/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include #include #include "radeon.h" #include "atom.h" #include #include #include #include #include #include static void avivo_crtc_load_lut(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int i; DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id); WREG32(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff); WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff); WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff); WREG32(AVIVO_DC_LUT_RW_SELECT, radeon_crtc->crtc_id); WREG32(AVIVO_DC_LUT_RW_MODE, 0); WREG32(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f); WREG8(AVIVO_DC_LUT_RW_INDEX, 0); for (i = 0; i < 256; i++) { WREG32(AVIVO_DC_LUT_30_COLOR, (radeon_crtc->lut_r[i] << 20) | (radeon_crtc->lut_g[i] << 10) | (radeon_crtc->lut_b[i] << 0)); } /* Only change bit 0 of LUT_SEL, other bits are set elsewhere */ WREG32_P(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id, ~1); } static void dce4_crtc_load_lut(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int i; DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id); WREG32(EVERGREEN_DC_LUT_CONTROL + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_RW_MODE + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_WRITE_EN_MASK + radeon_crtc->crtc_offset, 0x00000007); WREG32(EVERGREEN_DC_LUT_RW_INDEX + radeon_crtc->crtc_offset, 0); for (i = 0; i < 256; i++) { WREG32(EVERGREEN_DC_LUT_30_COLOR + radeon_crtc->crtc_offset, (radeon_crtc->lut_r[i] << 20) | (radeon_crtc->lut_g[i] << 10) | (radeon_crtc->lut_b[i] << 0)); } } static void dce5_crtc_load_lut(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int i; DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id); WREG32(NI_INPUT_CSC_CONTROL + radeon_crtc->crtc_offset, (NI_INPUT_CSC_GRPH_MODE(NI_INPUT_CSC_BYPASS) | NI_INPUT_CSC_OVL_MODE(NI_INPUT_CSC_BYPASS))); WREG32(NI_PRESCALE_GRPH_CONTROL + radeon_crtc->crtc_offset, NI_GRPH_PRESCALE_BYPASS); WREG32(NI_PRESCALE_OVL_CONTROL + radeon_crtc->crtc_offset, NI_OVL_PRESCALE_BYPASS); WREG32(NI_INPUT_GAMMA_CONTROL + radeon_crtc->crtc_offset, (NI_GRPH_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT) | NI_OVL_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT))); WREG32(EVERGREEN_DC_LUT_CONTROL + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff); WREG32(EVERGREEN_DC_LUT_RW_MODE + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_DC_LUT_WRITE_EN_MASK + radeon_crtc->crtc_offset, 0x00000007); WREG32(EVERGREEN_DC_LUT_RW_INDEX + radeon_crtc->crtc_offset, 0); for (i = 0; i < 256; i++) { WREG32(EVERGREEN_DC_LUT_30_COLOR + radeon_crtc->crtc_offset, (radeon_crtc->lut_r[i] << 20) | (radeon_crtc->lut_g[i] << 10) | (radeon_crtc->lut_b[i] << 0)); } WREG32(NI_DEGAMMA_CONTROL + radeon_crtc->crtc_offset, (NI_GRPH_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) | NI_OVL_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) | NI_ICON_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) | NI_CURSOR_DEGAMMA_MODE(NI_DEGAMMA_BYPASS))); WREG32(NI_GAMUT_REMAP_CONTROL + radeon_crtc->crtc_offset, (NI_GRPH_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS) | NI_OVL_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS))); WREG32(NI_REGAMMA_CONTROL + radeon_crtc->crtc_offset, (NI_GRPH_REGAMMA_MODE(NI_REGAMMA_BYPASS) | NI_OVL_REGAMMA_MODE(NI_REGAMMA_BYPASS))); WREG32(NI_OUTPUT_CSC_CONTROL + radeon_crtc->crtc_offset, (NI_OUTPUT_CSC_GRPH_MODE(radeon_crtc->output_csc) | NI_OUTPUT_CSC_OVL_MODE(NI_OUTPUT_CSC_BYPASS))); /* XXX match this to the depth of the crtc fmt block, move to modeset? */ WREG32(0x6940 + radeon_crtc->crtc_offset, 0); if (ASIC_IS_DCE8(rdev)) { /* XXX this only needs to be programmed once per crtc at startup, * not sure where the best place for it is */ WREG32(CIK_ALPHA_CONTROL + radeon_crtc->crtc_offset, CIK_CURSOR_ALPHA_BLND_ENA); } } static void legacy_crtc_load_lut(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int i; uint32_t dac2_cntl; dac2_cntl = RREG32(RADEON_DAC_CNTL2); if (radeon_crtc->crtc_id == 0) dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL; else dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL; WREG32(RADEON_DAC_CNTL2, dac2_cntl); WREG8(RADEON_PALETTE_INDEX, 0); for (i = 0; i < 256; i++) { WREG32(RADEON_PALETTE_30_DATA, (radeon_crtc->lut_r[i] << 20) | (radeon_crtc->lut_g[i] << 10) | (radeon_crtc->lut_b[i] << 0)); } } void radeon_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; if (!crtc->enabled) return; if (ASIC_IS_DCE5(rdev)) dce5_crtc_load_lut(crtc); else if (ASIC_IS_DCE4(rdev)) dce4_crtc_load_lut(crtc); else if (ASIC_IS_AVIVO(rdev)) avivo_crtc_load_lut(crtc); else legacy_crtc_load_lut(crtc); } /** Sets the color ramps on behalf of fbcon */ void radeon_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, u16 blue, int regno) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); radeon_crtc->lut_r[regno] = red >> 6; radeon_crtc->lut_g[regno] = green >> 6; radeon_crtc->lut_b[regno] = blue >> 6; } /** Gets the color ramps on behalf of fbcon */ void radeon_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, int regno) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); *red = radeon_crtc->lut_r[regno] << 6; *green = radeon_crtc->lut_g[regno] << 6; *blue = radeon_crtc->lut_b[regno] << 6; } static int radeon_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t size) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); int i; /* userspace palettes are always correct as is */ for (i = 0; i < size; i++) { radeon_crtc->lut_r[i] = red[i] >> 6; radeon_crtc->lut_g[i] = green[i] >> 6; radeon_crtc->lut_b[i] = blue[i] >> 6; } radeon_crtc_load_lut(crtc); return 0; } static void radeon_crtc_destroy(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); drm_crtc_cleanup(crtc); destroy_workqueue(radeon_crtc->flip_queue); kfree(radeon_crtc); } /** * radeon_unpin_work_func - unpin old buffer object * * @__work - kernel work item * * Unpin the old frame buffer object outside of the interrupt handler */ static void radeon_unpin_work_func(struct work_struct *__work) { struct radeon_flip_work *work = container_of(__work, struct radeon_flip_work, unpin_work); int r; /* unpin of the old buffer */ r = radeon_bo_reserve(work->old_rbo, false); if (likely(r == 0)) { r = radeon_bo_unpin(work->old_rbo); if (unlikely(r != 0)) { DRM_ERROR("failed to unpin buffer after flip\n"); } radeon_bo_unreserve(work->old_rbo); } else DRM_ERROR("failed to reserve buffer after flip\n"); drm_gem_object_unreference_unlocked(&work->old_rbo->gem_base); kfree(work); } void radeon_crtc_handle_vblank(struct radeon_device *rdev, int crtc_id) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; unsigned long flags; u32 update_pending; int vpos, hpos; /* can happen during