// SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/ccs-pll.c * * Generic MIPI CCS/SMIA/SMIA++ PLL calculator * * Copyright (C) 2020 Intel Corporation * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus */ #include #include #include #include #include "ccs-pll.h" /* Return an even number or one. */ static inline uint32_t clk_div_even(uint32_t a) { return max_t(uint32_t, 1, a & ~1); } /* Return an even number or one. */ static inline uint32_t clk_div_even_up(uint32_t a) { if (a == 1) return 1; return (a + 1) & ~1; } static inline uint32_t is_one_or_even(uint32_t a) { if (a == 1) return 1; if (a & 1) return 0; return 1; } static inline uint32_t one_or_more(uint32_t a) { return a ?: 1; } static int bounds_check(struct device *dev, uint32_t val, uint32_t min, uint32_t max, const char *prefix, char *str) { if (val >= min && val <= max) return 0; dev_dbg(dev, "%s_%s out of bounds: %d (%d--%d)\n", prefix, str, val, min, max); return -EINVAL; } #define PLL_OP 1 #define PLL_VT 2 static const char *pll_string(unsigned int which) { switch (which) { case PLL_OP: return "op"; case PLL_VT: return "vt"; } return NULL; } #define PLL_FL(f) CCS_PLL_FLAG_##f static void print_pll(struct device *dev, struct ccs_pll *pll) { const struct { struct ccs_pll_branch_fr *fr; struct ccs_pll_branch_bk *bk; unsigned int which; } branches[] = { { &pll->vt_fr, &pll->vt_bk, PLL_VT }, { &pll->op_fr, &pll->op_bk, PLL_OP } }, *br; unsigned int i; dev_dbg(dev, "ext_clk_freq_hz\t\t%u\n", pll->ext_clk_freq_hz); for (i = 0, br = branches; i < ARRAY_SIZE(branches); i++, br++) { const char *s = pll_string(br->which); if (br->which == PLL_VT) { dev_dbg(dev, "%s_pre_pll_clk_div\t\t%u\n", s, br->fr->pre_pll_clk_div); dev_dbg(dev, "%s_pll_multiplier\t\t%u\n", s, br->fr->pll_multiplier); dev_dbg(dev, "%s_pll_ip_clk_freq_hz\t%u\n", s, br->fr->pll_ip_clk_freq_hz); dev_dbg(dev, "%s_pll_op_clk_freq_hz\t%u\n", s, br->fr->pll_op_clk_freq_hz); } if (!(pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) || br->which == PLL_VT) { dev_dbg(dev, "%s_sys_clk_div\t\t%u\n", s, br->bk->sys_clk_div); dev_dbg(dev, "%s_pix_clk_div\t\t%u\n", s, br->bk->pix_clk_div); dev_dbg(dev, "%s_sys_clk_freq_hz\t%u\n", s, br->bk->sys_clk_freq_hz); dev_dbg(dev, "%s_pix_clk_freq_hz\t%u\n", s, br->bk->pix_clk_freq_hz); } } dev_dbg(dev, "flags%s%s%s%s%s%s\n", pll->flags & PLL_FL(LANE_SPEED_MODEL) ? " lane-speed" : "", pll->flags & PLL_FL(LINK_DECOUPLED) ? " link-decoupled" : "", pll->flags & PLL_FL(EXT_IP_PLL_DIVIDER) ? " ext-ip-pll-divider" : "", pll->flags & PLL_FL(FLEXIBLE_OP_PIX_CLK_DIV) ? " flexible-op-pix-div" : "", pll->flags & PLL_FL(FIFO_DERATING) ? " fifo-derating" : "", pll->flags & PLL_FL(FIFO_OVERRATING) ? " fifo-overrating" : ""); } static int check_fr_bounds(struct device *dev, const struct ccs_pll_limits *lim, struct ccs_pll *pll, unsigned int which) { const struct ccs_pll_branch_limits_fr *lim_fr; struct ccs_pll_branch_fr *pll_fr; const char *s = pll_string(which); int rval; if (which == PLL_OP) { lim_fr = &lim->op_fr; pll_fr = &pll->op_fr; } else { lim_fr = &lim->vt_fr; pll_fr = &pll->vt_fr; } rval = bounds_check(dev, pll_fr->pre_pll_clk_div, lim_fr->min_pre_pll_clk_div, lim_fr->max_pre_pll_clk_div, s, "pre_pll_clk_div"); if (!rval) rval = bounds_check(dev, pll_fr->pll_ip_clk_freq_hz, lim_fr->min_pll_ip_clk_freq_hz, lim_fr->max_pll_ip_clk_freq_hz, s, "pll_ip_clk_freq_hz"); if (!rval) rval = bounds_check(dev, pll_fr->pll_multiplier, lim_fr->min_pll_multiplier, lim_fr->max_pll_multiplier, s, "pll_multiplier"); if (!rval) rval = bounds_check(dev, pll_fr->pll_op_clk_freq_hz, lim_fr->min_pll_op_clk_freq_hz, lim_fr->max_pll_op_clk_freq_hz, s, "pll_op_clk_freq_hz"); return rval; } static int check_bk_bounds(struct device *dev, const struct ccs_pll_limits *lim, struct ccs_pll *pll, unsigned int which) { const struct ccs_pll_branch_limits_bk *lim_bk; struct ccs_pll_branch_bk *pll_bk; const char *s = pll_string(which); int rval; if (which == PLL_OP) { if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) return 0; lim_bk = &lim->op_bk; pll_bk = &pll->op_bk; } else { lim_bk = &lim->vt_bk; pll_bk = &pll->vt_bk; } rval = bounds_check(dev, pll_bk->sys_clk_div, lim_bk->min_sys_clk_div, lim_bk->max_sys_clk_div, s, "op_sys_clk_div"); if (!rval) rval = bounds_check(dev, pll_bk->sys_clk_freq_hz, lim_bk->min_sys_clk_freq_hz, lim_bk->max_sys_clk_freq_hz, s, "sys_clk_freq_hz"); if (!rval) rval = bounds_check(dev, pll_bk->sys_clk_div, lim_bk->min_sys_clk_div, lim_bk->max_sys_clk_div, s, "sys_clk_div"); if (!rval) rval = bounds_check(dev, pll_bk->pix_clk_freq_hz, lim_bk->min_pix_clk_freq_hz, lim_bk->max_pix_clk_freq_hz, s, "pix_clk_freq_hz"); return rval; } static int check_ext_bounds(struct device *dev, struct ccs_pll *pll) { if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING) && pll->pixel_rate_pixel_array > pll->pixel_rate_csi) { dev_dbg(dev, "device does not support derating\n"); return -EINVAL; } if (!(pll->flags & CCS_PLL_FLAG_FIFO_OVERRATING) && pll->pixel_rate_pixel_array < pll->pixel_rate_csi) { dev_dbg(dev, "device does not support overrating\n"); return -EINVAL; } return 0; } #define CPHY_CONST 7 #define DPHY_CONST 16 #define PHY_CONST_DIV 16 static void ccs_pll_calculate_vt(struct device *dev, const struct ccs_pll_limits *lim, const struct ccs_pll_branch_limits_bk *op_lim_bk, struct ccs_pll *pll, struct ccs_pll_branch_fr *pll_fr, struct ccs_pll_branch_bk *op_pll_bk, bool cphy, uint32_t phy_const) { uint32_t sys_div; uint32_t best_pix_div = INT_MAX >> 1; uint32_t vt_op_binning_div; uint32_t min_vt_div, max_vt_div, vt_div; uint32_t min_sys_div, max_sys_div; if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) goto out_calc_pixel_rate; /* * Find out whether a sensor supports derating. If it does not, VT and * OP domains are required to run at the same pixel rate. */ if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING)) { min_vt_div = op_pll_bk->sys_clk_div * op_pll_bk->pix_clk_div * pll->vt_lanes * phy_const / pll->op_lanes / PHY_CONST_DIV; } else { /* * Some sensors perform analogue binning and some do this * digitally. The ones doing this digitally can be roughly be * found out using this formula. The ones doing this digitally * should run at higher clock rate, so smaller divisor is used * on video