/* * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved. * Copyright 2005 Stephane Marchesin * * The Weather Channel (TM) funded Tungsten Graphics to develop the * initial release of the Radeon 8500 driver under the XFree86 license. * This notice must be preserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell */ #include "drmP.h" #include "drm.h" #include "drm_sarea.h" #include "nouveau_drv.h" #include "nouveau_pm.h" #include "nouveau_mm.h" #include "nouveau_vm.h" /* * NV10-NV40 tiling helpers */ static void nv10_mem_update_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile, uint32_t addr, uint32_t size, uint32_t pitch, uint32_t flags) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; int i = tile - dev_priv->tile.reg; unsigned long save; nouveau_fence_unref(&tile->fence); if (tile->pitch) pfb->free_tile_region(dev, i); if (pitch) pfb->init_tile_region(dev, i, addr, size, pitch, flags); spin_lock_irqsave(&dev_priv->context_switch_lock, save); pfifo->reassign(dev, false); pfifo->cache_pull(dev, false); nouveau_wait_for_idle(dev); pfb->set_tile_region(dev, i); pgraph->set_tile_region(dev, i); pfifo->cache_pull(dev, true); pfifo->reassign(dev, true); spin_unlock_irqrestore(&dev_priv->context_switch_lock, save); } static struct nouveau_tile_reg * nv10_mem_get_tile_region(struct drm_device *dev, int i) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; spin_lock(&dev_priv->tile.lock); if (!tile->used && (!tile->fence || nouveau_fence_signalled(tile->fence))) tile->used = true; else tile = NULL; spin_unlock(&dev_priv->tile.lock); return tile; } void nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile, struct nouveau_fence *fence) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (tile) { spin_lock(&dev_priv->tile.lock); if (fence) { /* Mark it as pending. */ tile->fence = fence; nouveau_fence_ref(fence); } tile->used = false; spin_unlock(&dev_priv->tile.lock); } } struct nouveau_tile_reg * nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size, uint32_t pitch, uint32_t flags) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_tile_reg *tile, *found = NULL; int i; for (i = 0; i < pfb->num_tiles; i++) { tile = nv10_mem_get_tile_region(dev, i); if (pitch && !found) { found = tile; continue; } else if (tile && tile->pitch) { /* Kill an unused tile region. */ nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0); } nv10_mem_put_tile_region(dev, tile, NULL); } if (found) nv10_mem_update_tile_region(dev, found, addr, size, pitch, flags); return found; } /* * Cleanup everything */ void nouveau_mem_vram_fini(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; nouveau_bo_ref(NULL, &dev_priv->vga_ram); ttm_bo_device_release(&dev_priv->ttm.bdev); nouveau_ttm_global_release(dev_priv); if (dev_priv->fb_mtrr >= 0) { drm_mtrr_del(dev_priv->fb_mtrr, pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1), DRM_MTRR_WC); dev_priv->fb_mtrr = -1; } } void nouveau_mem_gart_fini(struct drm_device *dev) { nouveau_sgdma_takedown(dev); if (drm_core_has_AGP(dev) && dev->agp) { struct drm_agp_mem *entry, *tempe; /* Remove AGP resources, but leave dev->agp intact until drv_cleanup is called. */ list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) { if (entry->bound) drm_unbind_agp(entry->memory); drm_free_agp(entry->memory, entry->pages); kfree(entry); } INIT_LIST_HEAD(&dev->agp->memory); if (dev->agp->acquired) drm_agp_release(dev); dev->agp->acquired = 0; dev->agp->enabled = 0; } } static uint32_t nouveau_mem_detect_nv04(struct drm_device *dev) { uint32_t boot0 = nv_rd32(dev, NV04_PFB_BOOT_0); if (boot0 & 0x00000100) return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024; switch (boot0 & NV04_PFB_BOOT_0_RAM_AMOUNT) { case NV04_PFB_BOOT_0_RAM_AMOUNT_32MB: return 32 * 1024 * 1024; case NV04_PFB_BOOT_0_RAM_AMOUNT_16MB: return 16 * 1024 * 1024; case NV04_PFB_BOOT_0_RAM_AMOUNT_8MB: return 8 * 1024 * 1024; case NV04_PFB_BOOT_0_RAM_AMOUNT_4MB: return 4 * 1024 * 1024; } return 0; } static uint32_t nouveau_mem_detect_nforce(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct pci_dev *bridge; uint32_t mem; bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1)); if (!bridge) { NV_ERROR(dev, "no bridge device\n"); return 0; } if (dev_priv->flags & NV_NFORCE) { pci_read_config_dword(bridge, 0x7C, &mem); return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024; } else if (dev_priv->flags & NV_NFORCE2) { pci_read_config_dword(bridge, 0x84, &mem); return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024; } NV_ERROR(dev, "impossible!