initialization */ if (radeon_crtc == NULL) return; /* Skip the pageflip completion check below (based on polling) on * asics which reliably support hw pageflip completion irqs. pflip * irqs are a reliable and race-free method of handling pageflip * completion detection. A use_pflipirq module parameter < 2 allows * to override this in case of asics with faulty pflip irqs. * A module parameter of 0 would only use this polling based path, * a parameter of 1 would use pflip irq only as a backup to this * path, as in Linux 3.16. */ if ((radeon_use_pflipirq == 2) && ASIC_IS_DCE4(rdev)) return; spin_lock_irqsave(&rdev->ddev->event_lock, flags); if (radeon_crtc->flip_status != RADEON_FLIP_SUBMITTED) { DRM_DEBUG_DRIVER("radeon_crtc->flip_status = %d != " "RADEON_FLIP_SUBMITTED(%d)\n", radeon_crtc->flip_status, RADEON_FLIP_SUBMITTED); spin_unlock_irqrestore(&rdev->ddev->event_lock, flags); return; } update_pending = radeon_page_flip_pending(rdev, crtc_id); /* Has the pageflip already completed in crtc, or is it certain * to complete in this vblank? GET_DISTANCE_TO_VBLANKSTART provides * distance to start of "fudged earlier" vblank in vpos, distance to * start of real vblank in hpos. vpos >= 0 && hpos < 0 means we are in * the last few scanlines before start of real vblank, where the vblank * irq can fire, so we have sampled update_pending a bit too early and * know the flip will complete at leading edge of the upcoming real * vblank. On pre-AVIVO hardware, flips also complete inside the real * vblank, not only at leading edge, so if update_pending for hpos >= 0 * == inside real vblank, the flip will complete almost immediately. * Note that this method of completion handling is still not 100% race * free, as we could execute before the radeon_flip_work_func managed * to run and set the RADEON_FLIP_SUBMITTED status, thereby we no-op, * but the flip still gets programmed into hw and completed during * vblank, leading to a delayed emission of the flip completion event. * This applies at least to pre-AVIVO hardware, where flips are always * completing inside vblank, not only at leading edge of vblank. */ if (update_pending && (DRM_SCANOUTPOS_VALID & radeon_get_crtc_scanoutpos(rdev->ddev, crtc_id, GET_DISTANCE_TO_VBLANKSTART, &vpos, &hpos, NULL, NULL, &rdev->mode_info.crtcs[crtc_id]->base.hwmode)) && ((vpos >= 0 && hpos < 0) || (hpos >= 0 && !ASIC_IS_AVIVO(rdev)))) { /* crtc didn't flip in this target vblank interval, * but flip is pending in crtc. Based on the current * scanout position we know that the current frame is * (nearly) complete and the flip will (likely) * complete before the start of the next frame. */ update_pending = 0; } spin_unlock_irqrestore(&rdev->ddev->event_lock, flags); if (!update_pending) radeon_crtc_handle_flip(rdev, crtc_id); } /** * radeon_crtc_handle_flip - page flip completed * * @rdev: radeon device pointer * @crtc_id: crtc number this event is for * * Called when we are sure that a page flip for this crtc is completed. */ void radeon_crtc_handle_flip(struct radeon_device *rdev, int crtc_id) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; struct radeon_flip_work *work; unsigned long flags; /* this can happen at init */ if (radeon_crtc == NULL) return; spin_lock_irqsave(&rdev->ddev->event_lock, flags); work = radeon_crtc->flip_work; if (radeon_crtc->flip_status != RADEON_FLIP_SUBMITTED) { DRM_DEBUG_DRIVER("radeon_crtc->flip_status = %d != " "RADEON_FLIP_SUBMITTED(%d)\n", radeon_crtc->flip_status, RADEON_FLIP_SUBMITTED); spin_unlock_irqrestore(&rdev->ddev->event_lock, flags); return; } /* Pageflip completed. Clean up. */ radeon_crtc->flip_status = RADEON_FLIP_NONE; radeon_crtc->flip_work = NULL; /* wakeup userspace */ if (work->event) drm_crtc_send_vblank_event(&radeon_crtc->base, work->event); spin_unlock_irqrestore(&rdev->ddev->event_lock, flags); drm_crtc_vblank_put(&radeon_crtc->base); radeon_irq_kms_pflip_irq_put(rdev, work->crtc_id); queue_work(radeon_crtc->flip_queue, &work->unpin_work); } /** * radeon_flip_work_func - page flip framebuffer * * @work - kernel work item * * Wait for the buffer object to become idle and do the actual page flip */ static void radeon_flip_work_func(struct work_struct *__work) { struct radeon_flip_work *work = container_of(__work, struct radeon_flip_work, flip_work); struct radeon_device *rdev = work->rdev; struct drm_device *dev = rdev->ddev; struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[work->crtc_id]; struct drm_crtc *crtc = &radeon_crtc->base; unsigned long flags; int r; int vpos, hpos; down_read(&rdev->exclusive_lock); if (work->fence) { struct radeon_fence *fence; fence = to_radeon_fence(work->fence); if (fence && fence->rdev == rdev) { r = radeon_fence_wait(fence, false); if (r == -EDEADLK) { up_read(&rdev->exclusive_lock); do { r = radeon_gpu_reset(rdev); } while (r == -EAGAIN); down_read(&rdev->exclusive_lock); } } else r = dma_fence_wait(work->fence, false); if (r) DRM_ERROR("failed to wait on page flip fence (%d)!\n", r); /* We continue with the page flip even if we failed to wait on * the fence, otherwise the DRM core and userspace will be * confused about which BO the CRTC is scanning out */ dma_fence_put(work->fence); work->fence = NULL; } /* Wait until we're out of the vertical blank period before the one * targeted by the flip. Always wait on pre DCE4 to avoid races with * flip completion handling from vblank irq, as these old asics don't * have reliable pageflip completion interrupts. */ while (radeon_crtc->enabled && (radeon_get_crtc_scanoutpos(dev, work->crtc_id, 0, &vpos, &hpos, NULL, NULL, &crtc->hwmode) & (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK)) == (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK) && (!ASIC_IS_AVIVO(rdev) || ((int) (work->target_vblank - dev->driver->get_vblank_counter(dev, work->crtc_id)) > 0))) usleep_range(1000, 2000); /* We borrow the event spin lock for protecting flip_status */ spin_lock_irqsave(&crtc->dev->event_lock, flags); /* set the proper interrupt */ radeon_irq_kms_pflip_irq_get(rdev, radeon_crtc->crtc_id); /* do the flip (mmio) */ radeon_page_flip(rdev, radeon_crtc->crtc_id, work->base, work->async); radeon_crtc->flip_status = RADEON_FLIP_SUBMITTED; spin_unlock_irqrestore(&crtc->dev->event_lock, flags); up_read(&rdev->exclusive_lock); } static int radeon_crtc_page_flip_target(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t page_flip_flags, uint32_t target) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct radeon_framebuffer *old_radeon_fb; struct radeon_framebuffer *new_radeon_fb; struct drm_gem_object *obj; struct radeon_flip_work *work; struct radeon_bo *new_rbo; uint32_t tiling_flags, pitch_pixels; uint64_t base; unsigned long flags; int r; work = kzalloc(sizeof *work, GFP_KERNEL); if (work == NULL) return -ENOMEM; INIT_WORK(&work->flip_work, radeon_flip_work_func); INIT_WORK(&work->unpin_work, radeon_unpin_work_func); work->rdev = rdev; work->crtc_id = radeon_crtc->crtc_id; work->event = event; work->async = (page_flip_flags & DRM_MODE_PAGE_FLIP_ASYNC) != 0; /* schedule unpin of the old buffer */ old_radeon_fb = to_radeon_framebuffer(crtc->primary->fb); obj = old_radeon_fb->obj; /* take a reference to the old object */ drm_gem_object_reference(obj); work->old_rbo = gem_to_radeon_bo(obj); new_radeon_fb = to_radeon_framebuffer(fb); obj = new_radeon_fb->obj; new_rbo = gem_to_radeon_bo(obj); /* pin the new buffer */ DRM_DEBUG_DRIVER("flip-ioctl() cur_rbo = %p, new_rbo = %p\n", work->old_rbo, new_rbo); r = radeon_bo_reserve(new_rbo, false); if (unlikely(r != 0)) { DRM_ERROR("failed to reserve new rbo buffer before flip\n"); goto cleanup; } /* Only 27 bit offset for legacy CRTC */ r = radeon_bo_pin_restricted(new_rbo, RADEON_GEM_DOMAIN_VRAM, ASIC_IS_AVIVO(rdev) ? 0 : 1 << 27, &base); if (unlikely(r != 0)) { radeon_bo_unreserve(new_rbo); r = -EINVAL; DRM_ERROR("failed to pin new rbo buffer before flip\n"); goto cleanup; } work->fence = dma_fence_get(reservation_object_get_excl(new_rbo->tbo.resv)); radeon_bo_get_tiling_flags(new_rbo, &tiling_flags, NULL); radeon_bo_unreserve(new_rbo); if (!ASIC_IS_AVIVO(rdev)) { /* crtc offset is from display base addr not FB location */ base -= radeon_crtc->legacy_display_base_addr; pitch_pixels = fb->pitches[0] / fb->format->cpp[0]; if (tiling_flags & RADEON_TILING_MACRO) { if (ASIC_IS_R300(rdev)) { base &= ~0x7ff; } else { int byteshift = fb->format->cpp[0] * 8 >> 4; int tile_addr = (((crtc->y >> 3) * pitch_pixels + crtc->x) >> (8 - byteshift)) << 11; base += tile_addr + ((crtc->x << byteshift) % 256) + ((crtc->y % 8) << 8); } } else { int offset = crtc->y * pitch_pixels + crtc->x; switch (fb->format->cpp[0] * 8) { case 8: default: offset *= 1; break; case 15: case 16: offset *= 2; break; case 24: offset *= 3; break; case 32: offset *= 4; break; } base += offset; } base &= ~7; } work->base = base; work->target_vblank = target - drm_crtc_vblank_count(crtc) + dev->driver->get_vblank_counter(dev, work->crtc_id); /* We borrow the event spin lock for protecting flip_work */ spin_lock_irqsave(&crtc->dev->event_lock, flags); if (radeon_crtc->flip_status != RADEON_FLIP_NONE) { DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); r = -EBUSY; goto pflip_cleanup; } radeon_crtc->flip_status = RADEON_FLIP_PENDING; radeon_crtc->flip_work = work; /* update crtc fb */ crtc->primary->fb = fb; spin_unlock_irqrestore(&crtc->dev->event_lock, flags); queue_work(radeon_crtc->flip_queue, &work->flip_work); return 0; pflip_cleanup: if (unlikely(radeon_bo_reserve(new_rbo, false) != 0)) { DRM_ERROR("failed to reserve new rbo in error path\n"); goto cleanup; } if (unlikely(radeon_bo_unpin(new_rbo) != 0)) { DRM_ERROR("failed to unpin new rbo in error path\n"); } radeon_bo_unreserve(new_rbo); cleanup: drm_gem_object_unreference_unlocked(&work->old_rbo->gem_base); dma_fence_put(work->fence); kfree(work); return r; } static int radeon_crtc_set_config(struct drm_mode_set *set) { struct drm_device *dev; struct radeon_device *rdev; struct drm_crtc *crtc; bool active = false; int ret; if (!set || !set->crtc) return -EINVAL; dev = set->crtc->dev; ret = pm_runtime_get_sync(dev->dev); if (ret < 0) return ret; ret = drm_crtc_helper_set_config(set); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) if (crtc->enabled) active = true; pm_runtime_mark_last_busy(dev->dev); rdev = dev->dev_private; /* if we have active crtcs and we don't have a power ref, take the current one */ if (active && !rdev->have_disp_power_ref) { rdev->have_disp_power_ref = true; return ret; } /* if we have no active crtcs, then drop the power ref we got before */ if (!active && rdev->have_disp_power_ref) { pm_runtime_put_autosuspend(dev->dev); rdev->have_disp_power_ref = false; } /* drop the power reference we got coming in here */ pm_runtime_put_autosuspend(dev->dev); return ret; } static const struct drm_crtc_funcs radeon_crtc_funcs = { .cursor_set2 = radeon_crtc_cursor_set2, .cursor_move = radeon_crtc_cursor_move, .gamma_set = radeon_crtc_gamma_set, .set_config = radeon_crtc_set_config, .destroy = radeon_crtc_destroy, .page_flip_target = radeon_crtc_page_flip_target, }; static void radeon_crtc_init(struct drm_device *dev, int index) { struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc; int i; radeon_crtc = kzalloc(sizeof(struct radeon_crtc) + (RADEONFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (radeon_crtc == NULL) return; drm_crtc_init(dev, &radeon_crtc->base, &radeon_crtc_funcs); drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256); radeon_crtc->crtc_id = index; radeon_crtc->flip_queue = alloc_workqueue("radeon-crtc", WQ_HIGHPRI, 0); rdev->mode_info.crtcs[index] = radeon_crtc; if (rdev->family >= CHIP_BONAIRE) { radeon_crtc->max_cursor_width = CIK_CURSOR_WIDTH; radeon_crtc->max_cursor_height = CIK_CURSOR_HEIGHT; } else { radeon_crtc->max_cursor_width = CURSOR_WIDTH; radeon_crtc->max_cursor_height = CURSOR_HEIGHT; } dev->mode_config.cursor_width = radeon_crtc->max_cursor_width; dev->mode_config.cursor_height = radeon_crtc->max_cursor_height; #if 0 radeon_crtc->mode_set.crtc = &radeon_crtc->base; radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1); radeon_crtc->mode_set.num_connectors = 0; #endif for (i = 0; i < 256; i++) { radeon_crtc->lut_r[i] = i << 2; radeon_crtc->lut_g[i] = i << 2; radeon_crtc->lut_b[i] = i << 2; } if (rdev->is_atom_bios && (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom)) radeon_atombios_init_crtc(dev, radeon_crtc); else radeon_legacy_init_crtc(dev, radeon_crtc); } static const char *encoder_names[38] = { "NONE", "INTERNAL_LVDS", "INTERNAL_TMDS1", "INTERNAL_TMDS2", "INTERNAL_DAC1", "INTERNAL_DAC2", "INTERNAL_SDVOA", "INTERNAL_SDVOB", "SI170B", "CH7303", "CH7301", "INTERNAL_DVO1", "EXTERNAL_SDVOA", "EXTERNAL_SDVOB", "TITFP513", "INTERNAL_LVTM1", "VT1623", "HDMI_SI1930", "HDMI_INTERNAL", "INTERNAL_KLDSCP_TMDS1", "INTERNAL_KLDSCP_DVO1", "INTERNAL_KLDSCP_DAC1", "INTERNAL_KLDSCP_DAC2", "SI178", "MVPU_FPGA", "INTERNAL_DDI", "VT1625", "HDMI_SI1932", "DP_AN9801", "DP_DP501", "INTERNAL_UNIPHY", "INTERNAL_KLDSCP_LVTMA", "INTERNAL_UNIPHY1", "INTERNAL_UNIPHY2", "NUTMEG", "TRAVIS", "INTERNAL_VCE", "INTERNAL_UNIPHY3", }; static const char *hpd_names[6] = { "HPD1", "HPD2", "HPD3", "HPD4", "HPD5", "HPD6", }; static void radeon_print_display_setup(struct drm_device *dev) { struct drm_connector *connector; struct radeon_connector *radeon_connector; struct drm_encoder *encoder; struct radeon_encoder *radeon_encoder; uint32_t devices; int i = 0; DRM_INFO("Radeon Display Connectors\n"); list_for_each_entry(connector, &dev->mode_config.connector_list, head) { radeon_connector = to_radeon_connector(connector); DRM_INFO("Connector %d:\n", i); DRM_INFO(" %s\n", connector->name); if (radeon_connector->hpd.hpd != RADEON_HPD_NONE) DRM_INFO(" %s\n", hpd_names[radeon_connector->hpd.hpd]); if (radeon_connector->ddc_bus) { DRM_INFO(" DDC: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", radeon_connector->ddc_bus->rec.mask_clk_reg, radeon_connector->ddc_bus->rec.mask_data_reg, radeon_connector->ddc_bus->rec.a_clk_reg, radeon_connector->ddc_bus->rec.a_data_reg, radeon_connector->ddc_bus->rec.en_clk_reg, radeon_connector->ddc_bus->rec.en_data_reg, radeon_connector->ddc_bus->rec.y_clk_reg, radeon_connector->ddc_bus->rec.y_data_reg); if (radeon_connector->router.ddc_valid) DRM_INFO(" DDC Router 0x%x/0x%x\n", radeon_connector->router.ddc_mux_control_pin, radeon_connector->router.ddc_mux_state); if (radeon_connector->router.cd_valid) DRM_INFO(" Clock/Data Router 0x%x/0x%x\n", radeon_connector->router.cd_mux_control_pin, radeon_connector->router.cd_mux_state); } else { if (connector->connector_type == DRM_MODE_CONNECTOR_VGA || connector->connector_type == DRM_MODE_CONNECTOR_DVII || connector->connector_type == DRM_MODE_CONNECTOR_DVID || connector->connector_type == DRM_MODE_CONNECTOR_DVIA || connector->connector_type == DRM_MODE_CONNECTOR_HDMIA || connector->connector_type == DRM_MODE_CONNECTOR_HDMIB) DRM_INFO(" DDC: no ddc bus - possible BIOS bug - please report to xorg-driver-ati@lists.x.org\n"); } DRM_INFO(" Encoders:\n"); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { radeon_encoder = to_radeon_encoder(encoder); devices = radeon_encoder->devices & radeon_connector->devices; if (devices) { if (devices & ATOM_DEVICE_CRT1_SUPPORT) DRM_INFO(" CRT1: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_CRT2_SUPPORT) DRM_INFO(" CRT2: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_LCD1_SUPPORT) DRM_INFO(" LCD1: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP1_SUPPORT) DRM_INFO(" DFP1: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP2_SUPPORT) DRM_INFO(" DFP2: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP3_SUPPORT) DRM_INFO(" DFP3: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP4_SUPPORT) DRM_INFO(" DFP4: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP5_SUPPORT) DRM_INFO(" DFP5: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_DFP6_SUPPORT) DRM_INFO(" DFP6: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_TV1_SUPPORT) DRM_INFO(" TV1: %s\n", encoder_names[radeon_encoder->encoder_id]); if (devices & ATOM_DEVICE_CV_SUPPORT) DRM_INFO(" CV: %s\n", encoder_names[radeon_encoder->encoder_id]); } } i++; } } static bool radeon_setup_enc_conn(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; bool ret = false; if (rdev->bios) { if (rdev->is_atom_bios) { ret = radeon_get_atom_connector_info_from_supported_devices_table(dev); if (ret == false) ret = radeon_get_atom_connector_info_from_object_table(dev); } else { ret = radeon_get_legacy_connector_info_from_bios(dev); if (ret == false) ret = radeon_get_legacy_connector_info_from_table(dev); } } else { if (!ASIC_IS_AVIVO(rdev)) ret = radeon_get_legacy_connector_info_from_table(dev); } if (ret) { radeon_setup_encoder_clones(dev); radeon_print_display_setup(dev); } return ret; } /* avivo */ /** * avivo_reduce_ratio - fractional number reduction * * @nom: nominator * @den: denominator * @nom_min: minimum value for nominator * @den_min: minimum value for denominator * * Find the greatest common divisor and apply it on both nominator and * denominator, but make nominator and denominator are at least as large * as their minimum values. */ static void avivo_reduce_ratio(unsigned *nom, unsigned *den, unsigned nom_min, unsigned den_min) { unsigned tmp; /* reduce the numbers to a simpler ratio */ tmp = gcd(*nom, *den); *nom /= tmp; *den /= tmp; /* make sure nominator is large enough */ if (*nom < nom_min) { tmp = DIV_ROUND_UP(nom_min, *nom); *nom *= tmp; *den *= tmp; } /* make sure the denominator is large enough */ if (*den < den_min) { tmp = DIV_ROUND_UP(den_min, *den); *nom *= tmp; *den *= tmp; } } /** * avivo_get_fb_ref_div - feedback and ref divider calculation * * @nom: nominator * @den: denominator * @post_div: post divider * @fb_div_max: feedback divider maximum * @ref_div_max: reference divider maximum * @fb_div: resulting feedback divider * @ref_div: resulting reference divider * * Calculate feedback and reference divider for a given post divider. Makes * sure we stay within the limits. */ static void avivo_get_fb_ref_div(unsigned nom, unsigned den, unsigned post_div, unsigned fb_div_max, unsigned ref_div_max, unsigned *fb_div, unsigned *ref_div) { /* limit reference * post divider to a maximum */ ref_div_max = max(min(100 / post_div, ref_div_max), 1u); /* get matching reference and feedback divider */ *ref_div = min(max(DIV_ROUND_CLOSEST(den, post_div), 1u), ref_div_max); *fb_div = DIV_ROUND_CLOSEST(nom * *ref_div * post_div, den); /* limit fb divider to its maximum */ if (*fb_div > fb_div_max) { *ref_div = DIV_ROUND_CLOSEST(*ref_div * fb_div_max, *fb_div); *fb_div = fb_div_max; } } /** * radeon_compute_pll_avivo - compute PLL paramaters * * @pll: information about the PLL * @dot_clock_p: resulting pixel clock * fb_div_p: resulting feedback divider * frac_fb_div_p: fractional part of the feedback divider * ref_div_p: resulting reference divider * post_div_p: resulting reference divider * * Try to calculate the PLL parameters to generate the given frequency: * dot_clock = (ref_freq * feedback_div) / (ref_div * post_div) */ void radeon_compute_pll_avivo(struct radeon_pll *pll, u32 freq, u32 *dot_clock_p, u32 *fb_div_p, u32 *frac_fb_div_p, u32 *ref_div_p, u32 *post_div_p) { unsigned target_clock = pll->flags & RADEON_PLL_USE_FRAC_FB_DIV ? freq : freq / 10; unsigned fb_div_min, fb_div_max, fb_div; unsigned post_div_min, post_div_max, post_div; unsigned ref_div_min, ref_div_max, ref_div; unsigned post_div_best, diff_best; unsigned nom, den; /* determine allowed feedback divider range */ fb_div_min = pll->min_feedback_div; fb_div_max = pll->max_feedback_div; if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) { fb_div_min *= 10; fb_div_max *= 10; } /* determine allowed ref divider range */ if (pll->flags & RADEON_PLL_USE_REF_DIV) ref_div_min = pll->reference_div; else ref_div_min = pll->min_ref_div; if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV && pll->flags & RADEON_PLL_USE_REF_DIV) ref_div_max = pll->reference_div; else if (pll->flags & RADEON_PLL_PREFER_MINM_OVER_MAXP) /* fix for problems on RS880 */ ref_div_max = min(pll->max_ref_div, 7u); else ref_div_max = pll->max_ref_div; /* determine allowed post divider range */ if (pll->flags & RADEON_PLL_USE_POST_DIV) { post_div_min = pll->post_div; post_div_max = pll->post_div; } else { unsigned vco_min, vco_max; if (pll->flags & RADEON_PLL_IS_LCD) { vco_min = pll->lcd_pll_out_min; vco_max = pll->lcd_pll_out_max; } else { vco_min = pll->pll_out_min; vco_max = pll->pll_out_max; } if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) { vco_min *= 10; vco_max *= 10; } post_div_min = vco_min / target_clock; if ((target_clock * post_div_min) < vco_min) ++post_div_min; if (post_div_min < pll->min_post_div) post_div_min = pll->min_post_div; post_div_max = vco_max / target_clock; if ((target_clock * post_div_max) > vco_max) --post_div_max; if (post_div_max > pll->max_post_div) post_div_max = pll->max_post_div; } /* represent the searched ratio as fractional number */ nom = target_clock; den = pll->reference_freq; /* reduce the numbers to a simpler ratio */ avivo_reduce_ratio(&nom, &den, fb_div_min, post_div_min); /* now search for a post divider */ if (pll->flags & RADEON_PLL_PREFER_MINM_OVER_MAXP) post_div_best = post_div_min; else post_div_best = post_div_max; diff_best = ~0; for (post_div = post_div_min; post_div <= post_div_max; ++post_div) { unsigned diff; avivo_get_fb_ref_div(nom, den, post_div, fb_div_max, ref_div_max, &fb_div, &ref_div); diff = abs(target_clock - (pll->reference_freq * fb_div) / (ref_div * post_div)); if (diff < diff_best || (diff == diff_best && !(pll->flags & RADEON_PLL_PREFER_MINM_OVER_MAXP))) { post_div_best = post_div; diff_best = diff; } } post_div = post_div_best; /* get the feedback and reference divider for the optimal value */ avivo_get_fb_ref_div(nom, den, post_div, fb_div_max, ref_div_max, &fb_div, &ref_div); /* reduce the numbers to a simpler ratio once more */ /* this also makes sure that the reference divider is large enough */ avivo_reduce_ratio(&fb_div, &ref_div, fb_div_min, ref_div_min); /* avoid high jitter with small fractional dividers */ if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV && (fb_div % 10)) { fb_div_min = max(fb_div_min, (9 - (fb_div % 10)) * 20 + 50); if (fb_div < fb_div_min) { unsigned tmp = DIV_ROUND_UP(fb_div_min, fb_div); fb_div *= tmp; ref_div *= tmp; } } /* and finally save the result */ if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) { *fb_div_p = fb_div / 10; *frac_fb_div_p = fb_div % 10; } else { *fb_div_p = fb_div; *frac_fb_div_p = 0; } *dot_clock_p = ((pll->reference_freq * *fb_div_p * 10) + (pll->reference_freq * *frac_fb_div_p)) / (ref_div * post_div * 10); *ref_div_p = ref_div; *post_div_p = post_div; DRM_DEBUG_KMS("%d - %d, pll dividers - fb: %d.%d ref: %d, post %d\n", freq, *dot_clock_p * 10, *fb_div_p, *frac_fb_div_p, ref_div, post_div); } /* pre-avivo */ static inline uint32_t radeon_div(uint64_t n, uint32_t d) { uint64_t mod; n += d / 2; mod = do_div(n, d); return n; } void radeon_compute_pll_legacy(struct radeon_pll *pll, uint64_t freq, uint32_t *dot_clock_p, uint32_t *fb_div_p, uint32_t *frac_fb_div_p, uint32_t *ref_div_p, uint32_t *post_div_p) { uint32_t min_ref_div = pll->min_ref_div; uint32_t max_ref_div = pll->max_ref_div; uint32_t min_post_div = pll->min_post_div; uint32_t max_post_div = pll->max_post_div; uint32_t min_fractional_feed_div = 0; uint32_t max_fractional_feed_div = 0; uint32_t best_vco = pll->best_vco; uint32_t best_post_div = 1; uint32_t best_ref_div = 1; uint32_t best_feedback_div = 1; uint32_t best_frac_feedback_div = 0; uint32_t best_freq = -1; uint32_t best_error = 0xffffffff; uint32_t best_vco_diff = 1; uint32_t post_div; u32 pll_out_min, pll_out_max; DRM_DEBUG_KMS("PLL freq %llu %u %u\n", freq, pll->min_ref_div, pll->max_ref_div); freq = freq * 1000; if (pll->flags & RADEON_PLL_IS_LCD) { pll_out_min = pll->lcd_pll_out_min; pll_out_max = pll->lcd_pll_out_max; } else { pll_out_min = pll->pll_out_min; pll_out_max = pll->pll_out_max; } if (pll_out_min > 64800) pll_out_min = 64800; if (pll->flags & RADEON_PLL_USE_REF_DIV) min_ref_div = max_ref_div = pll->reference_div; else { while (min_ref_div < max_ref_div-1) { uint32_t mid = (min_ref_div + max_ref_div) / 2; uint32_t pll_in = pll->reference_freq / mid; if (pll_in < pll->pll_in_min) max_ref_div = mid; else if (pll_in > pll->pll_in_max) min_ref_div = mid; else break; } } if (pll->flags & RADEON_PLL_USE_POST_DIV) min_post_div = max_post_div = pll->post_div; if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) { min_fractional_feed_div = pll->min_frac_feedback_div; max_fractional_feed_div = pll->max_frac_feedback_div; } for (post_div = max_post_div; post_div >= min_post_div; --post_div) { uint32_t ref_div; if ((pll->flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1)) continue; /* legacy radeons only have a few post_divs */ if (pll->flags & RADEON_PLL_LEGACY) { if ((post_div == 5) || (post_div == 7) || (post_div == 9) || (post_div == 10) || (post_div == 11) || (post_div == 13) || (post_div == 14) || (post_div == 15)) continue; } for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) { uint32_t feedback_div, current_freq = 0, error, vco_diff; uint32_t pll_in = pll->reference_freq / ref_div; uint32_t min_feed_div = pll->min_feedback_div; uint32_t max_feed_div = pll->max_feedback_div + 1; if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max) continue; while (min_feed_div < max_feed_div) { uint32_t vco; uint32_t min_frac_feed_div = min_fractional_feed_div; uint32_t max_frac_feed_div = max_fractional_feed_div + 1; uint32_t frac_feedback_div; uint64_t tmp; feedback_div = (min_feed_div + max_feed_div) / 2; tmp = (uint64_t)pll->reference_freq * feedback_div; vco = radeon_div(tmp, ref_div); if (vco < pll_out_min) { min_feed_div = feedback_div + 1; continue; } else if (vco > pll_out_max) { max_feed_div = feedback_div; continue; } while (min_frac_feed_div < max_frac_feed_div) { frac_feedback_div = (min_frac_feed_div + max_frac_feed_div) / 2; tmp = (uint64_t)pll->reference_freq * 10000 * feedback_div; tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div; current_freq = radeon_div(tmp, ref_div * post_div); if (pll->flags & RADEON_PLL_PREFER_CLOSEST_LOWER) { if (freq < current_freq) error = 0xffffffff; else error = freq - current_freq; } else error = abs(current_freq - freq); vco_diff = abs(vco - best_vco); if ((best_vco == 0 && error < best_error) || (best_vco != 0 && ((best_error > 100 && error < best_error - 100) || (abs(error - best_error) < 100 && vco_diff < best_vco_diff)))) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } else if (current_freq == freq) { if (best_freq == -1) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } else if (((pll->flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) || ((pll->flags & RADEON_PLL_PREFER_HIGH_REF_DIV) && (ref_div > best_ref_div)) || ((pll->flags & RADEON_PLL_PREFER_LOW_FB_DIV) && (feedback_div < best_feedback_div)) || ((pll->flags & RADEON_PLL_PREFER_HIGH_FB_DIV) && (feedback_div > best_feedback_div)) || ((pll->flags & RADEON_PLL_PREFER_LOW_POST_DIV) && (post_div < best_post_div)) || ((pll->flags & RADEON_PLL_PREFER_HIGH_POST_DIV) && (post_div > best_post_div))) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } } if (current_freq < freq) min_frac_feed_div = frac_feedback_div + 1; else max_frac_feed_div = frac_feedback_div; } if (current_freq < freq) min_feed_div = feedback_div + 1; else max_feed_div = feedback_div; } } } *dot_clock_p = best_freq / 10000; *fb_div_p = best_feedback_div; *frac_fb_div_p = best_frac_feedback_div; *ref_div_p = best_ref_div; *post_div_p = best_post_div; DRM_DEBUG_KMS("%lld %d, pll dividers - fb: %d.