timing side. */ if (lim->min_line_length_pck_bin > lim->min_line_length_pck / pll->binning_horizontal) vt_op_binning_div = pll->binning_horizontal; else vt_op_binning_div = 1; dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div); /* * Profile 2 supports vt_pix_clk_div E [4, 10] * * Horizontal binning can be used as a base for difference in * divisors. One must make sure that horizontal blanking is * enough to accommodate the CSI-2 sync codes. * * Take scaling factor and number of VT lanes into account as well. * * Find absolute limits for the factor of vt divider. */ dev_dbg(dev, "scale_m: %u\n", pll->scale_m); min_vt_div = DIV_ROUND_UP(pll->bits_per_pixel * op_pll_bk->sys_clk_div * pll->scale_n * pll->vt_lanes * phy_const, (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? pll->csi2.lanes : 1) * vt_op_binning_div * pll->scale_m * PHY_CONST_DIV); } /* Find smallest and biggest allowed vt divisor. */ dev_dbg(dev, "min_vt_div: %u\n", min_vt_div); min_vt_div = max(min_vt_div, DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz, lim->vt_bk.max_pix_clk_freq_hz)); dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n", min_vt_div); min_vt_div = max_t(uint32_t, min_vt_div, lim->vt_bk.min_pix_clk_div * lim->vt_bk.min_sys_clk_div); dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div); max_vt_div = lim->vt_bk.max_sys_clk_div * lim->vt_bk.max_pix_clk_div; dev_dbg(dev, "max_vt_div: %u\n", max_vt_div); max_vt_div = min(max_vt_div, DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz, lim->vt_bk.min_pix_clk_freq_hz)); dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n", max_vt_div); /* * Find limitsits for sys_clk_div. Not all values are possible * with all values of pix_clk_div. */ min_sys_div = lim->vt_bk.min_sys_clk_div; dev_dbg(dev, "min_sys_div: %u\n", min_sys_div); min_sys_div = max(min_sys_div, DIV_ROUND_UP(min_vt_div, lim->vt_bk.max_pix_clk_div)); dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", min_sys_div); min_sys_div = max(min_sys_div, pll_fr->pll_op_clk_freq_hz / lim->vt_bk.max_sys_clk_freq_hz); dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", min_sys_div); min_sys_div = clk_div_even_up(min_sys_div); dev_dbg(dev, "min_sys_div: one or even: %u\n", min_sys_div); max_sys_div = lim->vt_bk.max_sys_clk_div; dev_dbg(dev, "max_sys_div: %u\n", max_sys_div); max_sys_div = min(max_sys_div, DIV_ROUND_UP(max_vt_div, lim->vt_bk.min_pix_clk_div)); dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", max_sys_div); max_sys_div = min(max_sys_div, DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz, lim->vt_bk.min_pix_clk_freq_hz)); dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", max_sys_div); /* * Find pix_div such that a legal pix_div * sys_div results * into a value which is not smaller than div, the desired * divisor. */ for (vt_div = min_vt_div; vt_div <= max_vt_div; vt_div += 2 - (vt_div & 1)) { for (sys_div = min_sys_div; sys_div <= max_sys_div; sys_div += 2 - (sys_div & 1)) { uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div); uint16_t rounded_div; if (pix_div < lim->vt_bk.min_pix_clk_div || pix_div > lim->vt_bk.max_pix_clk_div) { dev_dbg(dev, "pix_div %u too small or too big (%u--%u)\n", pix_div, lim->vt_bk.min_pix_clk_div, lim->vt_bk.max_pix_clk_div); continue; } rounded_div = roundup(vt_div, best_pix_div); /* Check if this one is better. */ if (pix_div * sys_div <= rounded_div) best_pix_div = pix_div; /* Bail out if we've already found the best value. */ if (vt_div == rounded_div) break; } if (best_pix_div < INT_MAX >> 1) break; } pll->vt_bk.sys_clk_div = DIV_ROUND_UP(vt_div, best_pix_div); pll->vt_bk.pix_clk_div = best_pix_div; pll->vt_bk.sys_clk_freq_hz = pll_fr->pll_op_clk_freq_hz / pll->vt_bk.sys_clk_div; pll->vt_bk.pix_clk_freq_hz = pll->vt_bk.sys_clk_freq_hz / pll->vt_bk.pix_clk_div; out_calc_pixel_rate: pll->pixel_rate_pixel_array = pll->vt_bk.pix_clk_freq_hz * pll->vt_lanes; } /* * Heuristically guess the PLL tree for a given common multiplier and * divisor. Begin with the operational timing and continue to video * timing once operational timing has been verified. * * @mul is the PLL multiplier and @div is the common divisor * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL * multiplier will be a multiple of @mul. * * @return Zero on success, error code on error. */ static int ccs_pll_calculate_op(struct device *dev, const struct ccs_pll_limits *lim, const struct ccs_pll_branch_limits_fr *op_lim_fr, const struct ccs_pll_branch_limits_bk *op_lim_bk, struct ccs_pll *pll, struct ccs_pll_branch_fr *op_pll_fr, struct ccs_pll_branch_bk *op_pll_bk, uint32_t mul, uint32_t div, uint32_t l, bool cphy, uint32_t phy_const) { /* * Higher multipliers (and divisors) are often required than * necessitated by the external clock and the output clocks. * There are limits for all values in the clock tree. These * are the minimum and maximum multiplier for mul. */ uint32_t more_mul_min, more_mul_max; uint32_t more_mul_factor; uint32_t i; /* * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be * too high. */ dev_dbg(dev, "op_pre_pll_clk_div %u\n", op_pll_fr->pre_pll_clk_div); /* Don't go above max pll multiplier. */ more_mul_max = op_lim_fr->max_pll_multiplier / mul; dev_dbg(dev, "more_mul_max: max_op_pll_multiplier check: %u\n", more_mul_max); /* Don't go above max pll op frequency. */ more_mul_max = min_t(uint32_t, more_mul_max, op_lim_fr->max_pll_op_clk_freq_hz / (pll->ext_clk_freq_hz / op_pll_fr->pre_pll_clk_div * mul)); dev_dbg(dev, "more_mul_max: max_pll_op_clk_freq_hz check: %u\n", more_mul_max); /* Don't go above the division capability of op sys clock divider. */ more_mul_max = min(more_mul_max, op_lim_bk->max_sys_clk_div * op_pll_fr->pre_pll_clk_div / div); dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n", more_mul_max); /* Ensure we won't go above max_pll_multiplier. */ more_mul_max = min(more_mul_max, op_lim_fr->max_pll_multiplier / mul); dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n", more_mul_max); /* Ensure we won't go below min_pll_op_clk_freq_hz. */ more_mul_min = DIV_ROUND_UP(op_lim_fr->min_pll_op_clk_freq_hz, pll->ext_clk_freq_hz / op_pll_fr->pre_pll_clk_div * mul); dev_dbg(dev, "more_mul_min: min_op_pll_op_clk_freq_hz check: %u\n", more_mul_min); /* Ensure we won't