/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "hw.h" #include "reg.h" #include "phy.h" /* We can tune this as we go by monitoring really low values */ #define ATH9K_NF_TOO_LOW -60 /* AR5416 may return very high value (like -31 dBm), in those cases the nf * is incorrect and we should use the static NF value. Later we can try to * find out why they are reporting these values */ static bool ath9k_hw_nf_in_range(struct ath_hal *ah, s16 nf) { if (nf > ATH9K_NF_TOO_LOW) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "noise floor value detected (%d) is " "lower than what we think is a " "reasonable value (%d)\n", nf, ATH9K_NF_TOO_LOW); return false; } return true; } static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer) { int16_t nfval; int16_t sort[ATH9K_NF_CAL_HIST_MAX]; int i, j; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++) sort[i] = nfCalBuffer[i]; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) { for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) { if (sort[j] > sort[j - 1]) { nfval = sort[j]; sort[j] = sort[j - 1]; sort[j - 1] = nfval; } } } nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1]; return nfval; } static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h, int16_t *nfarray) { int i; for (i = 0; i < NUM_NF_READINGS; i++) { h[i].nfCalBuffer[h[i].currIndex] = nfarray[i]; if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX) h[i].currIndex = 0; if (h[i].invalidNFcount > 0) { if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) { h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX; } else { h[i].invalidNFcount--; h[i].privNF = nfarray[i]; } } else { h[i].privNF = ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer); } } return; } static void ath9k_hw_do_getnf(struct ath_hal *ah, int16_t nfarray[NUM_NF_READINGS]) { int16_t nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 0] is %d\n", nf); nfarray[0] = nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 1] is %d\n", nf); nfarray[1] = nf; if (!AR_SREV_9280(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 2] is %d\n", nf); nfarray[2] = nf; } if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 0] is %d\n", nf); nfarray[3] = nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 1] is %d\n", nf); nfarray[4] = nf; if (!AR_SREV_9280(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 2] is %d\n", nf); nfarray[5] = nf; } } static bool getNoiseFloorThresh(struct ath_hal *ah, enum ieee80211_band band, int16_t *nft) { switch (band) { case IEEE80211_BAND_5GHZ: *nft = (int8_t)ath9k_hw_get_eeprom(ah, EEP_NFTHRESH_5); break; case IEEE80211_BAND_2GHZ: *nft = (int8_t)ath9k_hw_get_eeprom(ah, EEP_NFTHRESH_2); break; default: BUG_ON(1); return false; } return true; } static void ath9k_hw_setup_calibration(struct ath_hal *ah, struct hal_cal_list *currCal) { REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, currCal->calData->calCountMax); switch (currCal->calData->calType) { case IQ_MISMATCH_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "starting IQ Mismatch Calibration\n"); break; case ADC_GAIN_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "starting ADC Gain Calibration\n"); break; case ADC_DC_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "starting ADC DC Calibration\n"); break; case ADC_DC_INIT_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "starting Init ADC DC Calibration\n"); break; } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_DO_CAL); } static void ath9k_hw_reset_calibration(struct ath_hal *ah, struct hal_cal_list *currCal) { struct ath_hal_5416 *ahp = AH5416(ah); int i; ath9k_hw_setup_calibration(ah, currCal); currCal->calState = CAL_RUNNING; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_Meas0.sign[i] = 0; ahp->ah_Meas1.sign[i] = 0; ahp->ah_Meas2.sign[i] = 0; ahp->ah_Meas3.sign[i] = 0; } ahp->ah_CalSamples = 0; } static void ath9k_hw_per_calibration(struct ath_hal *ah, struct ath9k_channel *ichan, u8 rxchainmask, struct hal_cal_list *currCal, bool *isCalDone) { struct ath_hal_5416 *ahp = AH5416(ah); *isCalDone = false; if (currCal->calState == CAL_RUNNING) { if (!(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & AR_PHY_TIMING_CTRL4_DO_CAL)) { currCal->calData->calCollect(ah); ahp->ah_CalSamples++; if (ahp->ah_CalSamples >= currCal->calData->calNumSamples) { int i, numChains = 0; for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (rxchainmask & (1 << i)) numChains++; } currCal->calData->calPostProc(ah, numChains); ichan->CalValid |= currCal->calData->calType; currCal->calState = CAL_DONE; *isCalDone = true; } else { ath9k_hw_setup_calibration(ah, currCal); } } } else if (!