/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "drmP.h" #include "amdgpu.h" #include "amdgpu_gfx.h" #include "soc15.h" #include "soc15d.h" #include "vega10/soc15ip.h" #include "vega10/GC/gc_9_0_offset.h" #include "vega10/GC/gc_9_0_sh_mask.h" #include "vega10/vega10_enum.h" #include "vega10/HDP/hdp_4_0_offset.h" #include "soc15_common.h" #include "clearstate_gfx9.h" #include "v9_structs.h" #define GFX9_NUM_GFX_RINGS 1 #define GFX9_MEC_HPD_SIZE 2048 #define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L #define RLC_SAVE_RESTORE_ADDR_STARTING_OFFSET 0x00000000L #define GFX9_RLC_FORMAT_DIRECT_REG_LIST_LENGTH 34 #define mmPWR_MISC_CNTL_STATUS 0x0183 #define mmPWR_MISC_CNTL_STATUS_BASE_IDX 0 #define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN__SHIFT 0x0 #define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT 0x1 #define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN_MASK 0x00000001L #define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK 0x00000006L MODULE_FIRMWARE("amdgpu/vega10_ce.bin"); MODULE_FIRMWARE("amdgpu/vega10_pfp.bin"); MODULE_FIRMWARE("amdgpu/vega10_me.bin"); MODULE_FIRMWARE("amdgpu/vega10_mec.bin"); MODULE_FIRMWARE("amdgpu/vega10_mec2.bin"); MODULE_FIRMWARE("amdgpu/vega10_rlc.bin"); MODULE_FIRMWARE("amdgpu/raven_ce.bin"); MODULE_FIRMWARE("amdgpu/raven_pfp.bin"); MODULE_FIRMWARE("amdgpu/raven_me.bin"); MODULE_FIRMWARE("amdgpu/raven_mec.bin"); MODULE_FIRMWARE("amdgpu/raven_mec2.bin"); MODULE_FIRMWARE("amdgpu/raven_rlc.bin"); static const struct amdgpu_gds_reg_offset amdgpu_gds_reg_offset[] = { {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID0), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID0)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID1_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID1_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID1), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID1)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID2_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID2_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID2), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID2)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID3_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID3_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID3), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID3)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID4_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID4_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID4), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID4)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID5_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID5_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID5), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID5)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID6_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID6_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID6), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID6)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID7_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID7_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID7), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID7)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID8_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID8_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID8), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID8)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID9_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID9_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID9), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID9)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID10_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID10_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID10), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID10)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID11_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID11_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID11), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID11)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID12_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID12_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID12), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID12)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID13_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID13_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID13), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID13)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID14_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID14_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID14), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID14)}, {SOC15_REG_OFFSET(GC, 0, mmGDS_VMID15_BASE), SOC15_REG_OFFSET(GC, 0, mmGDS_VMID15_SIZE), SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID15), SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID15)} }; static const u32 golden_settings_gc_9_0[] = { SOC15_REG_OFFSET(GC, 0, mmCPC_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmCPF_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmCPG_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmDB_DEBUG2), 0xf00fffff, 0x00000420, SOC15_REG_OFFSET(GC, 0, mmGB_GPU_ID), 0x0000000f, 0x00000000, SOC15_REG_OFFSET(GC, 0, mmIA_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmPA_SC_BINNER_EVENT_CNTL_3), 0x00000003, 