/* * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved. * Copyright(c) 2006 Chris Snook * Copyright(c) 2006 Jay Cliburn * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution in the * file called COPYING. * * Contact Information: * Xiong Huang * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei, * Xinzhu 302, TAIWAN, REPUBLIC OF CHINA * * Chris Snook * Jay Cliburn * * This version is adapted from the Attansic reference driver for * inclusion in the Linux kernel. It is currently under heavy development. * A very incomplete list of things that need to be dealt with: * * TODO: * Fix TSO; tx performance is horrible with TSO enabled. * Wake on LAN. * Add more ethtool functions, including set ring parameters. * Fix abstruse irq enable/disable condition described here: * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2 * * NEEDS TESTING: * VLAN * multicast * promiscuous mode * interrupt coalescing * SMP torture testing */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atl1.h" #define DRIVER_VERSION "2.0.6" char atl1_driver_name[] = "atl1"; static const char atl1_driver_string[] = "Attansic L1 Ethernet Network Driver"; static const char atl1_copyright[] = "Copyright(c) 2005-2006 Attansic Corporation."; char atl1_driver_version[] = DRIVER_VERSION; MODULE_AUTHOR ("Attansic Corporation , Chris Snook , Jay Cliburn "); MODULE_DESCRIPTION("Attansic 1000M Ethernet Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRIVER_VERSION); /* * atl1_pci_tbl - PCI Device ID Table */ static const struct pci_device_id atl1_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, 0x1048)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, atl1_pci_tbl); /* * atl1_sw_init - Initialize general software structures (struct atl1_adapter) * @adapter: board private structure to initialize * * atl1_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int __devinit atl1_sw_init(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; /* PCI config space info */ pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->max_frame_size = netdev->mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; adapter->wol = 0; adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7; adapter->ict = 50000; /* 100ms */ adapter->link_speed = SPEED_0; /* hardware init */ adapter->link_duplex = FULL_DUPLEX; hw->phy_configured = false; hw->preamble_len = 7; hw->ipgt = 0x60; hw->min_ifg = 0x50; hw->ipgr1 = 0x40; hw->ipgr2 = 0x60; hw->max_retry = 0xf; hw->lcol = 0x37; hw->jam_ipg = 7; hw->rfd_burst = 8; hw->rrd_burst = 8; hw->rfd_fetch_gap = 1; hw->rx_jumbo_th = adapter->rx_buffer_len / 8; hw->rx_jumbo_lkah = 1; hw->rrd_ret_timer = 16; hw->tpd_burst = 4; hw->tpd_fetch_th = 16; hw->txf_burst = 0x100; hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3; hw->tpd_fetch_gap = 1; hw->rcb_value = atl1_rcb_64; hw->dma_ord = atl1_dma_ord_enh; hw->dmar_block = atl1_dma_req_256; hw->dmaw_block = atl1_dma_req_256; hw->cmb_rrd = 4; hw->cmb_tpd = 4; hw->cmb_rx_timer = 1; /* about 2us */ hw->cmb_tx_timer = 1; /* about 2us */ hw->smb_timer = 100000; /* about 200ms */ atomic_set(&adapter->irq_sem, 0); spin_lock_init(&adapter->lock); spin_lock_init(&adapter->mb_lock); return 0; } /* * atl1_setup_mem_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ s32 atl1_setup_ring_resources(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_ring_header *ring_header = &adapter->ring_header; struct pci_dev *pdev = adapter->pdev; int size; u8 offset = 0; size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count); tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); if (unlikely(!tpd_ring->buffer_info)) { printk(KERN_WARNING "%s: kzalloc failed , size = D%d\n", atl1_driver_name, size); goto err_nomem; } rfd_ring->buffer_info = (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count); /* real ring DMA buffer */ ring_header->size = size = sizeof(struct tx_packet_desc) * tpd_ring->count + sizeof(struct rx_free_desc) * rfd_ring->count + sizeof(struct rx_return_desc) * rrd_ring->count + sizeof(struct coals_msg_block) + sizeof(struct stats_msg_block) + 40; /* "40: for 8 bytes align" huh? -- CHS */ ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, &ring_header->dma); if (unlikely(!ring_header->desc)) { printk(KERN_WARNING "%s: pci_alloc_consistent failed, size = D%d\n", atl1_driver_name, size); goto err_nomem; } memset(ring_header->desc, 0, ring_header->size); /* init TPD ring */ tpd_ring->dma = ring_header->dma; offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0; tpd_ring->dma += offset; tpd_ring->desc = (u8 *) ring_header->desc + offset; tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count; atomic_set(&tpd_ring->next_to_use, 0); atomic_set(&tpd_ring->next_to_clean, 0); /* init RFD ring */ rfd_ring->dma = tpd_ring->dma + tpd_ring->size; offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0; rfd_ring->dma += offset; rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset); rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count; rfd_ring->next_to_clean = 0; /* rfd_ring->next_to_use = rfd_ring->count - 1; */ atomic_set(&rfd_ring->next_to_use, 0); /* init RRD ring */ rrd_ring->dma = rfd_ring->dma + rfd_ring->size; offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0; rrd_ring->dma += offset; rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset); rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count; rrd_ring->next_to_use = 0; atomic_set(&rrd_ring->next_to_clean, 0); /* init CMB */ adapter->cmb.dma = rrd_ring->dma + rrd_ring->size; offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0; adapter->cmb.dma += offset; adapter->cmb.cmb = (struct coals_msg_block *) ((u8 *) rrd_ring->desc + (rrd_ring->size + offset)); /* init SMB */ adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block); offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0; adapter->smb.dma += offset; adapter->smb.smb = (struct stats_msg_block *) ((u8 *) adapter->cmb.cmb + (sizeof(struct coals_msg_block) + offset)); return ATL1_SUCCESS; err_nomem: kfree(tpd_ring->buffer_info); return -ENOMEM; } /* * atl1_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static void atl1_irq_enable(struct atl1_adapter *adapter) { if (likely(!atomic_dec_and_test(&adapter->irq_sem))) iowrite32(IMR_NORMAL_MASK, adapter->hw.hw_addr + REG_IMR); } static void atl1_clear_phy_int(struct atl1_adapter *adapter) { u16 phy_data; unsigned long flags; spin_lock_irqsave(&adapter->lock, flags); atl1_read_phy_reg(&adapter->hw, 19, &phy_data); spin_unlock_irqrestore(&adapter->lock, flags); } static void atl1_inc_smb(struct atl1_adapter *adapter) { struct stats_msg_block *smb = adapter->smb.smb; /* Fill out the OS statistics structure */ adapter->soft_stats.rx_packets += smb->rx_ok; adapter->soft_stats.tx_packets += smb->tx_ok; adapter->soft_stats.rx_bytes += smb->rx_byte_cnt; adapter->soft_stats.tx_bytes += smb->tx_byte_cnt; adapter->soft_stats.multicast += smb->rx_mcast; adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 + smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry); /* Rx Errors */ adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err + smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov + smb->rx_rrd_ov + smb->rx_align_err); adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov; adapter->soft_stats.rx_length_errors += smb->rx_len_err; adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err; adapter->soft_stats.rx_frame_errors += smb->rx_align_err; adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov + smb->rx_rxf_ov); adapter->soft_stats.rx_pause += smb->rx_pause; adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov; adapter->soft_stats.rx_trunc += smb->rx_sz_ov; /* Tx Errors */ adapter->soft_stats.tx_errors += (smb->tx_late_col + smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc); adapter->soft_stats.tx_fifo_errors += smb->tx_underrun; adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col; adapter->soft_stats.tx_window_errors += smb->tx_late_col; adapter->soft_stats.excecol += smb->tx_abort_col; adapter->soft_stats.deffer += smb->tx_defer; adapter->soft_stats.scc += smb->tx_1_col; adapter->soft_stats.mcc += smb->tx_2_col; adapter->soft_stats.latecol += smb->tx_late_col; adapter->soft_stats.tx_underun += smb->tx_underrun; adapter->soft_stats.tx_trunc += smb->tx_trunc; adapter->soft_stats.tx_pause += smb->tx_pause; adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets; adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets; adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes; adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes; adapter->net_stats.multicast = adapter->soft_stats.multicast; adapter->net_stats.collisions = adapter->soft_stats.collisions; adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors; adapter->net_stats.rx_over_errors = adapter->soft_stats.rx_missed_errors; adapter->net_stats.rx_length_errors = adapter->soft_stats.rx_length_errors; adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors; adapter->net_stats.rx_frame_errors = adapter->soft_stats.rx_frame_errors; adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors; adapter->net_stats.rx_missed_errors = adapter->soft_stats.rx_missed_errors; adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors; adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors; adapter->net_stats.tx_aborted_errors = adapter->soft_stats.tx_aborted_errors; adapter->net_stats.tx_window_errors = adapter->soft_stats.tx_window_errors; adapter->net_stats.tx_carrier_errors = adapter->soft_stats.tx_carrier_errors; } static void atl1_rx_checksum(struct atl1_adapter *adapter, struct rx_return_desc *rrd, struct sk_buff *skb) { skb->ip_summed = CHECKSUM_NONE; if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC | ERR_FLAG_CODE | ERR_FLAG_OV)) { adapter->hw_csum_err++; printk(KERN_DEBUG "%s: rx checksum error\n", atl1_driver_name); return; } } /* not IPv4 */ if (!(rrd->pkt_flg & PACKET_FLAG_IPV4)) /* checksum is invalid, but it's not an IPv4 pkt, so ok */ return; /* IPv4 packet */ if (likely(!(rrd->err_flg & (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) { skb->ip_summed = CHECKSUM_UNNECESSARY; adapter->hw_csum_good++; return; } /* IPv4, but hardware thinks its checksum is wrong */ printk(KERN_DEBUG "%s: hw csum wrong pkt_flag:%x, err_flag:%x\n", atl1_driver_name, rrd->pkt_flg, rrd->err_flg); skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum); adapter->hw_csum_err++; return; } /* * atl1_alloc_rx_buffers - Replace used receive buffers * @adapter: address of board private structure */ static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter) { struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct page *page; unsigned long offset; struct atl1_buffer *buffer_info, *next_info; struct sk_buff *skb; u16 num_alloc = 0; u16 rfd_next_to_use, next_next; struct rx_free_desc *rfd_desc; next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use); if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; while (!buffer_info->alloced && !next_info->alloced) { if (buffer_info->skb) { buffer_info->alloced = 1; goto next; } rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use); skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN); if (unlikely(!skb)) { /* Better luck next round */ adapter->net_stats.rx_dropped++; break; } /* * Make buffer alignment 2 beyond a 16 byte boundary * this will result in a 16 byte aligned IP header after * the 14 byte MAC header is removed */ skb_reserve(skb, NET_IP_ALIGN); skb->dev = netdev; buffer_info->alloced = 1; buffer_info->skb = skb; buffer_info->length = (u16) adapter->rx_buffer_len; page = virt_to_page(skb->data); offset = (unsigned long)skb->data & ~PAGE_MASK; buffer_info->dma = pci_map_page(pdev, page, offset, adapter->rx_buffer_len, PCI_DMA_FROMDEVICE); rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len); rfd_desc->coalese = 0; next: rfd_next_to_use = next_next; if (unlikely(++next_next == rfd_ring->count)) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; num_alloc++; } if (num_alloc) { /* * Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use); } return num_alloc; } static void atl1_intr_rx(struct atl1_adapter *adapter) { int i, count; u16 length; u16 rrd_next_to_clean; u32 value; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_buffer *buffer_info; struct rx_return_desc *rrd; struct sk_buff *skb; count = 0; rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean); while (1) { rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean); i = 1; if (likely(rrd->xsz.valid)) { /* packet valid */ chk_rrd: /* check rrd status */ if (likely(rrd->num_buf == 1)) goto rrd_ok; /* rrd seems to be bad */ if (unlikely(i-- > 0)) { /* rrd may not be DMAed completely */ printk(KERN_DEBUG "%s: RRD may not be DMAed completely\n", atl1_driver_name); udelay(1); goto chk_rrd; } /* bad rrd */ printk(KERN_DEBUG "%s: bad RRD\n", atl1_driver_name); /* see if update RFD index */ if (rrd->num_buf > 1) { u16 num_buf; num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) / adapter->rx_buffer_len; if (rrd->num_buf == num_buf) { /* clean alloc flag for bad rrd */ while (rfd_ring->next_to_clean != (rrd->buf_indx + num_buf)) { rfd_ring->buffer_info[rfd_ring-> next_to_clean].alloced = 0; if (++rfd_ring->next_to_clean == rfd_ring->count) { rfd_ring-> next_to_clean = 0; } } } } /* update rrd */ rrd->xsz.valid = 0; if (++rrd_next_to_clean == rrd_ring->count) rrd_next_to_clean = 0; count++; continue; } else { /* current rrd still not be updated */ break; } rrd_ok: /* clean alloc flag for bad rrd */ while (rfd_ring->next_to_clean != rrd->buf_indx) { rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0; if (++rfd_ring->next_to_clean == rfd_ring->count) rfd_ring->next_to_clean = 0; } buffer_info = &rfd_ring->buffer_info[rrd->buf_indx]; if (++rfd_ring->next_to_clean == rfd_ring->count) rfd_ring->next_to_clean = 0; /* update rrd next to clean */ if (++rrd_next_to_clean == rrd_ring->count) rrd_next_to_clean = 0; count++; if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { if (!