#include <net/tcp.h> #include <net/tcp_memcontrol.h> #include <net/sock.h> #include <net/ip.h> #include <linux/nsproxy.h> #include <linux/memcontrol.h> #include <linux/module.h> int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss) { /* * The root cgroup does not use res_counters, but rather, * rely on the data already collected by the network * subsystem */ struct res_counter *res_parent = NULL; struct cg_proto *cg_proto, *parent_cg; struct mem_cgroup *parent = parent_mem_cgroup(memcg); cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return 0; cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0]; cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1]; cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2]; cg_proto->memory_pressure = 0; cg_proto->memcg = memcg; parent_cg = tcp_prot.proto_cgroup(parent); if (parent_cg) res_parent = &parent_cg->memory_allocated; res_counter_init(&cg_proto->memory_allocated, res_parent); percpu_counter_init(&cg_proto->sockets_allocated, 0, GFP_KERNEL); return 0; } EXPORT_SYMBOL(tcp_init_cgroup); void tcp_destroy_cgroup(struct mem_cgroup *memcg) { struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return; percpu_counter_destroy(&cg_proto->sockets_allocated); } EXPORT_SYMBOL(tcp_destroy_cgroup); static int tcp_update_limit(struct mem_cgroup *memcg, u64 val) { struct cg_proto *cg_proto; int i; int ret; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return -EINVAL; if (val > RES_COUNTER_MAX) val = RES_COUNTER_MAX; ret = res_counter_set_limit(&cg_proto->memory_allocated, val); if (ret) return ret; for (i = 0; i < 3; i++) cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT, sysctl_tcp_mem[i]); if (val == RES_COUNTER_MAX) clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); else if (val != RES_COUNTER_MAX) { /* * The active bit needs to be written after the static_key * update. This is what guarantees that the socket activation * function is the last one to run. See sock_update_memcg() for * details, and note that we don't mark any socket as belonging * to this memcg until that flag is up. * * We need to do this, because static_keys will span multiple * sites, but we can't control their order. If we mark a socket * as accounted, but the accounting functions are not patched in * yet, we'll lose accounting. * * We never race with the readers in sock_update_memcg(), * because when this value change, the code to process it is not * patched in yet. * * The activated bit is used to guarantee that no two writers * will do the update in the same memcg. Without that, we can't * properly shutdown the static key. */ if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags)) static_key_slow_inc(&memcg_socket_limit_enabled); set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); } return 0; } static ssize_t tcp_cgroup_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); unsigned long long val; int ret = 0; buf = strstrip(buf); switch (of_cft(of)->private) { case RES_LIMIT: /* see memcontrol.c */ ret = res_counter_memparse_write_strategy(buf, &val); if (ret) break; ret = tcp_update_limit(memcg, val); break; default: ret = -EINVAL; break; } return ret ?: nbytes; } static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val) { struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return default_val; return res_counter_read_u64(&cg_proto->memory_allocated, type); } static u64 tcp_read_usage(struct mem_cgroup *memcg) { struct cg_proto *cg_proto; cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT; return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE); } static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); u64 val; switch (cft->private) { case RES_LIMIT: val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX); break; case RES_USAGE: val = tcp_read_usage(memcg); break; case RES_FAILCNT: case RES_MAX_USAGE: val = tcp_read_stat(memcg, cft->private, 0); break; default: BUG(); } return val; } static ssize_t tcp_cgroup_reset(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg; struct cg_proto *cg_proto; memcg = mem_cgroup_from_css(of_css(of)); cg_proto = tcp_prot.proto_cgroup(memcg); if (!cg_proto) return nbytes; switch (of_cft(of)->private) { case RES_MAX_USAGE: res_counter_reset_max(&cg_proto->memory_allocated); break; case RES_FAILCNT: res_counter_reset_failcnt(&cg_proto->memory_allocated); break; } return nbytes; } static struct cftype tcp_files[] = { { .name = "kmem.tcp.limit_in_bytes", .write = tcp_cgroup_write, .read_u64 = tcp_cgroup_read, .private = RES_LIMIT, }, { .name = "kmem.tcp.usage_in_bytes", .read_u64 = tcp_cgroup_read, .private = RES_USAGE, }, { .name = "kmem.tcp.failcnt", .private = RES_FAILCNT, .write = tcp_cgroup_reset, .read_u64 = tcp_cgroup_read, }, { .name = "kmem.tcp.max_usage_in_bytes", .private = RES_MAX_USAGE, .write = tcp_cgroup_reset, .read_u64 = tcp_cgroup_read, }, { } /* terminate */ }; static int __init tcp_memcontrol_init(void) { WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, tcp_files)); return 0; } __initcall(tcp_memcontrol_init);