%d ref: %d, post %d\n", (long long)freq, best_freq / 1000, best_feedback_div, best_frac_feedback_div, best_ref_div, best_post_div); } static void radeon_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb); drm_gem_object_unreference_unlocked(radeon_fb->obj); drm_framebuffer_cleanup(fb); kfree(radeon_fb); } static int radeon_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file_priv, unsigned int *handle) { struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb); return drm_gem_handle_create(file_priv, radeon_fb->obj, handle); } static const struct drm_framebuffer_funcs radeon_fb_funcs = { .destroy = radeon_user_framebuffer_destroy, .create_handle = radeon_user_framebuffer_create_handle, }; int radeon_framebuffer_init(struct drm_device *dev, struct radeon_framebuffer *rfb, const struct drm_mode_fb_cmd2 *mode_cmd, struct drm_gem_object *obj) { int ret; rfb->obj = obj; drm_helper_mode_fill_fb_struct(dev, &rfb->base, mode_cmd); ret = drm_framebuffer_init(dev, &rfb->base, &radeon_fb_funcs); if (ret) { rfb->obj = NULL; return ret; } return 0; } static struct drm_framebuffer * radeon_user_framebuffer_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_gem_object *obj; struct radeon_framebuffer *radeon_fb; int ret; obj = drm_gem_object_lookup(file_priv, mode_cmd->handles[0]); if (obj == NULL) { dev_err(&dev->pdev->dev, "No GEM object associated to handle 0x%08X, " "can't create framebuffer\n", mode_cmd->handles[0]); return ERR_PTR(-ENOENT); } radeon_fb = kzalloc(sizeof(*radeon_fb), GFP_KERNEL); if (radeon_fb == NULL) { drm_gem_object_unreference_unlocked(obj); return ERR_PTR(-ENOMEM); } ret = radeon_framebuffer_init(dev, radeon_fb, mode_cmd, obj); if (ret) { kfree(radeon_fb); drm_gem_object_unreference_unlocked(obj); return ERR_PTR(ret); } return &radeon_fb->base; } static void radeon_output_poll_changed(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; radeon_fb_output_poll_changed(rdev); } static const struct drm_mode_config_funcs radeon_mode_funcs = { .fb_create = radeon_user_framebuffer_create, .output_poll_changed = radeon_output_poll_changed }; static struct drm_prop_enum_list radeon_tmds_pll_enum_list[] = { { 0, "driver" }, { 1, "bios" }, }; static struct drm_prop_enum_list radeon_tv_std_enum_list[] = { { TV_STD_NTSC, "ntsc" }, { TV_STD_PAL, "pal" }, { TV_STD_PAL_M, "pal-m" }, { TV_STD_PAL_60, "pal-60" }, { TV_STD_NTSC_J, "ntsc-j" }, { TV_STD_SCART_PAL, "scart-pal" }, { TV_STD_PAL_CN, "pal-cn" }, { TV_STD_SECAM, "secam" }, }; static struct drm_prop_enum_list radeon_underscan_enum_list[] = { { UNDERSCAN_OFF, "off" }, { UNDERSCAN_ON, "on" }, { UNDERSCAN_AUTO, "auto" }, }; static struct drm_prop_enum_list radeon_audio_enum_list[] = { { RADEON_AUDIO_DISABLE, "off" }, { RADEON_AUDIO_ENABLE, "on" }, { RADEON_AUDIO_AUTO, "auto" }, }; /* XXX support different dither options? spatial, temporal, both, etc. */ static struct drm_prop_enum_list radeon_dither_enum_list[] = { { RADEON_FMT_DITHER_DISABLE, "off" }, { RADEON_FMT_DITHER_ENABLE, "on" }, }; static struct drm_prop_enum_list radeon_output_csc_enum_list[] = { { RADEON_OUTPUT_CSC_BYPASS, "bypass" }, { RADEON_OUTPUT_CSC_TVRGB, "tvrgb" }, { RADEON_OUTPUT_CSC_YCBCR601, "ycbcr601" }, { RADEON_OUTPUT_CSC_YCBCR709, "ycbcr709" }, }; static int radeon_modeset_create_props(struct radeon_device *rdev) { int sz; if (rdev->is_atom_bios) { rdev->mode_info.coherent_mode_property = drm_property_create_range(rdev->ddev, 0 , "coherent", 0, 1); if (!rdev->mode_info.coherent_mode_property) return -ENOMEM; } if (!ASIC_IS_AVIVO(rdev)) { sz = ARRAY_SIZE(radeon_tmds_pll_enum_list); rdev->mode_info.tmds_pll_property = drm_property_create_enum(rdev->ddev, 0, "tmds_pll", radeon_tmds_pll_enum_list, sz); } rdev->mode_info.load_detect_property = drm_property_create_range(rdev->ddev, 0, "load detection", 0, 1); if (!rdev->mode_info.load_detect_property) return -ENOMEM; drm_mode_create_scaling_mode_property(rdev->ddev); sz = ARRAY_SIZE(radeon_tv_std_enum_list); rdev->mode_info.tv_std_property = drm_property_create_enum(rdev->ddev, 0, "tv standard", radeon_tv_std_enum_list, sz); sz = ARRAY_SIZE(radeon_underscan_enum_list); rdev->mode_info.underscan_property = drm_property_create_enum(rdev->ddev, 0, "underscan", radeon_underscan_enum_list, sz); rdev->mode_info.underscan_hborder_property = drm_property_create_range(rdev->ddev, 0, "underscan hborder", 0, 128); if (!rdev->mode_info.underscan_hborder_property) return -ENOMEM; rdev->mode_info.underscan_vborder_property = drm_property_create_range(rdev->ddev, 0, "underscan vborder", 0, 128); if (!rdev->mode_info.underscan_vborder_property) return -ENOMEM; sz = ARRAY_SIZE(radeon_audio_enum_list); rdev->mode_info.audio_property = drm_property_create_enum(rdev->ddev, 0, "audio", radeon_audio_enum_list, sz); sz = ARRAY_SIZE(radeon_dither_enum_list); rdev->mode_info.dither_property = drm_property_create_enum(rdev->ddev, 0, "dither", radeon_dither_enum_list, sz); sz = ARRAY_SIZE(radeon_output_csc_enum_list); rdev->mode_info.output_csc_property = drm_property_create_enum(rdev->ddev, 0, "output_csc", radeon_output_csc_enum_list, sz); return 0; } void radeon_update_display_priority(struct radeon_device *rdev) { /* adjustment options for the display watermarks */ if ((radeon_disp_priority == 0) || (radeon_disp_priority > 2)) { /* set display priority to high for r3xx, rv515 chips * this avoids flickering due to underflow to the * display controllers during heavy acceleration. * Don't force high on rs4xx igp chips as it seems to * affect the sound card. See kernel bug 15982. */ if ((ASIC_IS_R300(rdev) || (rdev->family == CHIP_RV515)) && !