(rrd->err_flg & (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM | ERR_FLAG_LEN))) { /* packet error, don't need upstream */ buffer_info->alloced = 0; rrd->xsz.valid = 0; continue; } } /* Good Receive */ pci_unmap_page(adapter->pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); skb = buffer_info->skb; length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size); skb_put(skb, length - ETHERNET_FCS_SIZE); /* Receive Checksum Offload */ atl1_rx_checksum(adapter, rrd, skb); skb->protocol = eth_type_trans(skb, adapter->netdev); if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) { u16 vlan_tag = (rrd->vlan_tag >> 4) | ((rrd->vlan_tag & 7) << 13) | ((rrd->vlan_tag & 8) << 9); vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag); } else netif_rx(skb); /* let protocol layer free skb */ buffer_info->skb = NULL; buffer_info->alloced = 0; rrd->xsz.valid = 0; adapter->netdev->last_rx = jiffies; } atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean); atl1_alloc_rx_buffers(adapter); /* update mailbox ? */ if (count) { u32 tpd_next_to_use; u32 rfd_next_to_use; u32 rrd_next_to_clean; spin_lock(&adapter->mb_lock); tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT) | ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); spin_unlock(&adapter->mb_lock); } } static void atl1_intr_tx(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; u16 sw_tpd_next_to_clean; u16 cmb_tpd_next_to_clean; u8 update = 0; sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean); cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx); while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) { struct tx_packet_desc *tpd; update = 1; tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean); buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean]; if (buffer_info->dma) { pci_unmap_page(adapter->pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); buffer_info->dma = 0; } if (buffer_info->skb) { dev_kfree_skb_irq(buffer_info->skb); buffer_info->skb = NULL; } tpd->buffer_addr = 0; tpd->desc.data = 0; if (++sw_tpd_next_to_clean == tpd_ring->count) sw_tpd_next_to_clean = 0; } atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean); if (netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) netif_wake_queue(adapter->netdev); } static void atl1_check_for_link(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; u16 phy_data = 0; spin_lock(&adapter->lock); adapter->phy_timer_pending = false; atl1_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); atl1_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); spin_unlock(&adapter->lock); /* notify upper layer link down ASAP */ if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ printk(KERN_INFO "%s: %s link is down\n", atl1_driver_name, netdev->name); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } } schedule_work(&adapter->link_chg_task); } /* * atl1_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure * @pt_regs: CPU registers structure */ static irqreturn_t atl1_intr(int irq, void *data) { /*struct atl1_adapter *adapter = ((struct net_device *)data)->priv;*/ struct atl1_adapter *adapter = netdev_priv(data); u32 status; u8 update_rx; int max_ints = 10; status = adapter->cmb.cmb->int_stats; if (!status) return IRQ_NONE; update_rx = 0; do { /* clear CMB interrupt status at once */ adapter->cmb.cmb->int_stats = 0; if (status & ISR_GPHY) /* clear phy status */ atl1_clear_phy_int(adapter); /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR); /* check if SMB intr */ if (status & ISR_SMB) atl1_inc_smb(adapter); /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { printk(KERN_DEBUG "%s: pcie phy link down %x\n", atl1_driver_name, status); if (netif_running(adapter->netdev)) { /* reset MAC */ iowrite32(0, adapter->hw.hw_addr + REG_IMR); schedule_work(&adapter->pcie_dma_to_rst_task); return IRQ_HANDLED; } } /* check if DMA read/write error ? */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { printk(KERN_DEBUG "%s: pcie DMA r/w error (status = 0x%x)\n", atl1_driver_name, status); iowrite32(0, adapter->hw.hw_addr + REG_IMR); schedule_work(&adapter->pcie_dma_to_rst_task); return IRQ_HANDLED; } /* link event */ if (status & ISR_GPHY) { adapter->soft_stats.tx_carrier_errors++; atl1_check_for_link(adapter); } /* transmit event */ if (status & ISR_CMB_TX) atl1_intr_tx(adapter); /* rx exception */ if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN | ISR_RRD_OV | ISR_HOST_RFD_UNRUN | ISR_HOST_RRD_OV | ISR_CMB_RX))) { if (status & (ISR_RXF_OV | ISR_RFD_UNRUN | ISR_RRD_OV | ISR_HOST_RFD_UNRUN | ISR_HOST_RRD_OV)) printk(KERN_INFO "%s: rx exception: status = 0x%x\n", atl1_driver_name, status); atl1_intr_rx(adapter); } if (--max_ints < 0) break; } while ((status = adapter->cmb.cmb->int_stats)); /* re-enable Interrupt */ iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR); return IRQ_HANDLED; } /* * atl1_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. */ static void atl1_set_multi(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; struct dev_mc_list *mc_ptr; u32 rctl; u32 hash_value; /* Check for Promiscuous and All Multicast modes */ rctl = ioread32(hw->hw_addr + REG_MAC_CTRL); if (netdev->flags & IFF_PROMISC) rctl |= MAC_CTRL_PROMIS_EN; else if (netdev->flags & IFF_ALLMULTI) { rctl |= MAC_CTRL_MC_ALL_EN; rctl &= ~MAC_CTRL_PROMIS_EN; } else rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); iowrite32(rctl, hw->hw_addr + REG_MAC_CTRL); /* clear the old settings from the multicast hash table */ iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE); iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2)); /* compute mc addresses' hash value ,and put it into hash table */ for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { hash_value = atl1_hash_mc_addr(hw, mc_ptr->dmi_addr); atl1_hash_set(hw, hash_value); } } static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter) { u32 value; struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; /* Config MAC CTRL Register */ value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; /* duplex */ if (FULL_DUPLEX == adapter->link_duplex) value |= MAC_CTRL_DUPLX; /* speed */ value |= ((u32) ((SPEED_1000 == adapter->link_speed) ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); /* flow control */ value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); /* PAD & CRC */ value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); /* preamble length */ value |= (((u32) adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); /* vlan */ if (adapter->vlgrp) value |= MAC_CTRL_RMV_VLAN; /* rx checksum if (adapter->rx_csum) value |= MAC_CTRL_RX_CHKSUM_EN; */ /* filter mode */ value |= MAC_CTRL_BC_EN; if (netdev->flags & IFF_PROMISC) value |= MAC_CTRL_PROMIS_EN; else if (netdev->flags & IFF_ALLMULTI) value |= MAC_CTRL_MC_ALL_EN; /* value |= MAC_CTRL_LOOPBACK; */ iowrite32(value, hw->hw_addr + REG_MAC_CTRL); } static u32 atl1_check_link(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 ret_val; u16 speed, duplex, phy_data; int reconfig = 0; /* MII_BMSR must read twice */ atl1_read_phy_reg(hw, MII_BMSR, &phy_data); atl1_read_phy_reg(hw, MII_BMSR, &phy_data); if (!(phy_data & BMSR_LSTATUS)) { /* link down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ printk(KERN_INFO "%s: link is down\n", atl1_driver_name); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } return ATL1_SUCCESS; } /* Link Up */ ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) return ret_val; switch (hw->media_type) { case MEDIA_TYPE_1000M_FULL: if (speed != SPEED_1000 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_100M_FULL: if (speed != SPEED_100 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_100M_HALF: if (speed != SPEED_100 || duplex != HALF_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_FULL: if (speed != SPEED_10 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_HALF: if (speed != SPEED_10 || duplex != HALF_DUPLEX) reconfig = 1; break; } /* link result is our setting */ if (!reconfig) { if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1_setup_mac_ctrl(adapter); printk(KERN_INFO "%s: %s link is up %d Mbps %s\n", atl1_driver_name, netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "full duplex" : "half duplex"); } if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ netif_carrier_on(netdev); netif_wake_queue(netdev); } return ATL1_SUCCESS; } /* change orignal link status */ if (netif_carrier_ok(netdev)) { adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR && hw->media_type != MEDIA_TYPE_1000M_FULL) { switch (hw->media_type) { case MEDIA_TYPE_100M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_100M_HALF: phy_data = MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_10M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; break; default: /* MEDIA_TYPE_10M_HALF: */ phy_data = MII_CR_SPEED_10 | MII_CR_RESET; break; } atl1_write_phy_reg(hw, MII_BMCR, phy_data); return ATL1_SUCCESS; } /* auto-neg, insert timer to re-config phy */ if (!adapter->phy_timer_pending) { adapter->phy_timer_pending = true; mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ); } return ATL1_SUCCESS; } static void set_flow_ctrl_old(struct atl1_adapter *adapter) { u32 hi, lo, value; /* RFD Flow Control */ value = adapter->rfd_ring.count; hi = value / 16; if (hi < 2) hi = 2; lo = value * 7 / 8; value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH); /* RRD Flow Control */ value = adapter->rrd_ring.count; lo = value / 16; hi = value * 7 / 8; if (lo < 2) lo = 2; value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH); } static void set_flow_ctrl_new(struct atl1_hw *hw) { u32 hi, lo, value; /* RXF Flow Control */ value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN); lo = value / 16; if (lo < 192) lo = 192; hi = value * 7 / 8; if (hi < lo) hi = lo + 16; value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH); /* RRD Flow Control */ value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN); lo = value / 8; hi = value * 7 / 8; if (lo < 2) lo = 2; if (hi < lo) hi = lo + 3; value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH); } /* * atl1_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static u32 atl1_configure(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; u32 value; /* clear interrupt status */ iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR); /* set MAC Address */ value = (((u32) hw->mac_addr[2]) << 24) | (((u32) hw->mac_addr[3]) << 16) | (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4)); /* tx / rx ring */ /* HI base address */ iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32), hw->hw_addr + REG_DESC_BASE_ADDR_HI); /* LO base address */ iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_RFD_ADDR_LO); iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_RRD_ADDR_LO); iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_TPD_ADDR_LO); iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_CMB_ADDR_LO); iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_SMB_ADDR_LO); /* element count */ value = adapter->rrd_ring.count; value <<= 16; value += adapter->rfd_ring.count; iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE); iowrite32(adapter->tpd_ring.count, hw->hw_addr + REG_DESC_TPD_RING_SIZE); /* Load Ptr */ iowrite32(1, hw->hw_addr + REG_LOAD_PTR); /* config Mailbox */ value = ((atomic_read(&adapter->tpd_ring.next_to_use) & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) | ((atomic_read(&adapter->rrd_ring.next_to_clean) & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((atomic_read(&adapter->rfd_ring.next_to_use) & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT); iowrite32(value, hw->hw_addr + REG_MAILBOX); /* config IPG/IFG */ value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK) << MAC_IPG_IFG_IPGT_SHIFT) | (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) << MAC_IPG_IFG_MIFG_SHIFT) | (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) << MAC_IPG_IFG_IPGR1_SHIFT) | (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) << MAC_IPG_IFG_IPGR2_SHIFT); iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG); /* config Half-Duplex Control */ value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL); /* set Interrupt Moderator Timer */ iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT); iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL); /* set Interrupt Clear Timer */ iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER); /* set MTU, 4 : VLAN */ iowrite32(hw->max_frame_size + 4, hw->hw_addr + REG_MTU); /* jumbo size & rrd retirement timer */ value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) << RXQ_JMBOSZ_TH_SHIFT) | (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK) << RXQ_JMBO_LKAH_SHIFT) | (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK) << RXQ_RRD_TIMER_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM); /* Flow Control */ switch (hw->dev_rev) { case 0x8001: case 0x9001: case 0x9002: case 0x9003: set_flow_ctrl_old(adapter); break; default: set_flow_ctrl_new(hw); break; } /* config TXQ */ value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK) << TXQ_CTRL_TPD_BURST_NUM_SHIFT) | (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK) << TXQ_CTRL_TXF_BURST_NUM_SHIFT) | (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK) << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN; iowrite32(value, hw->hw_addr + REG_TXQ_CTRL); /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */ value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK) << TX_JUMBO_TASK_TH_SHIFT) | (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK) << TX_TPD_MIN_IPG_SHIFT); iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG); /* config RXQ */ value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK) << RXQ_CTRL_RFD_BURST_NUM_SHIFT) | (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK) << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) | (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK) << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN; iowrite32(value, hw->hw_addr + REG_RXQ_CTRL); /* config DMA Engine */ value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | ((((u32) hw->dmaw_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN | DMA_CTRL_DMAW_EN; value |= (u32) hw->dma_ord; if (atl1_rcb_128 == hw->rcb_value) value |= DMA_CTRL_RCB_VALUE; iowrite32(value, hw->hw_addr + REG_DMA_CTRL); /* config CMB / SMB */ value = hw->cmb_rrd | ((u32) hw->cmb_tpd << 16); iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH); value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16); iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER); iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER); /* --- enable CMB / SMB */ value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN; iowrite32(value, hw->hw_addr + REG_CSMB_CTRL); value = ioread32(adapter->hw.hw_addr + REG_ISR); if (unlikely((value & ISR_PHY_LINKDOWN) != 0)) value = 1; /* config failed */ else value = 0; /* clear all interrupt status */ iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR); iowrite32(0, adapter->hw.hw_addr + REG_ISR); return value; } /* * atl1_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static void atl1_irq_disable(struct atl1_adapter *adapter) { atomic_inc(&adapter->irq_sem); iowrite32(0, adapter->hw.hw_addr + REG_IMR); ioread32(adapter->hw.hw_addr + REG_IMR); synchronize_irq(adapter->pdev->irq); } static void atl1_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) { struct atl1_adapter *adapter = netdev_priv(netdev); unsigned long flags; u32 ctrl; spin_lock_irqsave(&adapter->lock, flags); /* atl1_irq_disable(adapter); */ adapter->vlgrp = grp; if (grp) { /* enable VLAN tag insert/strip */ ctrl = ioread32(adapter->hw.hw_addr + REG_MAC_CTRL); ctrl |= MAC_CTRL_RMV_VLAN; iowrite32(ctrl, adapter->hw.hw_addr + REG_MAC_CTRL); } else { /* disable VLAN tag insert/strip */ ctrl = ioread32(adapter->hw.hw_addr + REG_MAC_CTRL); ctrl &= ~MAC_CTRL_RMV_VLAN; iowrite32(ctrl, adapter->hw.hw_addr + REG_MAC_CTRL); } /* atl1_irq_enable(adapter); */ spin_unlock_irqrestore(&adapter->lock, flags); } /* FIXME: justify or remove -- CHS */ static void atl1_vlan_rx_add_vid(struct net_device *netdev, u16 vid) { /* We don't do Vlan filtering */ return; } /* FIXME: this looks wrong too -- CHS */ static void atl1_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) { struct atl1_adapter *adapter = netdev_priv(netdev); unsigned long flags; spin_lock_irqsave(&adapter->lock, flags); /* atl1_irq_disable(adapter); */ if (adapter->vlgrp) adapter->vlgrp->vlan_devices[vid] = NULL; /* atl1_irq_enable(adapter); */ spin_unlock_irqrestore(&adapter->lock, flags); /* We don't do Vlan filtering */ return; } static void atl1_restore_vlan(struct atl1_adapter *adapter) { atl1_vlan_rx_register(adapter->netdev, adapter->vlgrp); if (adapter->vlgrp) { u16 vid; for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { if (!adapter->vlgrp->vlan_devices[vid]) continue; atl1_vlan_rx_add_vid(adapter->netdev, vid); } } } static u16 tpd_avail(struct atl1_tpd_ring *tpd_ring) { u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); u16 next_to_use = atomic_read(&tpd_ring->next_to_use); return ((next_to_clean > next_to_use) ? next_to_clean - next_to_use - 1 : tpd_ring->count + next_to_clean - next_to_use - 1); } static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb, struct tso_param *tso) { /* We enter this function holding a spinlock. */ u8 ipofst; int err; if (skb_shinfo(skb)->gso_size) { if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (unlikely(err)) return err; } if (skb->protocol == ntohs(ETH_P_IP)) { skb->nh.iph->tot_len = 0; skb->nh.iph->check = 0; skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, skb->nh.iph->daddr, 0, IPPROTO_TCP, 0); ipofst = skb->nh.raw - skb->data; if (ipofst != ENET_HEADER_SIZE) /* 802.3 frame */ tso->tsopl |= 1 << TSO_PARAM_ETHTYPE_SHIFT; tso->tsopl |= (skb->nh.iph->ihl & CSUM_PARAM_IPHL_MASK) << CSUM_PARAM_IPHL_SHIFT; tso->tsopl |= ((skb->h.th->doff << 2) & TSO_PARAM_TCPHDRLEN_MASK) << TSO_PARAM_TCPHDRLEN_SHIFT; tso->tsopl |= (skb_shinfo(skb)->gso_size & TSO_PARAM_MSS_MASK) << TSO_PARAM_MSS_SHIFT; tso->tsopl |= 1 << TSO_PARAM_IPCKSUM_SHIFT; tso->tsopl |= 1 << TSO_PARAM_TCPCKSUM_SHIFT; tso->tsopl |= 1 << TSO_PARAM_SEGMENT_SHIFT; return true; } } return false; } static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb, struct csum_param *csum) { u8 css, cso; if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { cso = skb->h.raw - skb->data; css = (skb->h.raw + skb->csum) - skb->data; if (unlikely(cso & 0x1)) { printk(KERN_DEBUG "%s: payload offset != even number\n", atl1_driver_name); return -1; } csum->csumpl |= (cso & CSUM_PARAM_PLOADOFFSET_MASK) << CSUM_PARAM_PLOADOFFSET_SHIFT; csum->csumpl |= (css & CSUM_PARAM_XSUMOFFSET_MASK) << CSUM_PARAM_XSUMOFFSET_SHIFT; csum->csumpl |= 1 << CSUM_PARAM_CUSTOMCKSUM_SHIFT; return true; } return true; } static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb, bool tcp_seg) { /* We enter this function holding a spinlock. */ struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; struct page *page; int first_buf_len = skb->len; unsigned long offset; unsigned int nr_frags; unsigned int f; u16 tpd_next_to_use; u16 proto_hdr_len; u16 i, m, len12; first_buf_len -= skb->data_len; nr_frags = skb_shinfo(skb)->nr_frags; tpd_next_to_use = atomic_read(&tpd_ring->next_to_use); buffer_info = &tpd_ring->buffer_info[tpd_next_to_use]; if (unlikely(buffer_info->skb)) BUG(); buffer_info->skb = NULL; /* put skb in last TPD */ if (tcp_seg) { /* TSO/GSO */ proto_hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); buffer_info->length = proto_hdr_len; page = virt_to_page(skb->data); offset = (unsigned long)skb->data & ~PAGE_MASK; buffer_info->dma = pci_map_page(adapter->pdev, page, offset, proto_hdr_len, PCI_DMA_TODEVICE); if (++tpd_next_to_use == tpd_ring->count) tpd_next_to_use = 0; if (first_buf_len > proto_hdr_len) { len12 = first_buf_len - proto_hdr_len; m = (len12 + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; for (i = 0; i < m; i++) { buffer_info = &tpd_ring->buffer_info[tpd_next_to_use]; buffer_info->skb = NULL; buffer_info->length = (MAX_TX_BUF_LEN >= len12) ? MAX_TX_BUF_LEN : len12; len12 -= buffer_info->length; page = virt_to_page(skb->data + (proto_hdr_len + i * MAX_TX_BUF_LEN)); offset = (unsigned long)(skb->data + (proto_hdr_len + i * MAX_TX_BUF_LEN)) & ~PAGE_MASK; buffer_info->dma = pci_map_page(adapter->pdev, page, offset, buffer_info->length, PCI_DMA_TODEVICE); if (++tpd_next_to_use == tpd_ring->count) tpd_next_to_use = 0; } } } else { /* not TSO/GSO */ buffer_info->length = first_buf_len; page = virt_to_page(skb->data); offset = (unsigned long)skb->data & ~PAGE_MASK; buffer_info->dma = pci_map_page(adapter->pdev, page, offset, first_buf_len, PCI_DMA_TODEVICE); if (++tpd_next_to_use == tpd_ring->count) tpd_next_to_use = 0; } for (f = 0; f < nr_frags; f++) { struct skb_frag_struct *frag; u16 lenf, i, m; frag = &skb_shinfo(skb)->frags[f]; lenf = frag->size; m = (lenf + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; for (i = 0; i < m; i++) { buffer_info = &tpd_ring->buffer_info[tpd_next_to_use]; if (unlikely(buffer_info->skb)) BUG(); buffer_info->skb = NULL; buffer_info->length = (lenf > MAX_TX_BUF_LEN) ? MAX_TX_BUF_LEN : lenf; lenf -= buffer_info->length; buffer_info->dma = pci_map_page(adapter->pdev, frag->page, frag->page_offset + i * MAX_TX_BUF_LEN, buffer_info->length, PCI_DMA_TODEVICE); if (++tpd_next_to_use == tpd_ring->count) tpd_next_to_use = 0; } } /* last tpd's buffer-info */ buffer_info->skb = skb; } static void atl1_tx_queue(struct atl1_adapter *adapter, int count, union tpd_descr *descr) { /* We enter this function holding a spinlock. */ struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; int j; u32 val; struct atl1_buffer *buffer_info; struct tx_packet_desc *tpd; u16 tpd_next_to_use = atomic_read(&tpd_ring->next_to_use); for (j = 0; j < count; j++) { buffer_info = &tpd_ring->buffer_info[tpd_next_to_use]; tpd = ATL1_TPD_DESC(&adapter->tpd_ring, tpd_next_to_use); tpd->desc.csum.csumpu = descr->csum.csumpu; tpd->desc.csum.csumpl = descr->csum.csumpl; tpd->desc.tso.tsopu = descr->tso.tsopu; tpd->desc.tso.tsopl = descr->tso.tsopl; tpd->buffer_addr = cpu_to_le64(buffer_info->dma); tpd->desc.data = descr->data; tpd->desc.csum.csumpu |= (cpu_to_le16(buffer_info->length) & CSUM_PARAM_BUFLEN_MASK) << CSUM_PARAM_BUFLEN_SHIFT; val = (descr->tso.tsopl >> TSO_PARAM_SEGMENT_SHIFT) & TSO_PARAM_SEGMENT_MASK; if (val && !j) tpd->desc.tso.tsopl |= 1 << TSO_PARAM_HDRFLAG_SHIFT; if (j == (count - 1)) tpd->desc.csum.csumpl |= 1 << CSUM_PARAM_EOP_SHIFT; if (++tpd_next_to_use == tpd_ring->count) tpd_next_to_use = 0; } /* * Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); atomic_set(&tpd_ring->next_to_use, (int)tpd_next_to_use); } static void atl1_update_mailbox(struct atl1_adapter *adapter) { unsigned long flags; u32 tpd_next_to_use; u32 rfd_next_to_use; u32 rrd_next_to_clean; u32 value; spin_lock_irqsave(&adapter->mb_lock, flags); tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT) | ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); spin_unlock_irqrestore(&adapter->mb_lock, flags); } static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); int len = skb->len; int tso; int count = 1; int ret_val; u32 val; union tpd_descr param; u16 frag_size; u16 vlan_tag; unsigned long flags; unsigned int nr_frags = 0; unsigned int mss = 0; unsigned int f; unsigned int proto_hdr_len; len -= skb->data_len; if (unlikely(skb->len == 0)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } param.data = 0; param.tso.tsopu = 0; param.tso.tsopl = 0; param.csum.csumpu = 0; param.csum.csumpl = 0; /* nr_frags will be nonzero if we're doing scatter/gather (SG) */ nr_frags = skb_shinfo(skb)->nr_frags; for (f = 0; f < nr_frags; f++) { frag_size = skb_shinfo(skb)->frags[f].size; if (frag_size) count += (frag_size + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; } /* mss will be nonzero if we're doing segment offload (TSO/GSO) */ mss = skb_shinfo(skb)->gso_size; if (mss) { if (skb->protocol == ntohs(ETH_P_IP)) { proto_hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); if (unlikely(proto_hdr_len > len)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* need additional TPD ? */ if (proto_hdr_len != len) count += (len - proto_hdr_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; } } local_irq_save(flags); if (!spin_trylock(&adapter->lock)) { /* Can't get lock - tell upper layer to requeue */ local_irq_restore(flags); printk(KERN_DEBUG "%s: TX locked\n", atl1_driver_name); return NETDEV_TX_LOCKED; } if (tpd_avail(&adapter->tpd_ring) < count) { /* not enough descriptors */ netif_stop_queue(netdev); spin_unlock_irqrestore(&adapter->lock, flags); printk(KERN_DEBUG "%s: TX busy\n", atl1_driver_name); return NETDEV_TX_BUSY; } param.data = 0; if (adapter->vlgrp && vlan_tx_tag_present(skb)) { vlan_tag = vlan_tx_tag_get(skb); vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | ((vlan_tag >> 9) & 0x8); param.csum.csumpl |= 1 << CSUM_PARAM_INSVLAG_SHIFT; param.csum.csumpu |= (vlan_tag & CSUM_PARAM_VALANTAG_MASK) << CSUM_PARAM_VALAN_SHIFT; } tso = atl1_tso(adapter, skb, ¶m.tso); if (tso < 0) { spin_unlock_irqrestore(&adapter->lock, flags); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (!tso) { ret_val = atl1_tx_csum(adapter, skb, ¶m.csum); if (ret_val < 0) { spin_unlock_irqrestore(&adapter->lock, flags); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } val = (param.csum.csumpl >> CSUM_PARAM_SEGMENT_SHIFT) & CSUM_PARAM_SEGMENT_MASK; atl1_tx_map(adapter, skb, 1 == val); atl1_tx_queue(adapter, count, ¶m); netdev->trans_start = jiffies; spin_unlock_irqrestore(&adapter->lock, flags); atl1_update_mailbox(adapter); return NETDEV_TX_OK; } /* * atl1_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. */ static struct net_device_stats *atl1_get_stats(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); return &adapter->net_stats; } /* * atl1_clean_rx_ring - Free RFD Buffers * @adapter: board private structure */ static void atl1_clean_rx_ring(struct atl1_adapter *adapter) { struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i; /* Free all the Rx ring sk_buffs */ for (i = 0; i < rfd_ring->count; i++) { buffer_info = &rfd_ring->buffer_info[i]; if (buffer_info->dma) { pci_unmap_page(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); buffer_info->dma = 0; } if (buffer_info->skb) { dev_kfree_skb(buffer_info->skb); buffer_info->skb = NULL; } } size = sizeof(struct atl1_buffer) * rfd_ring->count; memset(rfd_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(rfd_ring->desc, 0, rfd_ring->size); rfd_ring->next_to_clean = 0; atomic_set(&rfd_ring->next_to_use, 0); rrd_ring->next_to_use = 0; atomic_set(&rrd_ring->next_to_clean, 0); } /* * atl1_clean_tx_ring - Free Tx Buffers * @adapter: board private structure */ static void atl1_clean_tx_ring(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tpd_ring->count; i++) { buffer_info = &tpd_ring->buffer_info[i]; if (buffer_info->dma) { pci_unmap_page(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); buffer_info->dma = 0; } } for (i = 0; i < tpd_ring->count; i++) { buffer_info = &tpd_ring->buffer_info[i]; if (buffer_info->skb) { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = NULL; } } size = sizeof(struct atl1_buffer) * tpd_ring->count; memset(tpd_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(tpd_ring->desc, 0, tpd_ring->size); atomic_set(&tpd_ring->next_to_use, 0); atomic_set(&tpd_ring->next_to_clean, 0); } /* * atl1_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ void atl1_free_ring_resources(struct atl1_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_ring_header *ring_header = &adapter->ring_header; atl1_clean_tx_ring(adapter); atl1_clean_rx_ring(adapter); kfree(tpd_ring->buffer_info); pci_free_consistent(pdev, ring_header->size, ring_header->desc, ring_header->dma); tpd_ring->buffer_info = NULL; tpd_ring->desc = NULL; tpd_ring->dma = 0; rfd_ring->buffer_info = NULL; rfd_ring->desc = NULL; rfd_ring->dma = 0; rrd_ring->desc = NULL; rrd_ring->dma = 0; } s32 atl1_up(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; int irq_flags = IRQF_SAMPLE_RANDOM; /* hardware has been reset, we need to reload some things */ atl1_set_multi(netdev); atl1_restore_vlan(adapter); err = atl1_alloc_rx_buffers(adapter); if (unlikely(!err)) /* no RX BUFFER allocated */ return -ENOMEM; if (unlikely(atl1_configure(adapter))) { err = -EIO; goto err_up; } err = pci_enable_msi(adapter->pdev); if (err) { dev_info(&adapter->pdev->dev, "Unable to enable MSI: %d\n", err); irq_flags |= IRQF_SHARED; } err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags, netdev->name, netdev); if (unlikely(err)) goto err_up; mod_timer(&adapter->watchdog_timer, jiffies); atl1_irq_enable(adapter); atl1_check_link(adapter); return 0; /* FIXME: unreachable code! -- CHS */ /* free irq disable any interrupt */ iowrite32(0, adapter->hw.hw_addr + REG_IMR); free_irq(adapter->pdev->irq, netdev); err_up: pci_disable_msi(adapter->pdev); /* free rx_buffers */ atl1_clean_rx_ring(adapter); return err; } void atl1_down(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_config_timer); adapter->phy_timer_pending = false; atl1_irq_disable(adapter); free_irq(adapter->pdev->irq, netdev); pci_disable_msi(adapter->pdev); atl1_reset_hw(&adapter->hw); adapter->cmb.cmb->int_stats = 0; adapter->link_speed = SPEED_0; adapter->link_duplex = -1; netif_carrier_off(netdev); netif_stop_queue(netdev); atl1_clean_tx_ring(adapter); atl1_clean_rx_ring(adapter); } /* * atl1_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl1_change_mtu(struct net_device *netdev, int new_mtu) { struct atl1_adapter *adapter = netdev_priv(netdev); int old_mtu = netdev->mtu; int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { printk(KERN_WARNING "%s: invalid MTU setting\n", atl1_driver_name); return -EINVAL; } adapter->hw.max_frame_size = max_frame; adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3; adapter->rx_buffer_len = (max_frame + 7) & ~7; adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8; netdev->mtu = new_mtu; if ((old_mtu != new_mtu) && netif_running(netdev)) { atl1_down(adapter); atl1_up(adapter); } return 0; } /* * atl1_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int atl1_set_mac(struct net_device *netdev, void *p) { struct atl1_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if (netif_running(netdev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); atl1_set_mac_addr(&adapter->hw); return 0; } /* * atl1_watchdog - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl1_watchdog(unsigned long data) { struct atl1_adapter *adapter = (struct atl1_adapter *)data; /* Reset the timer */ mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); } static int mdio_read(struct net_device *netdev, int phy_id, int reg_num) { struct atl1_adapter *adapter = netdev_priv(netdev); u16 result; atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result); return result; } static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val) { struct atl1_adapter *adapter = netdev_priv(netdev); atl1_write_phy_reg(&adapter->hw, reg_num, val); } /* * atl1_mii_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl1_adapter *adapter = netdev_priv(netdev); unsigned long flags; int retval; if (!netif_running(netdev)) return -EINVAL; spin_lock_irqsave(&adapter->lock, flags); retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL); spin_unlock_irqrestore(&adapter->lock, flags); return retval; } /* * atl1_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return atl1_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } /* * atl1_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure */ static void atl1_tx_timeout(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ schedule_work(&adapter->tx_timeout_task); } /* * atl1_phy_config - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl1_phy_config(unsigned long data) { struct atl1_adapter *adapter = (struct atl1_adapter *)data; struct atl1_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->lock, flags); adapter->phy_timer_pending = false; atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); atl1_write_phy_reg(hw, MII_AT001_CR, hw->mii_1000t_ctrl_reg); atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN); spin_unlock_irqrestore(&adapter->lock, flags); } int atl1_reset(struct atl1_adapter *adapter) { int ret; ret = atl1_reset_hw(&adapter->hw); if (ret != ATL1_SUCCESS) return ret; return atl1_init_hw(&adapter->hw); } /* * atl1_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1_open(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); int err; /* allocate transmit descriptors */ err = atl1_setup_ring_resources(adapter); if (err) return err; err = atl1_up(adapter); if (err) goto err_up; return 0; err_up: atl1_reset(adapter); return err; } /* * atl1_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl1_close(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); atl1_down(adapter); atl1_free_ring_resources(adapter); return 0; } /* * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT * will assert. We do soft reset <0x1400=1> according * with the SPEC. BUT, it seemes that PCIE or DMA * state-machine will not be reset. DMAR_TO_INT will * assert again and again. */ static void atl1_tx_timeout_task(struct work_struct *work) { struct atl1_adapter *adapter = container_of(work, struct atl1_adapter, tx_timeout_task); struct net_device *netdev = adapter->netdev; netif_device_detach(netdev); atl1_down(adapter); atl1_up(adapter); netif_device_attach(netdev); } /* * atl1_link_chg_task - deal with link change event Out of interrupt context */ static void atl1_link_chg_task(struct work_struct *work) { struct atl1_adapter *adapter = container_of(work, struct atl1_adapter, link_chg_task); unsigned long flags; spin_lock_irqsave(&adapter->lock, flags); atl1_check_link(adapter); spin_unlock_irqrestore(&adapter->lock, flags); } /* * atl1_pcie_patch - Patch for PCIE module */ static void atl1_pcie_patch(struct atl1_adapter *adapter) { u32 value; value = 0x6500; iowrite32(value, adapter->hw.hw_addr + 0x12FC); /* pcie flow control mode change */ value = ioread32(adapter->hw.hw_addr + 0x1008); value |= 0x8000; iowrite32(value, adapter->hw.hw_addr + 0x1008); } /* * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400 * on PCI Command register is disable. * The function enable this bit. * Brackett, 2006/03/15 */ static void atl1_via_workaround(struct atl1_adapter *adapter) { unsigned long value; value = ioread16(adapter->hw.hw_addr + PCI_COMMAND); if (value & PCI_COMMAND_INTX_DISABLE) value &= ~PCI_COMMAND_INTX_DISABLE; iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND); } /* * atl1_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1_pci_tbl * * Returns 0 on success, negative on failure * * atl1_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int __devinit atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl1_adapter *adapter; static int cards_found = 0; bool pci_using_64 = true; int err; err = pci_enable_device(pdev); if (err) return err; err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (err) { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_DEBUG "%s: no usable DMA configuration, aborting\n", atl1_driver_name); goto err_dma; } pci_using_64 = false; } /* Mark all PCI regions associated with PCI device * pdev as being reserved by owner atl1_driver_name */ err = pci_request_regions(pdev, atl1_driver_name); if (err) goto err_request_regions; /* Enables bus-mastering on the device and calls * pcibios_set_master to do the needed arch specific settings */ pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct atl1_adapter)); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_MODULE_OWNER(netdev); SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.back = adapter; adapter->hw.hw_addr = pci_iomap(pdev, 0, 0); if (!adapter->hw.hw_addr) { err = -EIO; goto err_pci_iomap; } /* get device revision number */ adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + (REG_MASTER_CTRL + 2)); /* set default ring resource counts */ adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD; adapter->tpd_ring.count = ATL1_DEFAULT_TPD; adapter->mii.dev = netdev; adapter->mii.mdio_read = mdio_read; adapter->mii.mdio_write = mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = 0x1f; netdev->open = &atl1_open; netdev->stop = &atl1_close; netdev->hard_start_xmit = &atl1_xmit_frame; netdev->get_stats = &atl1_get_stats; netdev->set_multicast_list = &atl1_set_multi; netdev->set_mac_address = &atl1_set_mac; netdev->change_mtu = &atl1_change_mtu; netdev->do_ioctl = &atl1_ioctl; netdev->tx_timeout = &atl1_tx_timeout; netdev->watchdog_timeo = 5 * HZ; netdev->vlan_rx_register = atl1_vlan_rx_register; netdev->vlan_rx_add_vid = atl1_vlan_rx_add_vid; netdev->vlan_rx_kill_vid = atl1_vlan_rx_kill_vid; netdev->ethtool_ops = &atl1_ethtool_ops; adapter->bd_number = cards_found; adapter->pci_using_64 = pci_using_64; /* setup the private structure */ err = atl1_sw_init(adapter); if (err) goto err_common; netdev->features = NETIF_F_HW_CSUM; netdev->features |= NETIF_F_SG; netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX); /* * FIXME - Until tso performance gets fixed, disable the feature. * Enable it with ethtool -K if desired. */ /* netdev->features |= NETIF_F_TSO; */ if (pci_using_64) netdev->features |= NETIF_F_HIGHDMA; netdev->features |= NETIF_F_LLTX; /* * patch for some L1 of old version, * the final version of L1 may not need these * patches */ /* atl1_pcie_patch(adapter); */ /* really reset GPHY core */ iowrite16(0, adapter->hw.hw_addr + REG_GPHY_ENABLE); /* * reset the controller to * put the device in a known good starting state */ if (atl1_reset_hw(&adapter->hw)) { err = -EIO; goto err_common; } /* copy the MAC address out of the EEPROM */ atl1_read_mac_addr(&adapter->hw); memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); if (!is_valid_ether_addr(netdev->dev_addr)) { err = -EIO; goto err_common; } atl1_check_options(adapter); /* pre-init the MAC, and setup link */ err = atl1_init_hw(&adapter->hw); if (err) { err = -EIO; goto err_common; } atl1_pcie_patch(adapter); /* assume we have no link for now */ netif_carrier_off(netdev); netif_stop_queue(netdev); init_timer(&adapter->watchdog_timer); adapter->watchdog_timer.function = &atl1_watchdog; adapter->watchdog_timer.data = (unsigned long)adapter; init_timer(&adapter->phy_config_timer); adapter->phy_config_timer.function = &atl1_phy_config; adapter->phy_config_timer.data = (unsigned long)adapter; adapter->phy_timer_pending = false; INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task); INIT_WORK(&adapter->link_chg_task, atl1_link_chg_task); INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task); err = register_netdev(netdev); if (err) goto err_common; cards_found++; atl1_via_workaround(adapter); return 0; err_common: pci_iounmap(pdev, adapter->hw.hw_addr); err_pci_iomap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_dma: err_request_regions: pci_disable_device(pdev); return err; } /* * atl1_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void __devexit atl1_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter; /* Device not available. Return. */ if (!netdev) return; adapter = netdev_priv(netdev); iowrite16(0, adapter->hw.hw_addr + REG_GPHY_ENABLE); unregister_netdev(netdev); pci_iounmap(pdev, adapter->hw.hw_addr); pci_release_regions(pdev); free_netdev(netdev); pci_disable_device(pdev); } #ifdef CONFIG_PM static int atl1_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; u32 ctrl = 0; u32 wufc = adapter->wol; netif_device_detach(netdev); if (netif_running(netdev)) atl1_down(adapter); atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); if (ctrl & BMSR_LSTATUS) wufc &= ~ATL1_WUFC_LNKC; /* reduce speed to 10/100M */ if (wufc) { atl1_phy_enter_power_saving(hw); /* if resume, let driver to re- setup link */ hw->phy_configured = false; atl1_set_mac_addr(hw); atl1_set_multi(netdev); ctrl = 0; /* turn on magic packet wol */ if (wufc & ATL1_WUFC_MAG) ctrl = WOL_MAGIC_EN | WOL_MAGIC_PME_EN; /* turn on Link change WOL */ if (wufc & ATL1_WUFC_LNKC) ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); /* turn on all-multi mode if wake on multicast is enabled */ ctrl = ioread32(hw->hw_addr + REG_MAC_CTRL); ctrl &= ~MAC_CTRL_DBG; ctrl &= ~MAC_CTRL_PROMIS_EN; if (wufc & ATL1_WUFC_MC) ctrl |= MAC_CTRL_MC_ALL_EN; else ctrl &= ~MAC_CTRL_MC_ALL_EN; /* turn on broadcast mode if wake on-BC is enabled */ if (wufc & ATL1_WUFC_BC) ctrl |= MAC_CTRL_BC_EN; else ctrl &= ~MAC_CTRL_BC_EN; /* enable RX */ ctrl |= MAC_CTRL_RX_EN; iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL); pci_enable_wake(pdev, PCI_D3hot, 1); pci_enable_wake(pdev, PCI_D3cold, 1); /* 4 == D3 cold */ } else { iowrite32(0, hw->hw_addr + REG_WOL_CTRL); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */ } pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int atl1_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter = netdev_priv(netdev); u32 ret_val; pci_set_power_state(pdev, 0); pci_restore_state(pdev); ret_val = pci_enable_device(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL); atl1_reset(adapter); if (netif_running(netdev)) atl1_up(adapter); netif_device_attach(netdev); atl1_via_workaround(adapter); return 0; } #else #define atl1_suspend NULL #define atl1_resume NULL #endif static struct pci_driver atl1_driver = { .name = atl1_driver_name, .id_table = atl1_pci_tbl, .probe = atl1_probe, .remove = __devexit_p(atl1_remove), /* Power Managment Hooks */ /* probably broken right now -- CHS */ .suspend = atl1_suspend, .resume = atl1_resume }; /* * atl1_exit_module - Driver Exit Cleanup Routine * * atl1_exit_module is called just before the driver is removed * from memory. */ static void __exit atl1_exit_module(void) { pci_unregister_driver(&atl1_driver); } /* * atl1_init_module - Driver Registration Routine * * atl1_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init atl1_init_module(void) { printk(KERN_INFO "%s - version %s\n", atl1_driver_string, DRIVER_VERSION); printk(KERN_INFO "%s\n", atl1_copyright); return pci_register_driver(&atl1_driver); } module_init(atl1_init_module); module_exit(atl1_exit_module);