/* * linux/arch/ppc64/kernel/ptrace32.c * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Derived from "arch/m68k/kernel/ptrace.c" * Copyright (C) 1994 by Hamish Macdonald * Taken from linux/kernel/ptrace.c and modified for M680x0. * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds * * Modified by Cort Dougan (cort@hq.fsmlabs.com) * and Paul Mackerras (paulus@linuxcare.com.au). * * This file is subject to the terms and conditions of the GNU General * Public License. See the file README.legal in the main directory of * this archive for more details. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/security.h> #include <linux/signal.h> #include <asm/uaccess.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/ptrace-common.h> /* * does not yet catch signals sent when the child dies. * in exit.c or in signal.c. */ int sys32_ptrace(long request, long pid, unsigned long addr, unsigned long data) { struct task_struct *child; int ret = -EPERM; lock_kernel(); if (request == PTRACE_TRACEME) { /* are we already being traced? */ if (current->ptrace & PT_PTRACED) goto out; ret = security_ptrace(current->parent, current); if (ret) goto out; /* set the ptrace bit in the process flags. */ current->ptrace |= PT_PTRACED; ret = 0; goto out; } ret = -ESRCH; read_lock(&tasklist_lock); child = find_task_by_pid(pid); if (child) get_task_struct(child); read_unlock(&tasklist_lock); if (!child) goto out; ret = -EPERM; if (pid == 1) /* you may not mess with init */ goto out_tsk; if (request == PTRACE_ATTACH) { ret = ptrace_attach(child); goto out_tsk; } ret = ptrace_check_attach(child, request == PTRACE_KILL); if (ret < 0) goto out_tsk; switch (request) { /* when I and D space are separate, these will need to be fixed. */ case PTRACE_PEEKTEXT: /* read word at location addr. */ case PTRACE_PEEKDATA: { unsigned int tmp; int copied; copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); ret = -EIO; if (copied != sizeof(tmp)) break; ret = put_user(tmp, (u32 __user *)data); break; } /* * Read 4 bytes of the other process' storage * data is a pointer specifying where the user wants the * 4 bytes copied into * addr is a pointer in the user's storage that contains an 8 byte * address in the other process of the 4 bytes that is to be read * (this is run in a 32-bit process looking at a 64-bit process) * when I and D space are separate, these will need to be fixed. */ case PPC_PTRACE_PEEKTEXT_3264: case PPC_PTRACE_PEEKDATA_3264: { u32 tmp; int copied; u32 __user * addrOthers; ret = -EIO; /* Get the addr in the other process that we want to read */ if (get_user(addrOthers, (u32 __user * __user *)addr) != 0) break; copied = access_process_vm(child, (u64)addrOthers, &tmp, sizeof(tmp), 0); if (copied != sizeof(tmp)) break; ret = put_user(tmp, (u32 __user *)data); break; } /* Read a register (specified by ADDR) out of the "user area" */ case PTRACE_PEEKUSR: { int index; unsigned long tmp; ret = -EIO; /* convert to index and check */ index = (unsigned long) addr >> 2; if ((addr & 3) || (index > PT_FPSCR32)) break; if (index < PT_FPR0) { tmp = get_reg(child, index); } else { flush_fp_to_thread(child); /* * the user space code considers the floating point * to be an array of unsigned int (32 bits) - the * index passed in is based on this assumption. */ tmp = ((unsigned int *)child->thread.fpr)[index - PT_FPR0]; } ret = put_user((unsigned int)tmp, (u32 __user *)data); break; } /* * Read 4 bytes out of the other process' pt_regs area * data is a pointer specifying where the user wants the * 4 bytes copied into * addr is the offset into the other process' pt_regs structure * that is to be read * (this is run in a 32-bit process looking at a 64-bit process) */ case PPC_PTRACE_PEEKUSR_3264: { u32 index; u32 reg32bits; u64 tmp; u32 numReg; u32 part; ret = -EIO; /* Determine which register the user wants */ index = (u64)addr >> 2; numReg = index / 2; /* Determine which part of the register the user wants */ if (index % 2) part = 1; /* want the 2nd half of the register (right-most). */ else part = 0; /* want the 1st half of the register (left-most). */ /* Validate the input - check to see if address is on the wrong boundary or beyond the end of the user area */ if ((addr & 3) || numReg > PT_FPSCR) break; if (numReg >= PT_FPR0) { flush_fp_to_thread(child); tmp = ((unsigned long int *)child->thread.fpr)[numReg - PT_FPR0]; } else { /* register within PT_REGS struct */ tmp = get_reg(child, numReg); } reg32bits = ((u32*)&tmp)[part]; ret = put_user(reg32bits, (u32 __user *)data); break; } /* If I and D space are separate, this will have to be fixed. */ case PTRACE_POKETEXT: /* write the word at location addr. */ case PTRACE_POKEDATA: { unsigned int tmp; tmp = data; ret = 0; if (access_process_vm(child, addr, &tmp, sizeof(tmp), 1) == sizeof(tmp)) break; ret = -EIO; break; } /* * Write 4 bytes into the other process' storage * data is the 4 bytes that the user wants written * addr is a pointer in the user's storage that contains an * 8 byte address in the other process where the 4 bytes * that is to be written * (this is run in a 32-bit process looking at a 64-bit process) * when I and D space are separate, these will need to be fixed. */ case PPC_PTRACE_POKETEXT_3264: case PPC_PTRACE_POKEDATA_3264: { u32 tmp = data; u32 __user * addrOthers; /* Get the addr in the other process that we want to write into */ ret = -EIO; if (get_user(addrOthers, (u32 __user * __user *)addr) != 0) break; ret = 0; if (access_process_vm(child, (u64)addrOthers, &tmp, sizeof(tmp), 1) == sizeof(tmp)) break; ret = -EIO; break; } /* write the word at location addr in the USER area */ case PTRACE_POKEUSR: { unsigned long index; ret = -EIO; /* convert to index and check */ index = (unsigned long) addr >> 2; if ((addr & 3) || (index > PT_FPSCR32)) break; if (index == PT_ORIG_R3) break; if (index < PT_FPR0) { ret = put_reg(child, index, data); } else { flush_fp_to_thread(child); /* * the user space code considers the floating point * to be an array of unsigned int (32 bits) - the * index passed in is based on this assumption. */ ((unsigned int *)child->thread.fpr)[index - PT_FPR0] = data; ret = 0; } break; } /* * Write 4 bytes into the other process' pt_regs area * data is the 4 bytes that the user wants written * addr is the offset into the other process' pt_regs structure * that is to be written into * (this is run in a 32-bit process looking at a 64-bit process) */ case PPC_PTRACE_POKEUSR_3264: { u32 index; u32 numReg; ret = -EIO; /* Determine which register the user wants */ index = (u64)addr >> 2; numReg = index / 2; /* * Validate the input - check to see if address is on the * wrong boundary or beyond the end of the user area */ if ((addr & 3) || (numReg > PT_FPSCR)) break; /* Insure it is a register we let them change */ if ((numReg == PT_ORIG_R3) || ((numReg > PT_CCR) && (numReg < PT_FPR0))) break; if (numReg >= PT_FPR0) { flush_fp_to_thread(child); } if (numReg == PT_MSR) data = (data & MSR_DEBUGCHANGE) | (child->thread.regs->msr & ~MSR_DEBUGCHANGE); ((u32*)child->thread.regs)[index] = data; ret = 0; break; } case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */ case PTRACE_CONT: { /* restart after signal. */ ret = -EIO; if (!valid_signal(data)) break; if (request == PTRACE_SYSCALL) set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); else clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); child->exit_code = data; /* make sure the single step bit is not set. */ clear_single_step(child); wake_up_process(child); ret = 0; break; } /* * make the child exit. Best I can do is send it a sigkill. * perhaps it should be put in the status that it wants to * exit. */ case PTRACE_KILL: { ret = 0; if (child->exit_state == EXIT_ZOMBIE) /* already dead */ break; child->exit_code = SIGKILL; /* make sure the single step bit is not set. */ clear_single_step(child); wake_up_process(child); break; } case PTRACE_SINGLESTEP: { /* set the trap flag. */ ret = -EIO; if (!valid_signal(data)) break; clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); set_single_step(child); child->exit_code = data; /* give it a chance to run. */ wake_up_process(child); ret = 0; break; } case PTRACE_DETACH: ret = ptrace_detach(child, data); break; case PPC_PTRACE_GETREGS: { /* Get GPRs 0 - 31. */ int i; unsigned long *reg = &((unsigned long *)child->thread.regs)[0]; unsigned int __user *tmp = (unsigned int __user *)addr; for (i = 0; i < 32; i++) { ret = put_user(*reg, tmp); if (ret) break; reg++; tmp++; } break; } case PPC_PTRACE_SETREGS: { /* Set GPRs 0 - 31. */ int i; unsigned long *reg = &((unsigned long *)child->thread.regs)[0]; unsigned int __user *tmp = (unsigned int __user *)addr; for (i = 0; i < 32; i++) { ret = get_user(*reg, tmp); if (ret) break; reg++; tmp++; } break; } case PPC_PTRACE_GETFPREGS: { /* Get FPRs 0 - 31. */ int i; unsigned long *reg = &((unsigned long *)child->thread.fpr)[0]; unsigned int __user *tmp = (unsigned int __user *)addr; flush_fp_to_thread(child); for (i = 0; i < 32; i++) { ret = put_user(*reg, tmp); if (ret) break; reg++; tmp++; } break; } case PPC_PTRACE_SETFPREGS: { /* Get FPRs 0 - 31. */ int i; unsigned long *reg = &((unsigned long *)child->thread.fpr)[0]; unsigned int __user *tmp = (unsigned int __user *)addr; flush_fp_to_thread(child); for (i = 0; i < 32; i++) { ret = get_user(*reg, tmp); if (ret) break; reg++; tmp++; } break; } case PTRACE_GETEVENTMSG: ret = put_user(child->ptrace_message, (unsigned int __user *) data); break; default: ret = ptrace_request(child, request, addr, data); break; } out_tsk: put_task_struct(child); out: unlock_kernel(); return ret; }