(rdev->flags & RADEON_IS_IGP)) rdev->disp_priority = 2; else rdev->disp_priority = 0; } else rdev->disp_priority = radeon_disp_priority; } /* * Allocate hdmi structs and determine register offsets */ static void radeon_afmt_init(struct radeon_device *rdev) { int i; for (i = 0; i < RADEON_MAX_AFMT_BLOCKS; i++) rdev->mode_info.afmt[i] = NULL; if (ASIC_IS_NODCE(rdev)) { /* nothing to do */ } else if (ASIC_IS_DCE4(rdev)) { static uint32_t eg_offsets[] = { EVERGREEN_CRTC0_REGISTER_OFFSET, EVERGREEN_CRTC1_REGISTER_OFFSET, EVERGREEN_CRTC2_REGISTER_OFFSET, EVERGREEN_CRTC3_REGISTER_OFFSET, EVERGREEN_CRTC4_REGISTER_OFFSET, EVERGREEN_CRTC5_REGISTER_OFFSET, 0x13830 - 0x7030, }; int num_afmt; /* DCE8 has 7 audio blocks tied to DIG encoders */ /* DCE6 has 6 audio blocks tied to DIG encoders */ /* DCE4/5 has 6 audio blocks tied to DIG encoders */ /* DCE4.1 has 2 audio blocks tied to DIG encoders */ if (ASIC_IS_DCE8(rdev)) num_afmt = 7; else if (ASIC_IS_DCE6(rdev)) num_afmt = 6; else if (ASIC_IS_DCE5(rdev)) num_afmt = 6; else if (ASIC_IS_DCE41(rdev)) num_afmt = 2; else /* DCE4 */ num_afmt = 6; BUG_ON(num_afmt > ARRAY_SIZE(eg_offsets)); for (i = 0; i < num_afmt; i++) { rdev->mode_info.afmt[i] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL); if (rdev->mode_info.afmt[i]) { rdev->mode_info.afmt[i]->offset = eg_offsets[i]; rdev->mode_info.afmt[i]->id = i; } } } else if (ASIC_IS_DCE3(rdev)) { /* DCE3.x has 2 audio blocks tied to DIG encoders */ rdev->mode_info.afmt[0] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL); if (rdev->mode_info.afmt[0]) { rdev->mode_info.afmt[0]->offset = DCE3_HDMI_OFFSET0; rdev->mode_info.afmt[0]->id = 0; } rdev->mode_info.afmt[1] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL); if (rdev->mode_info.afmt[1]) { rdev->mode_info.afmt[1]->offset = DCE3_HDMI_OFFSET1; rdev->mode_info.afmt[1]->id = 1; } } else if (ASIC_IS_DCE2(rdev)) { /* DCE2 has at least 1 routable audio block */ rdev->mode_info.afmt[0] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL); if (rdev->mode_info.afmt[0]) { rdev->mode_info.afmt[0]->offset = DCE2_HDMI_OFFSET0; rdev->mode_info.afmt[0]->id = 0; } /* r6xx has 2 routable audio blocks */ if (rdev->family >= CHIP_R600) { rdev->mode_info.afmt[1] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL); if (rdev->mode_info.afmt[1]) { rdev->mode_info.afmt[1]->offset = DCE2_HDMI_OFFSET1; rdev->mode_info.afmt[1]->id = 1; } } } } static void radeon_afmt_fini(struct radeon_device *rdev) { int i; for (i = 0; i < RADEON_MAX_AFMT_BLOCKS; i++) { kfree(rdev->mode_info.afmt[i]); rdev->mode_info.afmt[i] = NULL; } } int radeon_modeset_init(struct radeon_device *rdev) { int i; int ret; drm_mode_config_init(rdev->ddev); rdev->mode_info.mode_config_initialized = true; rdev->ddev->mode_config.funcs = &radeon_mode_funcs; if (radeon_use_pflipirq == 2 && rdev->family >= CHIP_R600) rdev->ddev->mode_config.async_page_flip = true; if (ASIC_IS_DCE5(rdev)) { rdev->ddev->mode_config.max_width = 16384; rdev->ddev->mode_config.max_height = 16384; } else if (ASIC_IS_AVIVO(rdev)) { rdev->ddev->mode_config.max_width = 8192; rdev->ddev->mode_config.max_height = 8192; } else { rdev->ddev->mode_config.max_width = 4096; rdev->ddev->mode_config.max_height = 4096; } rdev->ddev->mode_config.preferred_depth = 24; rdev->ddev->mode_config.prefer_shadow = 1; rdev->ddev->mode_config.fb_base = rdev->mc.aper_base; ret = radeon_modeset_create_props(rdev); if (ret) { return ret; } /* init i2c buses */ radeon_i2c_init(rdev); /* check combios for a valid hardcoded EDID - Sun servers */ if (!rdev->is_atom_bios) { /* check for hardcoded EDID in BIOS */ radeon_combios_check_hardcoded_edid(rdev); } /* allocate crtcs */ for (i = 0; i < rdev->num_crtc; i++) { radeon_crtc_init(rdev->ddev, i); } /* okay we should have all the bios connectors */ ret = radeon_setup_enc_conn(rdev->ddev); if (!ret) { return ret; } /* init dig PHYs, disp eng pll */ if (rdev->is_atom_bios) { radeon_atom_encoder_init(rdev); radeon_atom_disp_eng_pll_init(rdev); } /* initialize hpd */ radeon_hpd_init(rdev); /* setup afmt */ radeon_afmt_init(rdev); radeon_fbdev_init(rdev); drm_kms_helper_poll_init(rdev->ddev); /* do pm late init */ ret = radeon_pm_late_init(rdev); return 0; } void radeon_modeset_fini(struct radeon_device *rdev) { if (rdev->mode_info.mode_config_initialized) { drm_kms_helper_poll_fini(rdev->ddev); radeon_hpd_fini(rdev); drm_crtc_force_disable_all(rdev->ddev); radeon_fbdev_fini(rdev); radeon_afmt_fini(rdev); drm_mode_config_cleanup(rdev->ddev); rdev->mode_info.mode_config_initialized = false; } kfree(rdev->mode_info.bios_hardcoded_edid); /* free i2c buses */ radeon_i2c_fini(rdev); } static bool is_hdtv_mode(const struct drm_display_mode *mode) { /* try and guess if this is a tv or a monitor */ if ((mode->vdisplay == 480 && mode->hdisplay == 720) || /* 480p */ (mode->vdisplay == 576) || /* 576p */ (mode->vdisplay == 720) || /* 720p */ (mode->vdisplay == 1080)) /* 1080p */ return true; else return false; } bool radeon_crtc_scaling_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct radeon_encoder *radeon_encoder; struct drm_connector *connector; struct radeon_connector *radeon_connector; bool first = true; u32 src_v = 1, dst_v = 1; u32 src_h = 1, dst_h = 1; radeon_crtc->h_border = 0; radeon_crtc->v_border = 0; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc != crtc) continue; radeon_encoder = to_radeon_encoder(encoder); connector = radeon_get_connector_for_encoder(encoder); radeon_connector = to_radeon_connector(connector); if (first) { /* set scaling */ if (radeon_encoder->rmx_type == RMX_OFF) radeon_crtc->rmx_type = RMX_OFF; else if (mode->hdisplay < radeon_encoder->native_mode.hdisplay || mode->vdisplay < radeon_encoder->native_mode.vdisplay) radeon_crtc->rmx_type = radeon_encoder->rmx_type; else radeon_crtc->rmx_type = RMX_OFF; /* copy native mode */ memcpy(&radeon_crtc->native_mode, &radeon_encoder->native_mode, sizeof(struct drm_display_mode)); src_v = crtc->mode.vdisplay; dst_v = radeon_crtc->native_mode.vdisplay; src_h = crtc->mode.hdisplay; dst_h = radeon_crtc->native_mode.hdisplay; /* fix up for overscan on hdmi */ if (ASIC_IS_AVIVO(rdev) && (!(mode->flags & DRM_MODE_FLAG_INTERLACE)) && ((radeon_encoder->underscan_type == UNDERSCAN_ON) || ((radeon_encoder->underscan_type == UNDERSCAN_AUTO) && drm_detect_hdmi_monitor(radeon_connector_edid(connector)) && is_hdtv_mode(mode)))) { if (radeon_encoder->underscan_hborder != 0) radeon_crtc->h_border = radeon_encoder->underscan_hborder; else radeon_crtc->h_border = (mode->hdisplay >> 5) + 16; if (radeon_encoder->underscan_vborder != 0) radeon_crtc->v_border = radeon_encoder->underscan_vborder; else radeon_crtc->v_border = (mode->vdisplay >> 5) + 16; radeon_crtc->rmx_type = RMX_FULL; src_v = crtc->mode.vdisplay; dst_v = crtc->mode.vdisplay - (radeon_crtc->v_border * 2); src_h = crtc->mode.hdisplay; dst_h = crtc->mode.hdisplay - (radeon_crtc->h_border * 2); } first = false; } else { if (radeon_crtc->rmx_type != radeon_encoder->rmx_type) { /* WARNING: Right now this can't happen but * in the future we need to check that scaling * are consistent across different encoder * (ie all encoder can work with the same * scaling). */ DRM_ERROR("Scaling not consistent across encoder.