\n"); return 0; } int nouveau_mem_detect(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (dev_priv->card_type == NV_04) { dev_priv->vram_size = nouveau_mem_detect_nv04(dev); } else if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) { dev_priv->vram_size = nouveau_mem_detect_nforce(dev); } else if (dev_priv->card_type < NV_50) { dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA); dev_priv->vram_size &= NV10_PFB_FIFO_DATA_RAM_AMOUNT_MB_MASK; } if (dev_priv->vram_size) return 0; return -ENOMEM; } bool nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags) { if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK)) return true; return false; } #if __OS_HAS_AGP static unsigned long get_agp_mode(struct drm_device *dev, unsigned long mode) { struct drm_nouveau_private *dev_priv = dev->dev_private; /* * FW seems to be broken on nv18, it makes the card lock up * randomly. */ if (dev_priv->chipset == 0x18) mode &= ~PCI_AGP_COMMAND_FW; /* * AGP mode set in the command line. */ if (nouveau_agpmode > 0) { bool agpv3 = mode & 0x8; int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode; mode = (mode & ~0x7) | (rate & 0x7); } return mode; } #endif int nouveau_mem_reset_agp(struct drm_device *dev) { #if __OS_HAS_AGP uint32_t saved_pci_nv_1, pmc_enable; int ret; /* First of all, disable fast writes, otherwise if it's * already enabled in the AGP bridge and we disable the card's * AGP controller we might be locking ourselves out of it. */ if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) | dev->agp->mode) & PCI_AGP_COMMAND_FW) { struct drm_agp_info info; struct drm_agp_mode mode; ret = drm_agp_info(dev, &info); if (ret) return ret; mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW; ret = drm_agp_enable(dev, mode); if (ret) return ret; } saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1); /* clear busmaster bit */ nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4); /* disable AGP */ nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0); /* power cycle pgraph, if enabled */ pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE); if (pmc_enable & NV_PMC_ENABLE_PGRAPH) { nv_wr32(dev, NV03_PMC_ENABLE, pmc_enable & ~NV_PMC_ENABLE_PGRAPH); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | NV_PMC_ENABLE_PGRAPH); } /* and restore (gives effect of resetting AGP) */ nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1); #endif return 0; } int nouveau_mem_init_agp(struct drm_device *dev) { #if __OS_HAS_AGP struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_agp_info info; struct drm_agp_mode mode; int ret; if (!dev->agp->acquired) { ret = drm_agp_acquire(dev); if (ret) { NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret); return ret; } } nouveau_mem_reset_agp(dev); ret = drm_agp_info(dev, &info); if (ret) { NV_ERROR(dev, "Unable to get AGP info: %d\n", ret); return ret; } /* see agp.h for the AGPSTAT_* modes available */ mode.mode = get_agp_mode(dev, info.mode); ret = drm_agp_enable(dev, mode); if (ret) { NV_ERROR(dev, "Unable to enable AGP: %d\n", ret); return ret; } dev_priv->gart_info.type = NOUVEAU_GART_AGP; dev_priv->gart_info.aper_base = info.aperture_base; dev_priv->gart_info.aper_size = info.aperture_size; #endif return 0; } int nouveau_mem_vram_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; int ret, dma_bits; dma_bits = 32; if (dev_priv->card_type >= NV_50) { if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40))) dma_bits = 40; } else if (drm_pci_device_is_pcie(dev) && dev_priv->chipset > 0x40 && dev_priv->chipset != 0x45) { if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39))) dma_bits = 39; } ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); if (ret) return ret; dev_priv->fb_phys = pci_resource_start(dev->pdev, 1); ret = nouveau_ttm_global_init(dev_priv); if (ret) return ret; ret = ttm_bo_device_init(&dev_priv->ttm.bdev, dev_priv->ttm.bo_global_ref.ref.object, &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET, dma_bits <= 32 ? true : false); if (ret) { NV_ERROR(dev, "Error initialising bo driver: %d\n", ret); return ret; } /* reserve space at end of VRAM for PRAMIN */ if (dev_priv->card_type >= NV_50) { dev_priv->ramin_rsvd_vram = 1 * 1024 * 1024; } else if (dev_priv->card_type >= NV_40) { u32 vs = hweight8((nv_rd32(dev, 0x001540) & 0x0000ff00) >> 8); u32 rsvd; /* estimate grctx size, the magics come from nv40_grctx.c */ if (dev_priv->chipset == 0x40) rsvd = 0x6aa0 * vs; else if (dev_priv->chipset < 0x43) rsvd = 0x4f00 * vs; else if (nv44_graph_class(dev)) rsvd = 0x4980 * vs; else rsvd = 0x4a40 * vs; rsvd += 16 * 1024; rsvd *= dev_priv->engine.fifo.channels; /* pciegart table */ if (drm_pci_device_is_pcie(dev)) rsvd += 512 * 1024; /* object storage */ rsvd += 512 * 1024; dev_priv->ramin_rsvd_vram = round_up(rsvd, 4096); } else { dev_priv->ramin_rsvd_vram = 512 * 1024; } ret = dev_priv->engine.vram.init(dev); if (ret) return ret; NV_INFO(dev, "Detected %dMiB VRAM\n", (int)(dev_priv->vram_size >> 20)); if (dev_priv->vram_sys_base) { NV_INFO(dev, "Stolen system memory at: 0x%010llx\n", dev_priv->vram_sys_base); } dev_priv->fb_available_size = dev_priv->vram_size; dev_priv->fb_mappable_pages = dev_priv->fb_available_size; if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1)) dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1); dev_priv->fb_mappable_pages >>= PAGE_SHIFT; dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram; dev_priv->fb_aper_free = dev_priv->fb_available_size; /* mappable vram */ ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM, dev_priv->fb_available_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret); return ret; } if (dev_priv->card_type < NV_50) { ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM, 0, 0, &dev_priv->vga_ram); if (ret == 0) ret = nouveau_bo_pin(dev_priv->vga_ram, TTM_PL_FLAG_VRAM); if (ret) { NV_WARN(dev, "failed to reserve VGA memory\n"); nouveau_bo_ref(NULL, &dev_priv->vga_ram); } } dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1), DRM_MTRR_WC); return 0; } int nouveau_mem_gart_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; int ret; dev_priv->gart_info.type = NOUVEAU_GART_NONE; #if !defined(__powerpc__) && !defined(__ia64__) if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) { ret = nouveau_mem_init_agp(dev); if (ret) NV_ERROR(dev, "Error initialising AGP: %d\n", ret); } #endif if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) { ret = nouveau_sgdma_init(dev); if (ret) { NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret); return ret; } } NV_INFO(dev, "%d MiB GART (aperture)\n", (int)(dev_priv->gart_info.aper_size >> 20)); dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size; ret = ttm_bo_init_mm(bdev, TTM_PL_TT, dev_priv->gart_info.aper_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed TT mm init: %d\n", ret); return ret; } return 0; } void nouveau_mem_timing_init(struct drm_device *dev) { /* cards < NVC0 only */ struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pm_engine *pm = &dev_priv->engine.pm; struct nouveau_pm_memtimings *memtimings = &pm->memtimings; struct nvbios *bios = &dev_priv->vbios; struct bit_entry P; u8 tUNK_0, tUNK_1, tUNK_2; u8 tRP; /* Byte 3 */ u8 tRAS; /* Byte 5 */ u8 tRFC; /* Byte 7 */ u8 tRC; /* Byte 9 */ u8 tUNK_10, tUNK_11, tUNK_12, tUNK_13, tUNK_14; u8 tUNK_18, tUNK_19, tUNK_20, tUNK_21; u8 magic_number = 0; /* Yeah... sorry*/ u8 *mem = NULL, *entry; int i, recordlen, entries; if (bios->type == NVBIOS_BIT) { if (bit_table(dev, 'P', &P)) return; if (P.version == 1) mem = ROMPTR(bios, P.data[4]); else if (P.version == 2) mem = ROMPTR(bios, P.data[8]); else { NV_WARN(dev, "unknown mem for BIT P %d\n", P.version); } } else { NV_DEBUG(dev, "BMP version too old for memory\n"); return; } if (!mem) { NV_DEBUG(dev, "memory timing table pointer invalid\n"); return; } if (mem[0] != 0x10) { NV_WARN(dev, "memory timing table 0x%02x unknown\n", mem[0]); return; } /* validate record length */ entries = mem[2]; recordlen = mem[3]; if (recordlen < 15) { NV_ERROR(dev, "mem timing table length unknown: %d\n", mem[3]); return; } /* parse vbios entries into common format */ memtimings->timing = kcalloc(entries, sizeof(*memtimings->timing), GFP_KERNEL); if (!memtimings->timing) return; /* Get "some number" from the timing reg for NV_40 * Used in calculations later */ if (dev_priv->card_type == NV_40) { magic_number = (nv_rd32(dev,0x100228) & 0x0f000000) >> 24; } entry = mem + mem[1]; for (i = 0; i < entries; i++, entry += recordlen) { struct nouveau_pm_memtiming *timing = &pm->memtimings.timing[i]; if (entry[0] == 0) continue; tUNK_18 = 1; tUNK_19 = 1; tUNK_20 = 0; tUNK_21 = 0; switch (min(recordlen, 22)) { case 22: tUNK_21 = entry[21]; case 21: tUNK_20 = entry[20]; case 20: tUNK_19 = entry[19]; case 19: tUNK_18 = entry[18]; default: tUNK_0 = entry[0]; tUNK_1 = entry[1]; tUNK_2 = entry[2]; tRP = entry[3]; tRAS = entry[5]; tRFC = entry[7]; tRC = entry[9]; tUNK_10 = entry[10]; tUNK_11 = entry[11]; tUNK_12 = entry[12]; tUNK_13 = entry[13]; tUNK_14 = entry[14]; break; } timing->reg_100220 = (tRC << 24 | tRFC << 16 | tRAS << 8 | tRP); /* XXX: I don't trust the -1's and +1's... they must come * from somewhere! */ timing->reg_100224 = (tUNK_0 + tUNK_19 + 1 + magic_number) << 24 | tUNK_18 << 16 | (tUNK_1 + tUNK_19 + 1 + magic_number) << 8; if (dev_priv->chipset == 0xa8) { timing->reg_100224 |= (tUNK_2 - 1); } else { timing->reg_100224 |= (tUNK_2 + 2 - magic_number); } timing->reg_100228 = (tUNK_12 << 16 | tUNK_11 << 8 | tUNK_10); if (dev_priv->chipset >= 0xa3 && dev_priv->chipset < 0xaa) { timing->reg_100228 |= (tUNK_19 - 1) << 24; } if (dev_priv->card_type == NV_40) { /* NV40: don't know what the rest of the regs are.. * And don't need to know either */ timing->reg_100228 |= 0x20200000 | magic_number << 24; } else if (dev_priv->card_type >= NV_50) { /* XXX: reg_10022c */ timing->reg_10022c = tUNK_2 - 1; timing->reg_100230 = (tUNK_20 << 24 | tUNK_21 << 16 | tUNK_13 << 8 | tUNK_13); timing->reg_100234 = (tRAS << 24 | tRC); timing->reg_100234 += max(tUNK_10,tUNK_11) << 16; if (dev_priv->chipset < 0xa3) { timing->reg_100234 |= (tUNK_2 + 2) << 8; } else { /* XXX: +6? */ timing->reg_100234 |= (tUNK_19 + 6) << 8; } /* XXX; reg_100238, reg_10023c * reg_100238: 0x00?????? * reg_10023c: 0x!!??0202 for NV50+ cards (empirical evidence) */ timing->reg_10023c = 0x202; if (dev_priv->chipset < 0xa3) { timing->reg_10023c |= 0x4000000 | (tUNK_2 - 1) << 16; } else { /* currently unknown * 10023c seen as 06xxxxxx, 0bxxxxxx or 0fxxxxxx */ } } NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", i, timing->reg_100220, timing->reg_100224, timing->reg_100228, timing->reg_10022c); NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n", timing->reg_100230, timing->reg_100234, timing->reg_100238, timing->reg_10023c); } memtimings->nr_timing = entries; memtimings->supported = true; } void nouveau_mem_timing_fini(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pm_memtimings *mem = &dev_priv->engine.pm.memtimings; kfree(mem->timing); } static int nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long p_size) { struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); struct nouveau_mm *mm; u64 size, block, rsvd; int ret; rsvd = (256 * 1024); /* vga memory */ size = (p_size << PAGE_SHIFT) - rsvd; block = dev_priv->vram_rblock_size; ret = nouveau_mm_init(&mm, rsvd >> 12, size >> 12, block >> 12); if (ret) return ret; man->priv = mm; return 0; } static int nouveau_vram_manager_fini(struct ttm_mem_type_manager *man) { struct nouveau_mm *mm = man->priv; int ret; ret = nouveau_mm_fini(&mm); if (ret) return ret; man->priv = NULL; return 0; } static void nouveau_vram_manager_del(struct ttm_mem_type_manager *man, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); struct nouveau_vram_engine *vram = &dev_priv->engine.vram; struct nouveau_mem *node = mem->mm_node; struct drm_device *dev = dev_priv->dev; if (node->tmp_vma.node) { nouveau_vm_unmap(&node->tmp_vma); nouveau_vm_put(&node->tmp_vma); } vram->put(dev, (struct nouveau_mem **)&mem->mm_node); } static int nouveau_vram_manager_new(struct ttm_mem_type_manager *man, struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); struct nouveau_vram_engine *vram = &dev_priv->engine.vram; struct drm_device *dev = dev_priv->dev; struct nouveau_bo *nvbo = nouveau_bo(bo); struct nouveau_mem *node; u32 size_nc = 0; int ret; if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) size_nc = 1 << nvbo->vma.node->type; ret = vram->get(dev, mem->num_pages << PAGE_SHIFT, mem->page_alignment << PAGE_SHIFT, size_nc, (nvbo->tile_flags >> 8) & 0x3ff, &node); if (ret) { mem->mm_node = NULL; return (ret == -ENOSPC) ? 0 : ret; } node->page_shift = 12; if (nvbo->vma.node) node->page_shift = nvbo->vma.node->type; mem->mm_node = node; mem->start = node->offset >> PAGE_SHIFT; return 0; } void nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) { struct nouveau_mm *mm = man->priv; struct nouveau_mm_node *r; u32 total = 0, free = 0; mutex_lock(&mm->mutex); list_for_each_entry(r, &mm->nodes, nl_entry) { printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n", prefix, r->type, ((u64)r->offset << 12), (((u64)r->offset + r->length) << 12)); total += r->length; if (!r->type) free += r->length; } mutex_unlock(&mm->mutex); printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n", prefix, (u64)total << 12, (u64)free << 12); printk(KERN_DEBUG "%s block: 0x%08x\n", prefix, mm->block_size << 12); } const struct ttm_mem_type_manager_func nouveau_vram_manager = { nouveau_vram_manager_init, nouveau_vram_manager_fini, nouveau_vram_manager_new, nouveau_vram_manager_del, nouveau_vram_manager_debug }; static int nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize) { return 0; } static int nouveau_gart_manager_fini(struct ttm_mem_type_manager *man) { return 0; } static void nouveau_gart_manager_del(struct ttm_mem_type_manager *man, struct ttm_mem_reg *mem) { struct nouveau_mem *node = mem->mm_node; if (node->tmp_vma.node) { nouveau_vm_unmap(&node->tmp_vma); nouveau_vm_put(&node->tmp_vma); } mem->mm_node = NULL; } static int nouveau_gart_manager_new(struct ttm_mem_type_manager *man, struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev); struct nouveau_bo *nvbo = nouveau_bo(bo); struct nouveau_vma *vma = &nvbo->vma; struct nouveau_vm *vm = vma->vm; struct nouveau_mem *node; int ret; if (unlikely((mem->num_pages << PAGE_SHIFT) >= dev_priv->gart_info.aper_size)) return -ENOMEM; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; /* This node must be for evicting large-paged VRAM * to system memory. Due to a nv50 limitation of * not being able to mix large/small pages within * the same PDE, we need to create a temporary * small-paged VMA for the eviction. */ if (vma->node->type != vm->spg_shift) { ret = nouveau_vm_get(vm, (u64)vma->node->length << 12, vm->spg_shift, NV_MEM_ACCESS_RW, &node->tmp_vma); if (ret) { kfree(node); return ret; } } node->page_shift = nvbo->vma.node->type; mem->mm_node = node; mem->start = 0; return 0; } void nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) { } const struct ttm_mem_type_manager_func nouveau_gart_manager = { nouveau_gart_manager_init, nouveau_gart_manager_fini, nouveau_gart_manager_new, nouveau_gart_manager_del, nouveau_gart_manager_debug };