0x82400024, SOC15_REG_OFFSET(GC, 0, mmPA_SC_ENHANCE), 0x3fffffff, 0x00000001, SOC15_REG_OFFSET(GC, 0, mmPA_SC_LINE_STIPPLE_STATE), 0x0000ff0f, 0x00000000, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_0), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_1), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_2), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_PREWALKER_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_SPM_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmSPI_CONFIG_CNTL_1), 0x0000000f, 0x01000107, SOC15_REG_OFFSET(GC, 0, mmTA_CNTL_AUX), 0xfffffeef, 0x010b0000, SOC15_REG_OFFSET(GC, 0, mmTCP_CHAN_STEER_HI), 0xffffffff, 0x4a2c0e68, SOC15_REG_OFFSET(GC, 0, mmTCP_CHAN_STEER_LO), 0xffffffff, 0xb5d3f197, SOC15_REG_OFFSET(GC, 0, mmVGT_CACHE_INVALIDATION), 0x3fff3af3, 0x19200000, SOC15_REG_OFFSET(GC, 0, mmVGT_GS_MAX_WAVE_ID), 0x00000fff, 0x000003ff, SOC15_REG_OFFSET(GC, 0, mmWD_UTCL1_CNTL), 0x08000000, 0x08000080 }; static const u32 golden_settings_gc_9_0_vg10[] = { SOC15_REG_OFFSET(GC, 0, mmCB_HW_CONTROL), 0x0000f000, 0x00012107, SOC15_REG_OFFSET(GC, 0, mmCB_HW_CONTROL_3), 0x30000000, 0x10000000, SOC15_REG_OFFSET(GC, 0, mmGB_ADDR_CONFIG), 0xffff77ff, 0x2a114042, SOC15_REG_OFFSET(GC, 0, mmGB_ADDR_CONFIG_READ), 0xffff77ff, 0x2a114042, SOC15_REG_OFFSET(GC, 0, mmPA_SC_ENHANCE_1), 0x00008000, 0x00048000, SOC15_REG_OFFSET(GC, 0, mmRMI_UTCL1_CNTL2), 0x00030000, 0x00020000, SOC15_REG_OFFSET(GC, 0, mmTD_CNTL), 0x00001800, 0x00000800 }; static const u32 golden_settings_gc_9_1[] = { SOC15_REG_OFFSET(GC, 0, mmCB_HW_CONTROL), 0xfffdf3cf, 0x00014104, SOC15_REG_OFFSET(GC, 0, mmCPC_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmCPF_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmCPG_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmDB_DEBUG2), 0xf00fffff, 0x00000420, SOC15_REG_OFFSET(GC, 0, mmGB_GPU_ID), 0x0000000f, 0x00000000, SOC15_REG_OFFSET(GC, 0, mmIA_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmPA_SC_BINNER_EVENT_CNTL_3), 0x00000003, 0x82400024, SOC15_REG_OFFSET(GC, 0, mmPA_SC_ENHANCE), 0x3fffffff, 0x00000001, SOC15_REG_OFFSET(GC, 0, mmPA_SC_LINE_STIPPLE_STATE), 0x0000ff0f, 0x00000000, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_0), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_1), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_UTCL1_CNTL_2), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_PREWALKER_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmRLC_SPM_UTCL1_CNTL), 0x08000000, 0x08000080, SOC15_REG_OFFSET(GC, 0, mmTA_CNTL_AUX), 0xfffffeef, 0x010b0000, SOC15_REG_OFFSET(GC, 0, mmTCP_CHAN_STEER_HI), 0xffffffff, 0x00000000, SOC15_REG_OFFSET(GC, 0, mmTCP_CHAN_STEER_LO), 0xffffffff, 0x00003120, SOC15_REG_OFFSET(GC, 0, mmVGT_CACHE_INVALIDATION), 0x3fff3af3, 0x19200000, SOC15_REG_OFFSET(GC, 0, mmVGT_GS_MAX_WAVE_ID), 0x00000fff, 0x000000ff, SOC15_REG_OFFSET(GC, 0, mmWD_UTCL1_CNTL), 0x08000000, 0x08000080 }; static const u32 golden_settings_gc_9_1_rv1[] = { SOC15_REG_OFFSET(GC, 0, mmCB_HW_CONTROL_3), 0x30000000, 0x10000000, SOC15_REG_OFFSET(GC, 0, mmGB_ADDR_CONFIG), 0xffff77ff, 0x24000042, SOC15_REG_OFFSET(GC, 0, mmGB_ADDR_CONFIG_READ), 0xffff77ff, 0x24000042, SOC15_REG_OFFSET(GC, 0, mmPA_SC_ENHANCE_1), 0xffffffff, 0x04048000, SOC15_REG_OFFSET(GC, 0, mmPA_SC_MODE_CNTL_1), 0x06000000, 0x06000000, SOC15_REG_OFFSET(GC, 0, mmRMI_UTCL1_CNTL2), 0x00030000, 0x00020000, SOC15_REG_OFFSET(GC, 0, mmTD_CNTL), 0x01bd9f33, 0x00000800 }; #define VEGA10_GB_ADDR_CONFIG_GOLDEN 0x2a114042 #define RAVEN_GB_ADDR_CONFIG_GOLDEN 0x24000042 static void gfx_v9_0_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v9_0_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v9_0_set_gds_init(struct amdgpu_device *adev); static void gfx_v9_0_set_rlc_funcs(struct amdgpu_device *adev); static int gfx_v9_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info); static uint64_t gfx_v9_0_get_gpu_clock_counter(struct amdgpu_device *adev); static void gfx_v9_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance); static void gfx_v9_0_ring_emit_de_meta(struct amdgpu_ring *ring); static void gfx_v9_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: amdgpu_program_register_sequence(adev, golden_settings_gc_9_0, (const u32)ARRAY_SIZE(golden_settings_gc_9_0)); amdgpu_program_register_sequence(adev, golden_settings_gc_9_0_vg10, (const u32)ARRAY_SIZE(golden_settings_gc_9_0_vg10)); break; case CHIP_RAVEN: amdgpu_program_register_sequence(adev, golden_settings_gc_9_1, (const u32)ARRAY_SIZE(golden_settings_gc_9_1)); amdgpu_program_register_sequence(adev, golden_settings_gc_9_1_rv1, (const u32)ARRAY_SIZE(golden_settings_gc_9_1_rv1)); break; default: break; } } static void gfx_v9_0_scratch_init(struct amdgpu_device *adev) { adev->gfx.scratch.num_reg = 7; adev->gfx.scratch.reg_base = SOC15_REG_OFFSET(GC, 0, mmSCRATCH_REG0); adev->gfx.scratch.free_mask = (1u << adev->gfx.scratch.num_reg) - 1; } static void gfx_v9_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel, bool wc, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) | WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v9_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel, int mem_space, int opt, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, /* memory (1) or register (0) */ (WAIT_REG_MEM_MEM_SPACE(mem_space) | WAIT_REG_MEM_OPERATION(opt) | /* wait */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(eng_sel))); if (mem_space) BUG_ON(addr0 & 0x3); /* Dword align */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); amdgpu_ring_write(ring, ref); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, inv); /* poll interval */ } static int gfx_v9_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); amdgpu_gfx_scratch_free(adev, scratch); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < adev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n", ring->idx, scratch, tmp); r = -EINVAL; } amdgpu_gfx_scratch_free(adev, scratch); return r; } static int gfx_v9_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; uint32_t scratch; uint32_t tmp = 0; long r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: failed to get scratch reg (%ld).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); goto err1; } ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START)); ib.ptr[2] = 0xDEADBEEF; ib.length_dw = 3; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { DRM_ERROR("amdgpu: IB test timed out.\n"); r = -ETIMEDOUT; goto err2; } else if (r < 0) { DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); goto err2; } tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) { DRM_INFO("ib test on ring %d succeeded\n", ring->idx); r = 0; } else { DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } err2: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err1: amdgpu_gfx_scratch_free(adev, scratch); return r; } static int gfx_v9_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err; struct amdgpu_firmware_info *info = NULL; const struct common_firmware_header *header = NULL; const struct gfx_firmware_header_v1_0 *cp_hdr; const struct rlc_firmware_header_v2_0 *rlc_hdr; unsigned int *tmp = NULL; unsigned int i = 0; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_VEGA10: chip_name = "vega10"; break; case CHIP_RAVEN: chip_name = "raven"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name); err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.pfp_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name); err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.me_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name); err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.ce_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.rlc_fw); rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version); adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version); adev->gfx.rlc.save_and_restore_offset = le32_to_cpu(rlc_hdr->save_and_restore_offset); adev->gfx.rlc.clear_state_descriptor_offset = le32_to_cpu(rlc_hdr->clear_state_descriptor_offset); adev->gfx.rlc.avail_scratch_ram_locations = le32_to_cpu(rlc_hdr->avail_scratch_ram_locations); adev->gfx.rlc.reg_restore_list_size = le32_to_cpu(rlc_hdr->reg_restore_list_size); adev->gfx.rlc.reg_list_format_start = le32_to_cpu(rlc_hdr->reg_list_format_start); adev->gfx.rlc.reg_list_format_separate_start = le32_to_cpu(rlc_hdr->reg_list_format_separate_start); adev->gfx.rlc.starting_offsets_start = le32_to_cpu(rlc_hdr->starting_offsets_start); adev->gfx.rlc.reg_list_format_size_bytes = le32_to_cpu(rlc_hdr->reg_list_format_size_bytes); adev->gfx.rlc.reg_list_size_bytes = le32_to_cpu(rlc_hdr->reg_list_size_bytes); adev->gfx.rlc.register_list_format = kmalloc(adev->gfx.rlc.reg_list_format_size_bytes + adev->gfx.rlc.reg_list_size_bytes, GFP_KERNEL); if (!adev->gfx.rlc.register_list_format) { err = -ENOMEM; goto out; } tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_format_array_offset_bytes)); for (i = 0 ; i < (rlc_hdr->reg_list_format_size_bytes >> 2); i++) adev->gfx.rlc.register_list_format[i] = le32_to_cpu(tmp[i]); adev->gfx.rlc.register_restore = adev->gfx.rlc.register_list_format + i; tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_array_offset_bytes)); for (i = 0 ; i < (rlc_hdr->reg_list_size_bytes >> 2); i++) adev->gfx.rlc.register_restore[i] = le32_to_cpu(tmp[i]); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.mec_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name); err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev); if (!err) { err = amdgpu_ucode_validate(adev->gfx.mec2_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; adev->gfx.mec2_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); } else { err = 0; adev->gfx.mec2_fw = NULL; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP]; info->ucode_id = AMDGPU_UCODE_ID_CP_PFP; info->fw = adev->gfx.pfp_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME]; info->ucode_id = AMDGPU_UCODE_ID_CP_ME; info->fw = adev->gfx.me_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE]; info->ucode_id = AMDGPU_UCODE_ID_CP_CE; info->fw = adev->gfx.ce_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G]; info->ucode_id = AMDGPU_UCODE_ID_RLC_G; info->fw = adev->gfx.rlc_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1; info->fw = adev->gfx.mec_fw; header = (const struct common_firmware_header *)info->fw->data; cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1_JT]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1_JT; info->fw = adev->gfx.mec_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); if (adev->gfx.mec2_fw) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2; info->fw = adev->gfx.mec2_fw; header = (const struct common_firmware_header *)info->fw->data; cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2_JT]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2_JT; info->fw = adev->gfx.mec2_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); } } out: if (err) { dev_err(adev->dev, "gfx9: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->gfx.pfp_fw); adev->gfx.pfp_fw = NULL; release_firmware(adev->gfx.me_fw); adev->gfx.me_fw = NULL; release_firmware(adev->gfx.ce_fw); adev->gfx.ce_fw = NULL; release_firmware(adev->gfx.rlc_fw); adev->gfx.rlc_fw = NULL; release_firmware(adev->gfx.mec_fw); adev->gfx.mec_fw = NULL; release_firmware(adev->gfx.mec2_fw); adev->gfx.mec2_fw = NULL; } return err; } static u32 gfx_v9_0_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = gfx9_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static void gfx_v9_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void gfx_v9_0_init_lbpw(struct amdgpu_device *adev) { uint32_t data = 0; /* set mmRLC_LB_THR_CONFIG_1/2/3/4 */ WREG32_SOC15(GC, 0, mmRLC_LB_THR_CONFIG_1, 0x0000007F); WREG32_SOC15(GC, 0, mmRLC_LB_THR_CONFIG_2, 0x0333A5A7); WREG32_SOC15(GC, 0, mmRLC_LB_THR_CONFIG_3, 0x00000077); WREG32_SOC15(GC, 0, mmRLC_LB_THR_CONFIG_4, (0x30 | 0x40 << 8 | 0x02FA << 16)); /* set mmRLC_LB_CNTR_INIT = 0x0000_0000 */ WREG32_SOC15(GC, 0, mmRLC_LB_CNTR_INIT, 0x00000000); /* set mmRLC_LB_CNTR_MAX = 0x0000_0500 */ WREG32_SOC15(GC, 0, mmRLC_LB_CNTR_MAX, 0x00000500); mutex_lock(&adev->grbm_idx_mutex); /* set mmRLC_LB_INIT_CU_MASK thru broadcast mode to enable all SE/SH*/ gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32_SOC15(GC, 0, mmRLC_LB_INIT_CU_MASK, 0xffffffff); /* set mmRLC_LB_PARAMS = 0x003F_1006 */ data |= (0x0003 << RLC_LB_PARAMS__FIFO_SAMPLES__SHIFT) & RLC_LB_PARAMS__FIFO_SAMPLES_MASK; data |= (0x0010 << RLC_LB_PARAMS__PG_IDLE_SAMPLES__SHIFT) & RLC_LB_PARAMS__PG_IDLE_SAMPLES_MASK; data |= (0x033F << RLC_LB_PARAMS__PG_IDLE_SAMPLE_INTERVAL__SHIFT) & RLC_LB_PARAMS__PG_IDLE_SAMPLE_INTERVAL_MASK; WREG32_SOC15(GC, 0, mmRLC_LB_PARAMS, data); /* set mmRLC_GPM_GENERAL_7[31-16] = 0x00C0 */ data = RREG32_SOC15(GC, 0, mmRLC_GPM_GENERAL_7); data &= 0x0000FFFF; data |= 0x00C00000; WREG32_SOC15(GC, 0, mmRLC_GPM_GENERAL_7, data); /* set RLC_LB_ALWAYS_ACTIVE_CU_MASK = 0xFFF */ WREG32_SOC15(GC, 0, mmRLC_LB_ALWAYS_ACTIVE_CU_MASK, 0xFFF); /* set RLC_LB_CNTL = 0x8000_0095, 31 bit is reserved, * but used for RLC_LB_CNTL configuration */ data = RLC_LB_CNTL__LB_CNT_SPIM_ACTIVE_MASK; data |= (0x09 << RLC_LB_CNTL__CU_MASK_USED_OFF_HYST__SHIFT) & RLC_LB_CNTL__CU_MASK_USED_OFF_HYST_MASK; data |= (0x80000 << RLC_LB_CNTL__RESERVED__SHIFT) & RLC_LB_CNTL__RESERVED_MASK; WREG32_SOC15(GC, 0, mmRLC_LB_CNTL, data); mutex_unlock(&adev->grbm_idx_mutex); } static void gfx_v9_0_enable_lbpw(struct amdgpu_device *adev, bool enable) { uint32_t data = 0; data = RREG32_SOC15(GC, 0, mmRLC_LB_CNTL); if (enable) data |= RLC_LB_CNTL__LOAD_BALANCE_ENABLE_MASK; else data &= ~RLC_LB_CNTL__LOAD_BALANCE_ENABLE_MASK; WREG32_SOC15(GC, 0, mmRLC_LB_CNTL, data); } static void rv_init_cp_jump_table(struct amdgpu_device *adev) { const __le32 *fw_data; volatile u32 *dst_ptr; int me, i, max_me = 5; u32 bo_offset = 0; u32 table_offset, table_size; /* write the cp table buffer */ dst_ptr = adev->gfx.rlc.cp_table_ptr; for (me = 0; me < max_me; me++) { if (me == 0) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; fw_data = (const __le32 *) (adev->gfx.ce_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 1) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; fw_data = (const __le32 *) (adev->gfx.pfp_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 2) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; fw_data = (const __le32 *) (adev->gfx.me_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 3) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } else if (me == 4) { const struct gfx_firmware_header_v1_0 *hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec2_fw->data; fw_data = (const __le32 *) (adev->gfx.mec2_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); table_offset = le32_to_cpu(hdr->jt_offset); table_size = le32_to_cpu(hdr->jt_size); } for (i = 0; i < table_size; i ++) { dst_ptr[bo_offset + i] = cpu_to_le32(le32_to_cpu(fw_data[table_offset + i])); } bo_offset += table_size; } } static void gfx_v9_0_rlc_fini(struct amdgpu_device *adev) { /* clear state block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj, &adev->gfx.rlc.clear_state_gpu_addr, (void **)&adev->gfx.rlc.cs_ptr); /* jump table block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj, &adev->gfx.rlc.cp_table_gpu_addr, (void **)&adev->gfx.rlc.cp_table_ptr); } static int gfx_v9_0_rlc_init(struct amdgpu_device *adev) { volatile u32 *dst_ptr; u32 dws; const struct cs_section_def *cs_data; int r; adev->gfx.rlc.cs_data = gfx9_cs_data; cs_data = adev->gfx.rlc.cs_data; if (cs_data) { /* clear state block */ adev->gfx.rlc.clear_state_size = dws = gfx_v9_0_get_csb_size(adev); if (adev->gfx.rlc.clear_state_obj == NULL) { r = amdgpu_bo_create_kernel(adev, dws * 4, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.rlc.clear_state_obj, &adev->gfx.rlc.clear_state_gpu_addr, (void **)&adev->gfx.rlc.cs_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create rlc csb bo\n", r); gfx_v9_0_rlc_fini(adev); return r; } } /* set up the cs buffer */ dst_ptr = adev->gfx.rlc.cs_ptr; gfx_v9_0_get_csb_buffer(adev, dst_ptr); amdgpu_bo_kunmap(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); } if (adev->asic_type == CHIP_RAVEN) { /* TODO: double check the cp_table_size for RV */ adev->gfx.rlc.cp_table_size = ALIGN(96 * 5 * 4, 2048) + (64 * 1024); /* JT + GDS */ if (adev->gfx.rlc.cp_table_obj == NULL) { r = amdgpu_bo_create_kernel(adev, adev->gfx.rlc.cp_table_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.rlc.cp_table_obj, &adev->gfx.rlc.cp_table_gpu_addr, (void **)&adev->gfx.rlc.cp_table_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create cp table bo\n", r); gfx_v9_0_rlc_fini(adev); return