\n"); return false; } } } if (radeon_crtc->rmx_type != RMX_OFF) { fixed20_12 a, b; a.full = dfixed_const(src_v); b.full = dfixed_const(dst_v); radeon_crtc->vsc.full = dfixed_div(a, b); a.full = dfixed_const(src_h); b.full = dfixed_const(dst_h); radeon_crtc->hsc.full = dfixed_div(a, b); } else { radeon_crtc->vsc.full = dfixed_const(1); radeon_crtc->hsc.full = dfixed_const(1); } return true; } /* * Retrieve current video scanout position of crtc on a given gpu, and * an optional accurate timestamp of when query happened. * * \param dev Device to query. * \param crtc Crtc to query. * \param flags Flags from caller (DRM_CALLED_FROM_VBLIRQ or 0). * For driver internal use only also supports these flags: * * USE_REAL_VBLANKSTART to use the real start of vblank instead * of a fudged earlier start of vblank. * * GET_DISTANCE_TO_VBLANKSTART to return distance to the * fudged earlier start of vblank in *vpos and the distance * to true start of vblank in *hpos. * * \param *vpos Location where vertical scanout position should be stored. * \param *hpos Location where horizontal scanout position should go. * \param *stime Target location for timestamp taken immediately before * scanout position query. Can be NULL to skip timestamp. * \param *etime Target location for timestamp taken immediately after * scanout position query. Can be NULL to skip timestamp. * * Returns vpos as a positive number while in active scanout area. * Returns vpos as a negative number inside vblank, counting the number * of scanlines to go until end of vblank, e.g., -1 means "one scanline * until start of active scanout / end of vblank." * * \return Flags, or'ed together as follows: * * DRM_SCANOUTPOS_VALID = Query successful. * DRM_SCANOUTPOS_INVBL = Inside vblank. * DRM_SCANOUTPOS_ACCURATE = Returned position is accurate. A lack of * this flag means that returned position may be offset by a constant but * unknown small number of scanlines wrt. real scanout position. * */ int radeon_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, unsigned int flags, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { u32 stat_crtc = 0, vbl = 0, position = 0; int vbl_start, vbl_end, vtotal, ret = 0; bool in_vbl = true; struct radeon_device *rdev = dev->dev_private; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); if (ASIC_IS_DCE4(rdev)) { if (pipe == 0) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC0_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC0_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 1) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC1_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC1_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 2) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC2_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC2_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 3) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC3_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC3_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 4) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC4_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC4_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 5) { vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END + EVERGREEN_CRTC5_REGISTER_OFFSET); position = RREG32(EVERGREEN_CRTC_STATUS_POSITION + EVERGREEN_CRTC5_REGISTER_OFFSET); ret |= DRM_SCANOUTPOS_VALID; } } else if (ASIC_IS_AVIVO(rdev)) { if (pipe == 0) { vbl = RREG32(AVIVO_D1CRTC_V_BLANK_START_END); position = RREG32(AVIVO_D1CRTC_STATUS_POSITION); ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 1) { vbl = RREG32(AVIVO_D2CRTC_V_BLANK_START_END); position = RREG32(AVIVO_D2CRTC_STATUS_POSITION); ret |= DRM_SCANOUTPOS_VALID; } } else { /* Pre-AVIVO: Different encoding of scanout pos and vblank interval. */ if (pipe == 0) { /* Assume vbl_end == 0, get vbl_start from * upper 16 bits. */ vbl = (RREG32(RADEON_CRTC_V_TOTAL_DISP) & RADEON_CRTC_V_DISP) >> RADEON_CRTC_V_DISP_SHIFT; /* Only retrieve vpos from upper 16 bits, set hpos == 0. */ position = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; stat_crtc = RREG32(RADEON_CRTC_STATUS); if (!(stat_crtc & 1)) in_vbl = false; ret |= DRM_SCANOUTPOS_VALID; } if (pipe == 1) { vbl = (RREG32(RADEON_CRTC2_V_TOTAL_DISP) & RADEON_CRTC_V_DISP) >> RADEON_CRTC_V_DISP_SHIFT; position = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; stat_crtc = RREG32(RADEON_CRTC2_STATUS); if (!(stat_crtc & 1)) in_vbl = false; ret |= DRM_SCANOUTPOS_VALID; } } /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ /* Decode into vertical and horizontal scanout position. */ *vpos = position & 0x1fff; *hpos = (position >> 16) & 0x1fff; /* Valid vblank area boundaries from gpu retrieved? */ if (vbl > 0) { /* Yes: Decode. */ ret |= DRM_SCANOUTPOS_ACCURATE; vbl_start = vbl & 0x1fff; vbl_end = (vbl >> 16) & 0x1fff; } else { /* No: Fake something reasonable which gives at least ok results. */ vbl_start = mode->crtc_vdisplay; vbl_end = 0; } /* Called from driver internal vblank counter query code? */ if (flags & GET_DISTANCE_TO_VBLANKSTART) { /* Caller wants distance from real vbl_start in *hpos */ *hpos = *vpos - vbl_start; } /* Fudge vblank to start a few scanlines earlier to handle the * problem that vblank irqs fire a few scanlines before start * of vblank. Some driver internal callers need the true vblank * start to be used and signal this via the USE_REAL_VBLANKSTART flag. * * The cause of the "early" vblank irq is that the irq is triggered * by the line buffer logic when the line buffer read position enters * the vblank, whereas our crtc scanout position naturally lags the * line buffer read position. */ if (!(flags & USE_REAL_VBLANKSTART)) vbl_start -= rdev->mode_info.crtcs[pipe]->lb_vblank_lead_lines; /* Test scanout position against vblank region. */ if ((*vpos < vbl_start) && (*vpos >= vbl_end)) in_vbl = false; /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_IN_VBLANK; /* Called from driver internal vblank counter query code? */ if (flags & GET_DISTANCE_TO_VBLANKSTART) { /* Caller wants distance from fudged earlier vbl_start */ *vpos -= vbl_start; return ret; } /* Check if inside vblank area and apply corrective offsets: * vpos will then be >=0 in video scanout area, but negative * within vblank area, counting down the number of lines until * start of scanout. */ /* Inside "upper part" of vblank area? Apply corrective offset if so: */ if (in_vbl && (*vpos >= vbl_start)) { vtotal = mode->crtc_vtotal; *vpos = *vpos - vtotal; } /* Correct for shifted end of vbl at vbl_end. */ *vpos = *vpos - vbl_end; return ret; }