go below min_pll_multiplier. */ more_mul_min = max(more_mul_min, DIV_ROUND_UP(op_lim_fr->min_pll_multiplier, mul)); dev_dbg(dev, "more_mul_min: min_op_pll_multiplier check: %u\n", more_mul_min); if (more_mul_min > more_mul_max) { dev_dbg(dev, "unable to compute more_mul_min and more_mul_max\n"); return -EINVAL; } more_mul_factor = lcm(div, op_pll_fr->pre_pll_clk_div) / div; dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor); more_mul_factor = lcm(more_mul_factor, op_lim_bk->min_sys_clk_div); dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n", more_mul_factor); i = roundup(more_mul_min, more_mul_factor); if (!is_one_or_even(i)) i <<= 1; dev_dbg(dev, "final more_mul: %u\n", i); if (i > more_mul_max) { dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max); return -EINVAL; } op_pll_fr->pll_multiplier = mul * i; op_pll_bk->sys_clk_div = div * i / op_pll_fr->pre_pll_clk_div; dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll_bk->sys_clk_div); op_pll_fr->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz / op_pll_fr->pre_pll_clk_div; op_pll_fr->pll_op_clk_freq_hz = op_pll_fr->pll_ip_clk_freq_hz * op_pll_fr->pll_multiplier; if (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL) op_pll_bk->pix_clk_div = pll->bits_per_pixel * pll->op_lanes * phy_const / PHY_CONST_DIV / pll->csi2.lanes / l; else op_pll_bk->pix_clk_div = pll->bits_per_pixel * phy_const / PHY_CONST_DIV / l; op_pll_bk->pix_clk_freq_hz = op_pll_bk->sys_clk_freq_hz / op_pll_bk->pix_clk_div; dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll_bk->pix_clk_div); return 0; } int ccs_pll_calculate(struct device *dev, const struct ccs_pll_limits *lim, struct ccs_pll *pll) { const struct ccs_pll_branch_limits_fr *op_lim_fr = &lim->vt_fr; const struct ccs_pll_branch_limits_bk *op_lim_bk = &lim->op_bk; struct ccs_pll_branch_fr *op_pll_fr = &pll->vt_fr; struct ccs_pll_branch_bk *op_pll_bk = &pll->op_bk; bool cphy = pll->bus_type == CCS_PLL_BUS_TYPE_CSI2_CPHY; uint32_t phy_const = cphy ? CPHY_CONST : DPHY_CONST; uint16_t min_op_pre_pll_clk_div; uint16_t max_op_pre_pll_clk_div; uint32_t mul, div; uint32_t l = (!pll->op_bits_per_lane || pll->op_bits_per_lane >= pll->bits_per_pixel) ? 1 : 2; uint32_t i; int rval = -EINVAL; if (!(pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL)) { pll->op_lanes = 1; pll->vt_lanes = 1; } if (!pll->op_lanes || !pll->vt_lanes || !pll->bits_per_pixel || !pll->ext_clk_freq_hz || !pll->link_freq || !pll->scale_m || !op_lim_fr->min_pll_ip_clk_freq_hz || !op_lim_fr->max_pll_ip_clk_freq_hz || !op_lim_fr->min_pll_op_clk_freq_hz || !op_lim_fr->max_pll_op_clk_freq_hz || !op_lim_bk->max_sys_clk_div || !op_lim_fr->max_pll_multiplier) return -EINVAL; /* * Make sure op_pix_clk_div will be integer --- unless flexible * op_pix_clk_div is supported */ if (!(pll->flags & CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV) && (pll->bits_per_pixel * pll->op_lanes) % (pll->csi2.lanes * l)) { dev_dbg(dev, "op_pix_clk_div not an integer (bpp %u, op lanes %u, lanes %u, l %u)\n", pll->bits_per_pixel, pll->op_lanes, pll->csi2.lanes, l); return -EINVAL; } dev_dbg(dev, "vt_lanes: %u\n", pll->vt_lanes); dev_dbg(dev, "op_lanes: %u\n", pll->op_lanes); if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) { /* * If there's no OP PLL at all, use the VT values * instead. The OP values are ignored for the rest of * the PLL calculation. */ op_lim_fr = &lim->vt_fr; op_lim_bk = &lim->vt_bk; op_pll_bk = &pll->vt_bk; } dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal, pll->binning_vertical); switch (pll->bus_type) { case CCS_PLL_BUS_TYPE_CSI2_DPHY: /* CSI transfers 2 bits per clock per lane; thus times 2 */ op_pll_bk->sys_clk_freq_hz = pll->link_freq * 2 * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? 1 : pll->csi2.lanes); break; case CCS_PLL_BUS_TYPE_CSI2_CPHY: op_pll_bk->sys_clk_freq_hz = pll->link_freq * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? 1 : pll->csi2.lanes); break; default: return -EINVAL; } pll->pixel_rate_csi = div_u64((uint64_t)op_pll_bk->sys_clk_freq_hz * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? pll->csi2.lanes : 1) * PHY_CONST_DIV, phy_const * pll->bits_per_pixel * l); /* Figure out limits for OP pre-pll divider based on extclk */ dev_dbg(dev, "min / max op_pre_pll_clk_div: %u / %u\n", op_lim_fr->min_pre_pll_clk_div, op_lim_fr->max_pre_pll_clk_div); max_op_pre_pll_clk_div = min_t(uint16_t, op_lim_fr->max_pre_pll_clk_div, clk_div_even(pll->ext_clk_freq_hz / op_lim_fr->min_pll_ip_clk_freq_hz)); min_op_pre_pll_clk_div = max_t(uint16_t, op_lim_fr->min_pre_pll_clk_div, clk_div_even_up( DIV_ROUND_UP(pll->ext_clk_freq_hz, op_lim_fr->max_pll_ip_clk_freq_hz))); dev_dbg(dev, "pre-pll check: min / max op_pre_pll_clk_div: %u / %u\n", min_op_pre_pll_clk_div, max_op_pre_pll_clk_div); i = gcd(op_pll_bk->sys_clk_freq_hz, pll->ext_clk_freq_hz); mul = op_pll_bk->sys_clk_freq_hz / i; div = pll->ext_clk_freq_hz / i; dev_dbg(dev, "mul %u / div %u\n", mul, div); min_op_pre_pll_clk_div = max_t(uint16_t, min_op_pre_pll_clk_div, clk_div_even_up( mul / one_or_more( DIV_ROUND_UP(op_lim_fr->max_pll_op_clk_freq_hz, pll->ext_clk_freq_hz)))); dev_dbg(dev, "pll_op check: min / max op_pre_pll_clk_div: %u / %u\n", min_op_pre_pll_clk_div, max_op_pre_pll_clk_div); for (op_pll_fr->pre_pll_clk_div = min_op_pre_pll_clk_div; op_pll_fr->pre_pll_clk_div <= max_op_pre_pll_clk_div; op_pll_fr->pre_pll_clk_div += (pll->flags & CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER) ? 1 : 2 - (op_pll_fr->pre_pll_clk_div & 1)) { rval = ccs_pll_calculate_op(dev, lim, op_lim_fr, op_lim_bk, pll, op_pll_fr, op_pll_bk, mul, div, l, cphy, phy_const); if (rval) continue; rval = check_fr_bounds(dev, lim, pll, PLL_VT); if (rval) continue; rval = check_bk_bounds(dev, lim, pll, PLL_OP); if (rval) continue; ccs_pll_calculate_vt(dev, lim, op_lim_bk, pll, op_pll_fr, op_pll_bk, cphy, phy_const); rval = check_bk_bounds(dev, lim, pll, PLL_VT); if (rval) continue; rval = check_ext_bounds(dev, pll); if (rval) continue; print_pll(dev, pll); return 0; } dev_dbg(dev, "unable to compute pre_pll divisor\n"); return rval; } EXPORT_SYMBOL_GPL(ccs_pll_calculate); MODULE_AUTHOR("Sakari Ailus "); MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ PLL calculator"); MODULE_LICENSE("GPL v2");