r; } } rv_init_cp_jump_table(adev); amdgpu_bo_kunmap(adev->gfx.rlc.cp_table_obj); amdgpu_bo_unreserve(adev->gfx.rlc.cp_table_obj); gfx_v9_0_init_lbpw(adev); } return 0; } static void gfx_v9_0_mec_fini(struct amdgpu_device *adev) { int r; if (adev->gfx.mec.hpd_eop_obj) { r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve HPD EOP bo failed\n", r); amdgpu_bo_unpin(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unref(&adev->gfx.mec.hpd_eop_obj); adev->gfx.mec.hpd_eop_obj = NULL; } if (adev->gfx.mec.mec_fw_obj) { r = amdgpu_bo_reserve(adev->gfx.mec.mec_fw_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve mec firmware bo failed\n", r); amdgpu_bo_unpin(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unref(&adev->gfx.mec.mec_fw_obj); adev->gfx.mec.mec_fw_obj = NULL; } } static void gfx_v9_0_compute_queue_acquire(struct amdgpu_device *adev) { int i, queue, pipe, mec; /* policy for amdgpu compute queue ownership */ for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { queue = i % adev->gfx.mec.num_queue_per_pipe; pipe = (i / adev->gfx.mec.num_queue_per_pipe) % adev->gfx.mec.num_pipe_per_mec; mec = (i / adev->gfx.mec.num_queue_per_pipe) / adev->gfx.mec.num_pipe_per_mec; /* we've run out of HW */ if (mec >= adev->gfx.mec.num_mec) break; /* policy: amdgpu owns all queues in the first pipe */ if (mec == 0 && pipe == 0) set_bit(i, adev->gfx.mec.queue_bitmap); } /* update the number of active compute rings */ adev->gfx.num_compute_rings = bitmap_weight(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* If you hit this case and edited the policy, you probably just * need to increase AMDGPU_MAX_COMPUTE_RINGS */ if (WARN_ON(adev->gfx.num_compute_rings > AMDGPU_MAX_COMPUTE_RINGS)) adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS; } static int gfx_v9_0_mec_init(struct amdgpu_device *adev) { int r; u32 *hpd; const __le32 *fw_data; unsigned fw_size; u32 *fw; size_t mec_hpd_size; const struct gfx_firmware_header_v1_0 *mec_hdr; bitmap_zero(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); switch (adev->asic_type) { case CHIP_VEGA10: adev->gfx.mec.num_mec = 2; break; default: adev->gfx.mec.num_mec = 1; break; } adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; /* take ownership of the relevant compute queues */ gfx_v9_0_compute_queue_acquire(adev); mec_hpd_size = adev->gfx.num_compute_rings * GFX9_MEC_HPD_SIZE; if (adev->gfx.mec.hpd_eop_obj == NULL) { r = amdgpu_bo_create(adev, mec_hpd_size, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL, &adev->gfx.mec.hpd_eop_obj); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); return r; } } r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, false); if (unlikely(r != 0)) { gfx_v9_0_mec_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.mec.hpd_eop_obj, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.hpd_eop_gpu_addr); if (r) { dev_warn(adev->dev, "(%d) pin HDP EOP bo failed\n", r); gfx_v9_0_mec_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.mec.hpd_eop_obj, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) map HDP EOP bo failed\n", r); gfx_v9_0_mec_fini(adev); return r; } memset(hpd, 0, adev->gfx.mec.hpd_eop_obj->tbo.mem.size); amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes) / 4; if (adev->gfx.mec.mec_fw_obj == NULL) { r = amdgpu_bo_create(adev, mec_hdr->header.ucode_size_bytes, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL, &adev->gfx.mec.mec_fw_obj); if (r) { dev_warn(adev->dev, "(%d) create mec firmware bo failed\n", r); return r; } } r = amdgpu_bo_reserve(adev->gfx.mec.mec_fw_obj, false); if (unlikely(r != 0)) { gfx_v9_0_mec_fini(adev); return r; } r = amdgpu_bo_pin(adev->gfx.mec.mec_fw_obj, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_gpu_addr); if (r) { dev_warn(adev->dev, "(%d) pin mec firmware bo failed\n", r); gfx_v9_0_mec_fini(adev); return r; } r = amdgpu_bo_kmap(adev->gfx.mec.mec_fw_obj, (void **)&fw); if (r) { dev_warn(adev->dev, "(%d) map firmware bo failed\n", r); gfx_v9_0_mec_fini(adev); return r; } memcpy(fw, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); return 0; } static void gfx_v9_0_kiq_fini(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); } static int gfx_v9_0_kiq_init(struct amdgpu_device *adev) { int r; u32 *hpd; struct amdgpu_kiq *kiq = &adev->gfx.kiq; r = amdgpu_bo_create_kernel(adev, GFX9_MEC_HPD_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, &kiq->eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); return r; } memset(hpd, 0, GFX9_MEC_HPD_SIZE); r = amdgpu_bo_reserve(kiq->eop_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); amdgpu_bo_kunmap(kiq->eop_obj); amdgpu_bo_unreserve(kiq->eop_obj); return 0; } static int gfx_v9_0_kiq_init_ring(struct amdgpu_device *adev, struct amdgpu_ring *ring, struct amdgpu_irq_src *irq) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; int r = 0; mutex_init(&kiq->ring_mutex); r = amdgpu_wb_get(adev, &adev->virt.reg_val_offs); if (r) return r; ring->adev = NULL; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = AMDGPU_DOORBELL_KIQ; if (adev->gfx.mec2_fw) { ring->me = 2; ring->pipe = 0; } else { ring->me = 1; ring->pipe = 1; } ring->queue = 0; ring->eop_gpu_addr = kiq->eop_gpu_addr; sprintf(ring->name, "kiq %d.%d.