(ichan->CalValid & currCal->calData->calType)) { ath9k_hw_reset_calibration(ah, currCal); } } /* Assumes you are talking about the currently configured channel */ static bool ath9k_hw_iscal_supported(struct ath_hal *ah, enum hal_cal_types calType) { struct ath_hal_5416 *ahp = AH5416(ah); struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; switch (calType & ahp->ah_suppCals) { case IQ_MISMATCH_CAL: /* Both 2 GHz and 5 GHz support OFDM */ return true; case ADC_GAIN_CAL: case ADC_DC_CAL: if (conf->channel->band == IEEE80211_BAND_5GHZ && conf_is_ht20(conf)) return true; break; } return false; } static void ath9k_hw_iqcal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalPowerMeasI[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalPowerMeasQ[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalIqCorrMeas[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i], ahp->ah_totalPowerMeasQ[i], ahp->ah_totalIqCorrMeas[i]); } } static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalAdcIOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalAdcIEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalAdcQOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ahp->ah_totalAdcQEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalAdcIOddPhase[i], ahp->ah_totalAdcIEvenPhase[i], ahp->ah_totalAdcQOddPhase[i], ahp->ah_totalAdcQEvenPhase[i]); } } static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalAdcDcOffsetIOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalAdcDcOffsetIEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalAdcDcOffsetQOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ahp->ah_totalAdcDcOffsetQEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalAdcDcOffsetIOddPhase[i], ahp->ah_totalAdcDcOffsetIEvenPhase[i], ahp->ah_totalAdcDcOffsetQOddPhase[i], ahp->ah_totalAdcDcOffsetQEvenPhase[i]); } } static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 powerMeasQ, powerMeasI, iqCorrMeas; u32 qCoffDenom, iCoffDenom; int32_t qCoff, iCoff; int iqCorrNeg, i; for (i = 0; i < numChains; i++) { powerMeasI = ahp->ah_totalPowerMeasI[i]; powerMeasQ = ahp->ah_totalPowerMeasQ[i]; iqCorrMeas = ahp->ah_totalIqCorrMeas[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting IQ Cal and Correction for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Orignal: Chn %diq_corr_meas = 0x%08x\n", i, ahp->ah_totalIqCorrMeas[i]); iqCorrNeg = 0; if (iqCorrMeas > 0x80000000) { iqCorrMeas = (0xffffffff - iqCorrMeas) + 1; iqCorrNeg = 1; } DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg); iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; qCoffDenom = powerMeasQ / 64; if (powerMeasQ != 0) { iCoff = iqCorrMeas / iCoffDenom; qCoff = powerMeasI / qCoffDenom - 64; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d iCoff = 0x%08x\n", i, iCoff); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d qCoff = 0x%08x\n", i, qCoff); iCoff = iCoff & 0x3f; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "New: Chn %d iCoff = 0x%08x\n", i, iCoff); if (iqCorrNeg == 0x0) iCoff = 0x40 - iCoff; if (qCoff > 15) qCoff = 15; else if (qCoff <= -16) qCoff = 16; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d : iCoff = 0x%x qCoff = 0x%x\n", i, iCoff, qCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "IQ Cal and Correction done for Chain %d\n", i); } } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); } static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset, qEvenMeasOffset; u32 qGainMismatch, iGainMismatch, val, i; for (i = 0; i < numChains; i++) { iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i]; iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i]; qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i]; qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting ADC Gain Cal for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = 0x%08x\n", i, iOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = 0x%08x\n", i, iEvenMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = 0x%08x\n", i, qOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = 0x%08x\n", i, qEvenMeasOffset); if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) { iGainMismatch = ((iEvenMeasOffset * 32) / iOddMeasOffset) & 0x3f; qGainMismatch = ((qOddMeasOffset * 32) / qEvenMeasOffset) & 0x3f; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_i = 0x%08x\n", i, iGainMismatch); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_q = 0x%08x\n", i, qGainMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xfffff000; val |= (qGainMismatch) | (iGainMismatch << 6); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "ADC Gain Cal done for Chain %d\n", i); } } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); } static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 iOddMeasOffset, iEvenMeasOffset, val, i; int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch; const struct hal_percal_data *calData = ahp->ah_cal_list_curr->calData; u32 numSamples = (1 << (calData->calCountMax + 5)) * calData->calNumSamples; for (i = 0; i < numChains; i++) { iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i]; iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i]; qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i]; qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting ADC DC Offset Cal for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = %d\n", i, iOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = %d\n", i, iEvenMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = %d\n", i, qOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = %d\n", i, qEvenMeasOffset); iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) / numSamples) & 0x1ff; qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) / numSamples) & 0x1ff; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_i = 0x%08x\n", i, iDcMismatch); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_q = 0x%08x\n", i, qDcMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xc0000fff; val |= (qDcMismatch << 12) | (iDcMismatch << 21); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "ADC DC Offset Cal done for Chain %d\n", i); } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); } /* This is done for the currently configured channel */ bool ath9k_hw_reset_calvalid(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; struct hal_cal_list *currCal = ahp->ah_cal_list_curr; if (!ah->ah_curchan) return true; if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah)) return true; if (currCal == NULL) return true; if (currCal->calState != CAL_DONE) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Calibration state incorrect, %d\n", currCal->calState); return true; } if (!ath9k_hw_iscal_supported(ah, currCal->calData->calType)) return true; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Resetting Cal %d state for channel %u\n", currCal->calData->calType, conf->channel->center_freq); ah->ah_curchan->CalValid &= ~currCal->calData->calType; currCal->calState = CAL_WAITING; return false; } void ath9k_hw_start_nfcal(struct ath_hal *ah) { REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); } void ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h; int i, j; int32_t val; const u32 ar5416_cca_regs[6] = { AR_PHY_CCA, AR_PHY_CH1_CCA, AR_PHY_CH2_CCA, AR_PHY_EXT_CCA, AR_PHY_CH1_EXT_CCA, AR_PHY_CH2_EXT_CCA }; u8 chainmask; if (AR_SREV_9280(ah)) chainmask = 0x1B; else chainmask = 0x3F; #ifdef ATH_NF_PER_CHAN h = chan->nfCalHist; #else h = ah->nfCalHist; #endif for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (h[i].privNF) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); for (j = 0; j < 1000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } } int16_t ath9k_hw_getnf(struct ath_hal *ah, struct ath9k_channel *chan) { int16_t nf, nfThresh; int16_t nfarray[NUM_NF_READINGS] = { 0 }; struct ath9k_nfcal_hist *h; struct ieee80211_channel *c = chan->chan; u8 chainmask; if (AR_SREV_9280(ah)) chainmask = 0x1B; else chainmask = 0x3F; chan->channelFlags &= (~CHANNEL_CW_INT); if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF did not complete in calibration window\n"); nf = 0; chan->rawNoiseFloor = nf; return chan->rawNoiseFloor; } else { ath9k_hw_do_getnf(ah, nfarray); nf = nfarray[0]; if (getNoiseFloorThresh(ah, c->band, &nfThresh) && nf > nfThresh) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "noise floor failed detected; " "detected %d, threshold %d\n", nf, nfThresh); chan->channelFlags |= CHANNEL_CW_INT; } } #ifdef ATH_NF_PER_CHAN h = chan->nfCalHist; #else h = ah->nfCalHist; #endif ath9k_hw_update_nfcal_hist_buffer(h, nfarray); chan->rawNoiseFloor = h[0].privNF; return chan->rawNoiseFloor; } void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah) { int i, j; for (i = 0; i < NUM_NF_READINGS; i++) { ah->nfCalHist[i].currIndex = 0; ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE; ah->nfCalHist[i].invalidNFcount = AR_PHY_CCA_FILTERWINDOW_LENGTH; for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) { ah->nfCalHist[i].nfCalBuffer[j] = AR_PHY_CCA_MAX_GOOD_VALUE; } } return; } s16 ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath9k_channel *ichan; s16 nf; ichan = ath9k_regd_check_channel(ah, chan); if (ichan == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "invalid channel %u/0x%x; no mapping\n", chan->channel, chan->channelFlags); return ATH_DEFAULT_NOISE_FLOOR; } if (ichan->rawNoiseFloor == 0) nf = -96; else nf = ichan->rawNoiseFloor; if (!ath9k_hw_nf_in_range(ah, nf)) nf = ATH_DEFAULT_NOISE_FLOOR; return nf; } bool ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan, u8 rxchainmask, bool longcal, bool *isCalDone) { struct ath_hal_5416 *ahp = AH5416(ah); struct hal_cal_list *currCal = ahp->ah_cal_list_curr; struct ath9k_channel *ichan = ath9k_regd_check_channel(ah, chan); *isCalDone = true; if (ichan == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "invalid channel %u/0x%x; no mapping\n", chan->channel, chan->channelFlags); return false; } if (currCal && (currCal->calState == CAL_RUNNING || currCal->calState == CAL_WAITING)) { ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal, isCalDone); if (*isCalDone) { ahp->ah_cal_list_curr = currCal = currCal->calNext; if (currCal->calState == CAL_WAITING) { *isCalDone = false; ath9k_hw_reset_calibration(ah, currCal); } } } if (longcal) { ath9k_hw_getnf(ah, ichan); ath9k_hw_loadnf(ah, ah->ah_curchan); ath9k_hw_start_nfcal(ah); if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) { chan->channelFlags |= CHANNEL_CW_INT; ichan->channelFlags &= ~CHANNEL_CW_INT; } } return true; } static inline void ath9k_hw_9285_pa_cal(struct ath_hal *ah) { u32 regVal; int i, offset, offs_6_1, offs_0; u32 ccomp_org, reg_field; u32 regList[][2] = { { 0x786c, 0 }, { 0x7854, 0 }, { 0x7820, 0 }, { 0x7824, 0 }, { 0x7868, 0 }, { 0x783c, 0 }, { 0x7838, 0 }, }; if (AR_SREV_9285_11(ah)) { REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14)); udelay(10); } for (i = 0; i < ARRAY_SIZE(regList); i++) regList[i][1] = REG_READ(ah, regList[i][0]); regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1)); REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal |= (0x1 << 27); REG_WRITE(ah, 0x9808, regVal); REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1); REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1); REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 1); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G8, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); ccomp_org = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_CCOMP); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, 7); REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0); udelay(30); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, 0); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 0); for (i = 6; i > 0; i--) { regVal = REG_READ(ah, 0x7834); regVal |= (1 << (19 + i)); REG_WRITE(ah, 0x7834, regVal); udelay(1); regVal = REG_READ(ah, 0x7834); regVal &= (~(0x1 << (19 + i))); reg_field = MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9); regVal |= (reg_field << (19 + i)); REG_WRITE(ah, 0x7834, regVal); } REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 1); udelay(1); reg_field = MS(REG_READ(ah, AR9285_AN_RF2G9), AR9285_AN_RXTXBB1_SPARE9); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, reg_field); offs_6_1 = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_OFFS); offs_0 = MS(REG_READ(ah, AR9285_AN_RF2G3), AR9285_AN_RF2G3_PDVCCOMP); offset = (offs_6_1<<1) | offs_0; offset = offset - 0; offs_6_1 = offset>>1; offs_0 = offset & 1; REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, offs_6_1); REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, offs_0); regVal = REG_READ(ah, 0x7834); regVal |= 0x1; REG_WRITE(ah, 0x7834, regVal); regVal = REG_READ(ah, 0x9808); regVal &= (~(0x1 << 27)); REG_WRITE(ah, 0x9808, regVal); for (i = 0; i < ARRAY_SIZE(regList); i++) REG_WRITE(ah, regList[i][0], regList[i][1]); REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, ccomp_org); if (AR_SREV_9285_11(ah)) REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT); } bool ath9k_hw_init_cal(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *ichan = ath9k_regd_check_channel(ah, chan); REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "offset calibration failed to complete in 1ms; " "noisy environment?\n"); return false; } if (AR_SREV_9285(ah) && AR_SREV_9285_11_OR_LATER(ah)) ath9k_hw_9285_pa_cal(ah); REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL; if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) { if (ath9k_hw_iscal_supported(ah, ADC_GAIN_CAL)) { INIT_CAL(&ahp->ah_adcGainCalData); INSERT_CAL(ahp, &ahp->ah_adcGainCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "enabling ADC Gain Calibration.\n"); } if (ath9k_hw_iscal_supported(ah, ADC_DC_CAL)) { INIT_CAL(&ahp->ah_adcDcCalData); INSERT_CAL(ahp, &ahp->ah_adcDcCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "enabling ADC DC Calibration.\n"); } if (ath9k_hw_iscal_supported(ah, IQ_MISMATCH_CAL)) { INIT_CAL(&ahp->ah_iqCalData); INSERT_CAL(ahp, &ahp->ah_iqCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "enabling IQ Calibration.\n"); } ahp->ah_cal_list_curr = ahp->ah_cal_list; if (ahp->ah_cal_list_curr) ath9k_hw_reset_calibration(ah, ahp->ah_cal_list_curr); } ichan->CalValid = 0; return true; } const struct hal_percal_data iq_cal_multi_sample = { IQ_MISMATCH_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; const struct hal_percal_data iq_cal_single_sample = { IQ_MISMATCH_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; const struct hal_percal_data adc_gain_cal_multi_sample = { ADC_GAIN_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; const struct hal_percal_data adc_gain_cal_single_sample = { ADC_GAIN_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; const struct hal_percal_data adc_dc_cal_multi_sample = { ADC_DC_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; const struct hal_percal_data adc_dc_cal_single_sample = { ADC_DC_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; const struct hal_percal_data adc_init_dc_cal = { ADC_DC_INIT_CAL, MIN_CAL_SAMPLES, INIT_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate };