled:1; unsigned int ll_hw_enabled:1; struct phy *phy; struct usb_phy *uphy; struct dwc2_hsotg_plat *plat; struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES]; u32 phyif; spinlock_t lock; void *priv; int irq; struct clk *clk; struct reset_control *reset; unsigned int queuing_high_bandwidth:1; unsigned int srp_success:1; struct workqueue_struct *wq_otg; struct work_struct wf_otg; struct timer_list wkp_timer; enum dwc2_lx_state lx_state; struct dwc2_gregs_backup gr_backup; struct dwc2_dregs_backup dr_backup; struct dwc2_hregs_backup hr_backup; struct dentry *debug_root; struct debugfs_regset32 *regset; /* DWC OTG HW Release versions */ #define DWC2_CORE_REV_2_71a 0x4f54271a #define DWC2_CORE_REV_2_90a 0x4f54290a #define DWC2_CORE_REV_2_92a 0x4f54292a #define DWC2_CORE_REV_2_94a 0x4f54294a #define DWC2_CORE_REV_3_00a 0x4f54300a #define DWC2_CORE_REV_3_10a 0x4f54310a #define DWC2_FS_IOT_REV_1_00a 0x5531100a #define DWC2_HS_IOT_REV_1_00a 0x5532100a #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) union dwc2_hcd_internal_flags { u32 d32; struct { unsigned port_connect_status_change:1; unsigned port_connect_status:1; unsigned port_reset_change:1; unsigned port_enable_change:1; unsigned port_suspend_change:1; unsigned port_over_current_change:1; unsigned port_l1_change:1; unsigned reserved:25; } b; } flags; struct list_head non_periodic_sched_inactive; struct list_head non_periodic_sched_active; struct list_head *non_periodic_qh_ptr; struct list_head periodic_sched_inactive; struct list_head periodic_sched_ready; struct list_head periodic_sched_assigned; struct list_head periodic_sched_queued; struct list_head split_order; u16 periodic_usecs; unsigned long hs_periodic_bitmap[ DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)]; u16 frame_number; u16 periodic_qh_count; bool bus_suspended; bool new_connection; u16 last_frame_num; #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS #define FRAME_NUM_ARRAY_SIZE 1000 u16 *frame_num_array; u16 *last_frame_num_array; int frame_num_idx; int dumped_frame_num_array; #endif struct list_head free_hc_list; int periodic_channels; int non_periodic_channels; int available_host_channels; struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS]; u8 *status_buf; dma_addr_t status_buf_dma; #define DWC2_HCD_STATUS_BUF_SIZE 64 struct delayed_work start_work; struct delayed_work reset_work; u8 otg_port; u32 *frame_list; dma_addr_t frame_list_dma; u32 frame_list_sz; struct kmem_cache *desc_gen_cache; struct kmem_cache *desc_hsisoc_cache; #ifdef DEBUG u32 frrem_samples; u64 frrem_accum; u32 hfnum_7_samples_a; u64 hfnum_7_frrem_accum_a; u32 hfnum_0_samples_a; u64 hfnum_0_frrem_accum_a; u32 hfnum_other_samples_a; u64 hfnum_other_frrem_accum_a; u32 hfnum_7_samples_b; u64 hfnum_7_frrem_accum_b; u32 hfnum_0_samples_b; u64 hfnum_0_frrem_accum_b; u32 hfnum_other_samples_b; u64 hfnum_other_frrem_accum_b; #endif #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */ #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) /* Gadget structures */ struct usb_gadget_driver *driver; int fifo_mem; unsigned int dedicated_fifos:1; unsigned char num_of_eps; u32 fifo_map; struct usb_request *ep0_reply; struct usb_request *ctrl_req; void *ep0_buff; void *ctrl_buff; enum dwc2_ep0_state ep0_state; u8 test_mode; dma_addr_t setup_desc_dma[2]; struct dwc2_dma_desc *setup_desc[2]; dma_addr_t ctrl_in_desc_dma; struct dwc2_dma_desc *ctrl_in_desc; dma_addr_t ctrl_out_desc_dma; struct dwc2_dma_desc *ctrl_out_desc; struct usb_gadget gadget; unsigned int enabled:1; unsigned int connected:1; struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS]; struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS]; #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */ }; /* Reasons for halting a host channel */ enum dwc2_halt_status { DWC2_HC_XFER_NO_HALT_STATUS, DWC2_HC_XFER_COMPLETE, DWC2_HC_XFER_URB_COMPLETE, DWC2_HC_XFER_ACK, DWC2_HC_XFER_NAK, DWC2_HC_XFER_NYET, DWC2_HC_XFER_STALL, DWC2_HC_XFER_XACT_ERR, DWC2_HC_XFER_FRAME_OVERRUN, DWC2_HC_XFER_BABBLE_ERR, DWC2_HC_XFER_DATA_TOGGLE_ERR, DWC2_HC_XFER_AHB_ERR, DWC2_HC_XFER_PERIODIC_INCOMPLETE, DWC2_HC_XFER_URB_DEQUEUE, }; /* Core version information */ static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg) { return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000; } static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg) { return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000; } static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg) { return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000; } /* * The following functions support initialization of the core driver component * and the DWC_otg controller */ int dwc2_core_reset(struct dwc2_hsotg *hsotg); int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg); int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg); int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore); bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host); void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg); void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg); bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg); /* * Common core Functions. * The following functions support managing the DWC_otg controller in either * device or host mode. */ void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes); void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num); void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg); void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd); void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd); /* This function should be called on every hardware interrupt. */ irqreturn_t dwc2_handle_common_intr(int irq, void *dev); /* The device ID match table */ extern const struct of_device_id dwc2_of_match_table[]; int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg); int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg); /* Parameters */ int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); int dwc2_init_params(struct dwc2_hsotg *hsotg); /* * The following functions check the controller's OTG operation mode * capability (GHWCFG2.OTG_MODE). * * These functions can be used before the internal hsotg->hw_params * are read in and cached so they always read directly from the * GHWCFG2 register. */ unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg); bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg); bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg); bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg); /* * Returns the mode of operation, host or device */ static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) { return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0; } static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) { return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0; } /* * Dump core registers and SPRAM */ void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg); void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg); void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg); /* Gadget defines */ #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg); int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2); int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2); int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq); void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, bool reset); void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg); void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2); int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode); #define dwc2_is_device_connected(hsotg) (hsotg->connected) int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg); int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg); #else static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2) { return 0; } static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2) { return 0; } static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2) { return 0; } static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) { return 0; } static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, bool reset) {} static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {} static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {} static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) { return 0; } #define dwc2_is_device_connected(hsotg) (0) static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) { return 0; } static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg) { return 0; } #endif #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us); void dwc2_hcd_connect(struct dwc2_hsotg *hsotg); void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force); void dwc2_hcd_start(struct dwc2_hsotg *hsotg); int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg); int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg); #else static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) { return 0; } static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) { return 0; } static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {} static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {} static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {} static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {} static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq) { return 0; } static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) { return 0; } static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) { return 0; } #endif #endif /* __DWC2_CORE_H__ */