%d", ring->me, ring->pipe, ring->queue); r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0); if (r) dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); return r; } static void gfx_v9_0_kiq_free_ring(struct amdgpu_ring *ring, struct amdgpu_irq_src *irq) { amdgpu_wb_free(ring->adev, ring->adev->virt.reg_val_offs); amdgpu_ring_fini(ring); } /* create MQD for each compute queue */ static int gfx_v9_0_compute_mqd_sw_init(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int r, i; /* create MQD for KIQ */ ring = &adev->gfx.kiq.ring; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, sizeof(struct v9_mqd), PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, (void **)&ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); return r; } /* prepare MQD backup */ adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS] = kmalloc(sizeof(struct v9_mqd), GFP_KERNEL); if (!adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]) dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); } /* create MQD for each KCQ */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, sizeof(struct v9_mqd), PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, (void **)&ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); return r; } /* prepare MQD backup */ adev->gfx.mec.mqd_backup[i] = kmalloc(sizeof(struct v9_mqd), GFP_KERNEL); if (!adev->gfx.mec.mqd_backup[i]) dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); } } return 0; } static void gfx_v9_0_compute_mqd_sw_fini(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int i; for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; kfree(adev->gfx.mec.mqd_backup[i]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, (void **)&ring->mqd_ptr); } ring = &adev->gfx.kiq.ring; kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, (void **)&ring->mqd_ptr); } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t address) { WREG32_SOC15(GC, 0, mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK)); return RREG32_SOC15(GC, 0, mmSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32_SOC15(GC, 0, mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__THREAD_ID__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32_SOC15(GC, 0, mmSQ_IND_DATA); } static void gfx_v9_0_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* type 1 wave data */ dst[(*no_fields)++] = 1; dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_HW_ID); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW1); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_DBG0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_M0); } static void gfx_v9_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs( adev, simd, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static const struct amdgpu_gfx_funcs gfx_v9_0_gfx_funcs = { .get_gpu_clock_counter = &gfx_v9_0_get_gpu_clock_counter, .select_se_sh = &gfx_v9_0_select_se_sh, .read_wave_data = &gfx_v9_0_read_wave_data, .read_wave_sgprs = &gfx_v9_0_read_wave_sgprs, }; static void gfx_v9_0_gpu_early_init(struct amdgpu_device *adev) { u32 gb_addr_config; adev->gfx.funcs = &gfx_v9_0_gfx_funcs; switch (adev->asic_type) { case CHIP_VEGA10: adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; gb_addr_config = VEGA10_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_RAVEN: adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; gb_addr_config = RAVEN_GB_ADDR_CONFIG_GOLDEN; break; default: BUG(); break; } adev->gfx.config.gb_addr_config = gb_addr_config; adev->gfx.config.gb_addr_config_fields.num_pipes = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_PIPES); adev->gfx.config.max_tile_pipes = adev->gfx.config.gb_addr_config_fields.num_pipes; adev->gfx.config.gb_addr_config_fields.num_banks = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_BANKS); adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS); adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_RB_PER_SE); adev->gfx.config.gb_addr_config_fields.num_se = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_SHADER_ENGINES); adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 + REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE)); } static int gfx_v9_0_ngg_create_buf(struct amdgpu_device *adev, struct amdgpu_ngg_buf *ngg_buf, int size_se, int default_size_se) { int r; if (size_se < 0) { dev_err(adev->dev, "Buffer size is invalid: %d\n", size_se); return -EINVAL; } size_se = size_se ? size_se : default_size_se; ngg_buf->size = size_se * adev->gfx.config.max_shader_engines; r = amdgpu_bo_create_kernel(adev, ngg_buf->size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &ngg_buf->bo, &ngg_buf->gpu_addr, NULL); if (r) { dev_err(adev->dev, "(%d) failed to create NGG buffer\n", r); return r; } ngg_buf->bo_size = amdgpu_bo_size(ngg_buf->bo); return r; } static int gfx_v9_0_ngg_fini(struct amdgpu_device *adev) { int i; for (i = 0; i < NGG_BUF_MAX; i++) amdgpu_bo_free_kernel(&adev->gfx.ngg.buf[i].bo, &adev->gfx.ngg.buf[i].gpu_addr, NULL); memset(&adev->gfx.ngg.buf[0], 0, sizeof(struct amdgpu_ngg_buf) * NGG_BUF_MAX); adev->gfx.ngg.init = false; return 0; } static int gfx_v9_0_ngg_init(struct amdgpu_device *adev) { int r; if (!amdgpu_ngg || adev->gfx.ngg.init == true) return 0; /* GDS reserve memory: 64 bytes alignment */ adev->gfx.ngg.gds_reserve_size = ALIGN(5 * 4, 0x40); adev->gds.mem.total_size -= adev->gfx.ngg.gds_reserve_size; adev->gds.mem.gfx_partition_size -= adev->gfx.ngg.gds_reserve_size; adev->gfx.ngg.gds_reserve_addr = amdgpu_gds_reg_offset[0].mem_base; adev->gfx.ngg.gds_reserve_addr += adev->gds.mem.gfx_partition_size; /* Primitive Buffer */ r = gfx_v9_0_ngg_create_buf(adev, &adev->gfx.ngg.buf[NGG_PRIM], amdgpu_prim_buf_per_se, 64 * 1024); if (r) { dev_err(adev->dev, "Failed to create Primitive Buffer\n"); goto err; } /* Position Buffer */ r = gfx_v9_0_ngg_create_buf(adev, &adev->gfx.ngg.buf[NGG_POS], amdgpu_pos_buf_per_se, 256 * 1024); if (r) { dev_err(adev->dev, "Failed to create Position Buffer\n"); goto err; } /* Control Sideband */ r = gfx_v9_0_ngg_create_buf(adev, &adev->gfx.ngg.buf[NGG_CNTL], amdgpu_cntl_sb_buf_per_se, 256); if (r) { dev_err(adev->dev, "Failed to create Control Sideband Buffer\n"); goto err; } /* Parameter Cache, not created by default */ if (amdgpu_param_buf_per_se <= 0) goto out; r = gfx_v9_0_ngg_create_buf(adev, &adev->gfx.ngg.buf[NGG_PARAM], amdgpu_param_buf_per_se, 512 * 1024); if (r) { dev_err(adev->dev, "Failed to create Parameter Cache\n"); goto err; } out: adev->gfx.ngg.init = true; return 0; err: gfx_v9_0_ngg_fini(adev); return r; } static int gfx_v9_0_ngg_en(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0]; int r; u32 data; u32 size; u32 base; if (!amdgpu_ngg) return 0; /* Program buffer size */ data = 0; size = adev->gfx.ngg.buf[NGG_PRIM].size / 256; data = REG_SET_FIELD(data, WD_BUF_RESOURCE_1, INDEX_BUF_SIZE, size); size = adev->gfx.ngg.buf[NGG_POS].size / 256; data = REG_SET_FIELD(data, WD_BUF_RESOURCE_1, POS_BUF_SIZE, size); WREG32_SOC15(GC, 0, mmWD_BUF_RESOURCE_1, data); data = 0; size = adev->gfx.ngg.buf[NGG_CNTL].size / 256; data = REG_SET_FIELD(data, WD_BUF_RESOURCE_2, CNTL_SB_BUF_SIZE, size); size = adev->gfx.ngg.buf[NGG_PARAM].size / 1024; data = REG_SET_FIELD(data, WD_BUF_RESOURCE_2, PARAM_BUF_SIZE, size); WREG32_SOC15(GC, 0, mmWD_BUF_RESOURCE_2, data); /* Program buffer base address */ base = lower_32_bits(adev->gfx.ngg.buf[NGG_PRIM].gpu_addr); data = REG_SET_FIELD(0, WD_INDEX_BUF_BASE, BASE, base); WREG32_SOC15(GC, 0, mmWD_INDEX_BUF_BASE, data); base = upper_32_bits(adev->gfx.ngg.buf[NGG_PRIM].gpu_addr); data = REG_SET_FIELD(0, WD_INDEX_BUF_BASE_HI, BASE_HI, base); WREG32_SOC15(GC, 0, mmWD_INDEX_BUF_BASE_HI, data); base = lower_32_bits(adev->gfx.ngg.buf[NGG_POS].gpu_addr); data = REG_SET_FIELD(0, WD_POS_BUF_BASE, BASE, base); WREG32_SOC15(GC, 0, mmWD_POS_BUF_BASE, data); base = upper_32_bits(adev->gfx.ngg.buf[NGG_POS].gpu_addr); data = REG_SET_FIELD(0, WD_POS_BUF_BASE_HI, BASE_HI, base); WREG32_SOC15(GC, 0, mmWD_POS_BUF_BASE_HI, data); base = lower_32_bits(adev->gfx.ngg.buf[NGG_CNTL].gpu_addr); data = REG_SET_FIELD(0, WD_CNTL_SB_BUF_BASE, BASE, base); WREG32_SOC15(GC, 0, mmWD_CNTL_SB_BUF_BASE, data); base = upper_32_bits(adev->gfx.ngg.buf[NGG_CNTL].gpu_addr); data = REG_SET_FIELD(0, WD_CNTL_SB_BUF_BASE_HI, BASE_HI, base); WREG32_SOC15(GC, 0, mmWD_CNTL_SB_BUF_BASE_HI, data); /* Clear GDS reserved memory */ r = amdgpu_ring_alloc(ring, 17); if (r) { DRM_ERROR("amdgpu: NGG failed to lock ring %d (%d).\n", ring->idx, r); return r; } gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[0].mem_size, (adev->gds.mem.total_size + adev->gfx.ngg.gds_reserve_size) >> AMDGPU_GDS_SHIFT); amdgpu_ring_write(ring, PACKET3(PACKET3_DMA_DATA, 5)); amdgpu_ring_write(ring, (PACKET3_DMA_DATA_CP_SYNC | PACKET3_DMA_DATA_SRC_SEL(2))); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, adev->gfx.ngg.gds_reserve_addr); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, adev->gfx.ngg.gds_reserve_size); gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[0].mem_size, 0); amdgpu_ring_commit(ring); return 0; } static int gfx_v9_0_sw_init(void *handle) { int i, r, ring_id; struct amdgpu_ring *ring; struct amdgpu_kiq *kiq; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* KIQ event */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_GRBM_CP, 178, &adev->gfx.kiq.irq); if (r) return r; /* EOP Event */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_GRBM_CP, 181, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_GRBM_CP, 184, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_GRBM_CP, 185, &adev->gfx.priv_inst_irq); if (r) return r; adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE; gfx_v9_0_scratch_init(adev); r = gfx_v9_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load gfx firmware!\n"); return r; } r = gfx_v9_0_rlc_init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } r = gfx_v9_0_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } /* set up the gfx ring */ for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; ring->ring_obj = NULL; sprintf(ring->name, "gfx"); ring->use_doorbell = true; ring->doorbell_index = AMDGPU_DOORBELL64_GFX_RING0 << 1; r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, AMDGPU_CP_IRQ_GFX_EOP); if (r) return r; } /* set up the compute queues */ for (i = 0, ring_id = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; i++) { unsigned irq_type; if (!test_bit(i, adev->gfx.mec.queue_bitmap)) continue; if (WARN_ON(ring_id >= AMDGPU_MAX_COMPUTE_RINGS)) break; ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->me = ((i / adev->gfx.mec.num_queue_per_pipe) / adev->gfx.mec.num_pipe_per_mec) + 1; ring->pipe = (i / adev->gfx.mec.num_queue_per_pipe) % adev->gfx.mec.num_pipe_per_mec; ring->queue = i % adev->gfx.mec.num_queue_per_pipe; ring->ring_obj = NULL; ring->use_doorbell = true; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (ring_id * GFX9_MEC_HPD_SIZE); ring->doorbell_index = AMDGPU_DOORBELL_MEC_RING0 + ring_id; sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type); if (r) return r; ring_id++; } /* set up the compute queues */ for (i = 0, ring_id = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; i++) { unsigned irq_type; /* max 32 queues per MEC */ if ((i >= 32) || (i >= AMDGPU_MAX_COMPUTE_RINGS)) { DRM_ERROR("Too many (%d) compute rings!\n", i); break; } ring = &adev->gfx.compute_ring[i]; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = (AMDGPU_DOORBELL64_MEC_RING0 + i) << 1; ring->me = 1; /* first MEC */ ring->pipe = i / 8; ring->queue = i % 8; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (i * GFX9_MEC_HPD_SIZE); sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ring->pipe; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type); if (r) return r; } r = gfx_v9_0_kiq_init(adev); if (r) { DRM_ERROR("Failed to init KIQ BOs!