/* * Copyright 2003 NVIDIA, Corporation * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "drmP.h" #include "drm_crtc_helper.h" #include "nouveau_drv.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "nouveau_hw.h" #include "nvreg.h" #include "i2c/sil164.h" #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \ NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \ NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS) #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \ NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \ NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE) static inline bool is_fpc_off(uint32_t fpc) { return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) == FP_TG_CONTROL_OFF); } int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_entry *dcbent) { /* special case of nv_read_tmds to find crtc associated with an output. * this does not give a correct answer for off-chip dvi, but there's no * use for such an answer anyway */ int ramdac = (dcbent->or & OUTPUT_C) >> 2; NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL, NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4); return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac; } void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_entry *dcbent, int head, bool dl) { /* The BIOS scripts don't do this for us, sadly * Luckily we do know the values ;-) * * head < 0 indicates we wish to force a setting with the overrideval * (for VT restore etc.) */ int ramdac = (dcbent->or & OUTPUT_C) >> 2; uint8_t tmds04 = 0x80; if (head != ramdac) tmds04 = 0x88; if (dcbent->type == OUTPUT_LVDS) tmds04 |= 0x01; nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04); if (dl) /* dual link */ nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08); } void nv04_dfp_disable(struct drm_device *dev, int head) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg; if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) & FP_TG_CONTROL_ON) { /* digital remnants must be cleaned before new crtc * values programmed. delay is time for the vga stuff * to realise it's in control again */ NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, FP_TG_CONTROL_OFF); msleep(50); } /* don't inadvertently turn it on when state written later */ crtcstate[head].fp_control = FP_TG_CONTROL_OFF; } void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; struct nouveau_crtc *nv_crtc; uint32_t *fpc; if (mode == DRM_MODE_DPMS_ON) { nv_crtc = nouveau_crtc(encoder->crtc); fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control; if (is_fpc_off(*fpc)) { /* using saved value is ok, as (is_digital && dpms_on && * fp_control==OFF) is (at present) *only* true when * fpc's most recent change was by below "off" code */ *fpc = nv_crtc->dpms_saved_fp_control; } nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index; NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); } else { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { nv_crtc = nouveau_crtc(crtc); fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control; nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index); if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) { nv_crtc->dpms_saved_fp_control = *fpc; /* cut the FP output */ *fpc &= ~FP_TG_CONTROL_ON; *fpc |= FP_TG_CONTROL_OFF; NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); } } } } static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb; struct drm_encoder *slave; if (dcb->type != OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP) return NULL; /* Some BIOSes (e.g. the one in a Quadro FX1000) report several * TMDS transmitters at the same I2C address, in the same I2C * bus. This can still work because in that case one of them is * always hard-wired to a reasonable configuration using straps, * and the other one needs to be programmed. * * I don't think there's a way to know which is which, even the * blob programs the one exposed via I2C for *both* heads, so * let's do the same. */ list_for_each_entry(slave, &dev->mode_config.encoder_list, head) { struct dcb_entry *slave_dcb = nouveau_encoder(slave)->dcb; if (slave_dcb->type == OUTPUT_TMDS && get_slave_funcs(slave) && slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr) return slave; } return NULL; } static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); /* For internal panels and gpu scaling on DVI we need the native mode */ if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { if (!nv_connector->native_mode) return false; nv_encoder->mode = *nv_connector->native_mode; adjusted_mode->clock = nv_connector->native_mode->clock; } else { nv_encoder->mode = *adjusted_mode; } return true; } static void nv04_dfp_prepare_sel_clk(struct drm_device *dev, struct nouveau_encoder *nv_encoder, int head) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv04_mode_state *state = &dev_priv->mode_reg; uint32_t bits1618 = nv_encoder->dcb->or & OUTPUT_A ? 0x10000 : 0x40000; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP) return; /* SEL_CLK is only used on the primary ramdac * It toggles spread spectrum PLL output and sets the bindings of PLLs * to heads on digital outputs */ if (head) state->sel_clk |= bits1618; else state->sel_clk &= ~bits1618; /* nv30: * bit 0 NVClk spread spectrum on/off * bit 2 MemClk spread spectrum on/off * bit 4 PixClk1 spread spectrum on/off toggle * bit 6 PixClk2 spread spectrum on/off toggle * * nv40 (observations from bios behaviour and mmio traces): * bits 4&6 as for nv30 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6; * maybe a different spread mode * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts) * The logic behind turning spread spectrum on/off in the first place, * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table * entry has the necessary info) */ if (nv_encoder->dcb->type == OUTPUT_LVDS && dev_priv->saved_reg.sel_clk & 0xf0) { int shift = (dev_priv->saved_reg.sel_clk & 0x50) ? 0 : 1; state->sel_clk &= ~0xf0; state->sel_clk |= (head ? 0x40 : 0x10) << shift; } } static void nv04_dfp_prepare(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct drm_device *dev = encoder->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int head = nouveau_crtc(encoder->crtc)->index; struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg; uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX]; uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX]; helper->dpms(encoder, DRM_MODE_DPMS_OFF); nv04_dfp_prepare_sel_clk(dev, nv_encoder, head); /* Some NV4x have unknown values (0x3f, 0x50, 0x54, 0x6b, 0x79, 0x7f) * at LCD__INDEX which we don't alter */ if (!(*cr_lcd & 0x44)) { *cr_lcd = 0x3; if (nv_two_heads(dev)) { if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP) *cr_lcd |= head ? 0x0 : 0x8; else { *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30; if (nv_encoder->dcb->type == OUTPUT_LVDS) *cr_lcd |= 0x30; if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) { /* avoid being connected to both crtcs */ *cr_lcd_oth &= ~0x30; NVWriteVgaCrtc(dev, head ^ 1, NV_CIO_CRE_LCD__INDEX, *cr_lcd_oth); } } } } } static void nv04_dfp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv04_crtc_reg *regp = &dev_priv->mode_reg.crtc_reg[nv_crtc->index]; struct nv04_crtc_reg *savep = &dev_priv->saved_reg.crtc_reg[nv_crtc->index]; struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_display_mode *output_mode = &nv_encoder->mode; uint32_t mode_ratio, panel_ratio; NV_DEBUG_KMS(dev, "Output mode on CRTC %d:\n", nv_crtc->index); drm_mode_debug_printmodeline(output_mode); /* Initialize the FP registers in this CRTC. */ regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; if (!nv_gf4_disp_arch(dev) || (output_mode->hsync_start - output_mode->hdisplay) >= dev_priv->vbios.digital_min_front_porch) regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay; else regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - dev_priv->vbios.digital_min_front_porch - 1; regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew; regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1; regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1; regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; regp->fp_vert_regs[FP_VALID_START] = 0; regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1; /* bit26: a bit seen on some g7x, no as yet discernable purpose */ regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG)); /* Deal with vsync/hsync polarity */ /* LVDS screens do set this, but modes with +ve syncs are very rare */ if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; /* panel scaling first, as native would get set otherwise */ if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER; else if (adjusted_mode->hdisplay == output_mode->hdisplay && adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE; else /* gpu needs to scale */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE; if (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && output_mode->clock > 165000) regp->fp_control |= (2 << 24); if (nv_encoder->dcb->type == OUTPUT_LVDS) { bool duallink, dummy; nouveau_bios_parse_lvds_table(dev, nv_connector->native_mode-> clock, &duallink, &dummy); if (duallink) regp->fp_control |= (8 << 28); } else if (output_mode->clock > 165000) regp->fp_control |= (8 << 28); regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; /* We want automatic scaling */ regp->fp_debug_1 = 0; /* This can override HTOTAL and VTOTAL */ regp->fp_debug_2 = 0; /* Use 20.12 fixed point format to avoid floats */ mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay; panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay; /* if ratios are equal, SCALE_ASPECT will automatically (and correctly) * get treated the same as SCALE_FULLSCREEN */ if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT && mode_ratio != panel_ratio) { uint32_t diff, scale; bool divide_by_2 = nv_gf4_disp_arch(dev); if (mode_ratio < panel_ratio) { /* vertical needs to expand to glass size (automatic) * horizontal needs to be scaled at vertical scale factor * to maintain aspect */ scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay; regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); /* restrict area of screen used, horizontally */ diff = output_mode->hdisplay - output_mode->vdisplay * mode_ratio / (1 << 12); regp->fp_horiz_regs[FP_VALID_START] += diff / 2; regp->fp_horiz_regs[FP_VALID_END] -= diff / 2; } if (mode_ratio > panel_ratio) { /* horizontal needs to expand to glass size (automatic) * vertical needs to be scaled at horizontal scale factor * to maintain aspect */ scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay; regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE); /* restrict area of screen used, vertically */ diff = output_mode->vdisplay - (1 << 12) * output_mode->hdisplay / mode_ratio; regp->fp_vert_regs[FP_VALID_START] += diff / 2; regp->fp_vert_regs[FP_VALID_END] -= diff / 2; } } /* Output property. */ if (nv_connector->use_dithering) { if (dev_priv->chipset == 0x11) regp->dither = savep->dither | 0x00010000; else { int i; regp->dither = savep->dither | 0x00000001; for (i = 0; i < 3; i++) { regp->dither_regs[i] = 0xe4e4e4e4; regp->dither_regs[i + 3] = 0x44444444; } } } else { if (dev_priv->chipset != 0x11) { /* reset them */ int i; for (i = 0; i < 3; i++) { regp->dither_regs[i] = savep->dither_regs[i]; regp->dither_regs[i + 3] = savep->dither_regs[i + 3]; } } regp->dither = savep->dither; } regp->fp_margin_color = 0; } static void nv04_dfp_commit(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct dcb_entry *dcbe = nv_encoder->dcb; int head = nouveau_crtc(encoder->crtc)->index; struct drm_encoder *slave_encoder; if (dcbe->type == OUTPUT_TMDS) run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock); else if (dcbe->type == OUTPUT_LVDS) call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock); /* update fp_control state for any changes made by scripts, * so correct value is written at DPMS on */ dev_priv->mode_reg.crtc_reg[head].fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); /* This could use refinement for flatpanels, but it should work this way */ if (dev_priv->chipset < 0x44) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); else NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); /* Init external transmitters */ slave_encoder = get_tmds_slave(encoder); if (slave_encoder) get_slave_funcs(slave_encoder)->mode_set( slave_encoder, &nv_encoder->mode, &nv_encoder->mode); helper->dpms(encoder, DRM_MODE_DPMS_ON); NV_INFO(dev, "Output %s is running on CRTC %d using output %c\n", drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base), nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); } static inline bool is_powersaving_dpms(int mode) { return (mode != DRM_MODE_DPMS_ON); } static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_crtc *crtc = encoder->crtc; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms); if (nv_encoder->last_dpms == mode) return; nv_encoder->last_dpms = mode; NV_INFO(dev, "Setting dpms mode %d on lvds encoder (output %d)\n", mode, nv_encoder->dcb->index); if (was_powersaving && is_powersaving_dpms(mode)) return; if (nv_encoder->dcb->lvdsconf.use_power_scripts) { struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); /* when removing an output, crtc may not be set, but PANEL_OFF * must still be run */ int head = crtc ? nouveau_crtc(crtc)->index : nv04_dfp_get_bound_head(dev, nv_encoder->dcb); if (mode == DRM_MODE_DPMS_ON) { if (!nv_connector->native_mode) { NV_ERROR(dev, "Not turning on LVDS without native mode\n"); return; } call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_ON, nv_connector->native_mode->clock); } else /* pxclk of 0 is fine for PANEL_OFF, and for a * disconnected LVDS encoder there is no native_mode */ call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_OFF, 0); } nv04_dfp_update_fp_control(encoder, mode); if (mode == DRM_MODE_DPMS_ON) nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index); else { dev_priv->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); dev_priv->mode_reg.sel_clk &= ~0xf0; } NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, dev_priv->mode_reg.sel_clk); } static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); if (nv_encoder->last_dpms == mode) return; nv_encoder->last_dpms = mode; NV_INFO(dev, "Setting dpms mode %d on tmds encoder (output %d)\n", mode, nv_encoder->dcb->index); nv04_dfp_update_fp_control(encoder, mode); } static void nv04_dfp_save(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; if (nv_two_heads(dev)) nv_encoder->restore.head = nv04_dfp_get_bound_head(dev, nv_encoder->dcb); } static void nv04_dfp_restore(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int head = nv_encoder->restore.head; if (nv_encoder->dcb->type == OUTPUT_LVDS) { struct drm_display_mode *native_mode = nouveau_encoder_connector_get(nv_encoder)->native_mode; if (native_mode) call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_ON, native_mode->clock); else NV_ERROR(dev, "Not restoring LVDS without native mode\n"); } else if (nv_encoder->dcb->type == OUTPUT_TMDS) { int clock = nouveau_hw_pllvals_to_clk (&dev_priv->saved_reg.crtc_reg[head].pllvals); run_tmds_table(dev, nv_encoder->dcb, head, clock); } nv_encoder->last_dpms = NV_DPMS_CLEARED; } static void nv04_dfp_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); NV_DEBUG_KMS(encoder->dev, "\n"); if (get_slave_funcs(encoder)) get_slave_funcs(encoder)->destroy(encoder); drm_encoder_cleanup(encoder); kfree(nv_encoder); } static void nv04_tmds_slave_init(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb; struct nouveau_i2c_chan *i2c = nouveau_i2c_find(dev, 2); struct i2c_board_info info[] = { { .type = "sil164", .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38), .platform_data = &(struct sil164_encoder_params) { SIL164_INPUT_EDGE_RISING } }, { } }; int type; if (!nv_gf4_disp_arch(dev) || !i2c || get_tmds_slave(encoder)) return; type = nouveau_i2c_identify(dev, "TMDS transmitter", info, 2); if (type < 0) return; drm_i2c_encoder_init(dev, to_encoder_slave(encoder), &i2c->adapter, &info[type]); } static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = { .dpms = nv04_lvds_dpms, .save = nv04_dfp_save, .restore = nv04_dfp_restore, .mode_fixup = nv04_dfp_mode_fixup, .prepare = nv04_dfp_prepare, .commit = nv04_dfp_commit, .mode_set = nv04_dfp_mode_set, .detect = NULL, }; static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = { .dpms = nv04_tmds_dpms, .save = nv04_dfp_save, .restore = nv04_dfp_restore, .mode_fixup = nv04_dfp_mode_fixup, .prepare = nv04_dfp_prepare, .commit = nv04_dfp_commit, .mode_set = nv04_dfp_mode_set, .detect = NULL, }; static const struct drm_encoder_funcs nv04_dfp_funcs = { .destroy = nv04_dfp_destroy, }; int nv04_dfp_create(struct drm_connector *connector, struct dcb_entry *entry) { const struct drm_encoder_helper_funcs *helper; struct nouveau_encoder *nv_encoder = NULL; struct drm_encoder *encoder; int type; switch (entry->type) { case OUTPUT_TMDS: type = DRM_MODE_ENCODER_TMDS; helper = &nv04_tmds_helper_funcs; break; case OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; helper = &nv04_lvds_helper_funcs; break; default: return -EINVAL; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; encoder = to_drm_encoder(nv_encoder); nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type); drm_encoder_helper_add(encoder, helper); encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; if (entry->type == OUTPUT_TMDS && entry->location != DCB_LOC_ON_CHIP) nv04_tmds_slave_init(encoder); drm_mode_connector_attach_encoder(connector, encoder); return 0; }