\n"); return r; } kiq = &adev->gfx.kiq; r = gfx_v9_0_kiq_init_ring(adev, &kiq->ring, &kiq->irq); if (r) return r; /* create MQD for all compute queues as wel as KIQ for SRIOV case */ r = gfx_v9_0_compute_mqd_sw_init(adev); if (r) return r; /* reserve GDS, GWS and OA resource for gfx */ r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GDS, &adev->gds.gds_gfx_bo, NULL, NULL); if (r) return r; r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GWS, &adev->gds.gws_gfx_bo, NULL, NULL); if (r) return r; r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_OA, &adev->gds.oa_gfx_bo, NULL, NULL); if (r) return r; adev->gfx.ce_ram_size = 0x8000; gfx_v9_0_gpu_early_init(adev); r = gfx_v9_0_ngg_init(adev); if (r) return r; return 0; } static int gfx_v9_0_sw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_bo_free_kernel(&adev->gds.oa_gfx_bo, NULL, NULL); amdgpu_bo_free_kernel(&adev->gds.gws_gfx_bo, NULL, NULL); amdgpu_bo_free_kernel(&adev->gds.gds_gfx_bo, NULL, NULL); for (i = 0; i < adev->gfx.num_gfx_rings; i++) amdgpu_ring_fini(&adev->gfx.gfx_ring[i]); for (i = 0; i < adev->gfx.num_compute_rings; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); gfx_v9_0_compute_mqd_sw_fini(adev); gfx_v9_0_kiq_free_ring(&adev->gfx.kiq.ring, &adev->gfx.kiq.irq); gfx_v9_0_kiq_fini(adev); gfx_v9_0_mec_fini(adev); gfx_v9_0_ngg_fini(adev); return 0; } static void gfx_v9_0_tiling_mode_table_init(struct amdgpu_device *adev) { /* TODO */ } static void gfx_v9_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance) { u32 data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) { data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); } else if (se_num == 0xffffffff) { data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); } else if (sh_num == 0xffffffff) { data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); } else { data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); } WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data); } static u32 gfx_v9_0_create_bitmask(u32 bit_width) { return (u32)((1ULL << bit_width) - 1); } static u32 gfx_v9_0_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32_SOC15(GC, 0, mmCC_RB_BACKEND_DISABLE); data |= RREG32_SOC15(GC, 0, mmGC_USER_RB_BACKEND_DISABLE); data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK; data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT; mask = gfx_v9_0_create_bitmask(adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se); return (~data) & mask; } static void gfx_v9_0_setup_rb(struct amdgpu_device *adev) { int i, j; u32 data; u32 active_rbs = 0; u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v9_0_select_se_sh(adev, i, j, 0xffffffff); data = gfx_v9_0_get_rb_active_bitmap(adev); active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) * rb_bitmap_width_per_sh); } } gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); adev->gfx.config.backend_enable_mask = active_rbs; adev->gfx.config.num_rbs = hweight32(active_rbs); } #define DEFAULT_SH_MEM_BASES (0x6000) #define FIRST_COMPUTE_VMID (8) #define LAST_COMPUTE_VMID (16) static void gfx_v9_0_init_compute_vmid(struct amdgpu_device *adev) { int i; uint32_t sh_mem_config; uint32_t sh_mem_bases; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16); sh_mem_config = SH_MEM_ADDRESS_MODE_64 | SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT; mutex_lock(&adev->srbm_mutex); for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) { soc15_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config); WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases); } soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static void gfx_v9_0_gpu_init(struct amdgpu_device *adev) { u32 tmp; int i; WREG32_FIELD15(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff); gfx_v9_0_tiling_mode_table_init(adev); gfx_v9_0_setup_rb(adev); gfx_v9_0_get_cu_info(adev, &adev->gfx.cu_info); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ mutex_lock(&adev->srbm_mutex); for (i = 0; i < 16; i++) { soc15_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ tmp = 0; tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, tmp); WREG32_SOC15(GC, 0, mmSH_MEM_BASES, 0); } soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); gfx_v9_0_init_compute_vmid(adev); mutex_lock(&adev->grbm_idx_mutex); /* * making sure that the following register writes will be broadcasted * to all the shaders */ gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); WREG32_SOC15(GC, 0, mmPA_SC_FIFO_SIZE, (adev->gfx.config.sc_prim_fifo_size_frontend << PA_SC_FIFO_SIZE__SC_FRONTEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_prim_fifo_size_backend << PA_SC_FIFO_SIZE__SC_BACKEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_hiz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_HIZ_TILE_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_earlyz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_EARLYZ_TILE_FIFO_SIZE__SHIFT)); mutex_unlock(&adev->grbm_idx_mutex); } static void gfx_v9_0_wait_for_rlc_serdes(struct amdgpu_device *adev) { u32 i, j, k; u32 mask; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v9_0_select_se_sh(adev, i, j, 0xffffffff); for (k = 0; k < adev->usec_timeout; k++) { if (RREG32_SOC15(GC, 0, mmRLC_SERDES_CU_MASTER_BUSY) == 0) break; udelay(1); } } } gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK; for (k = 0; k < adev->usec_timeout; k++) { if ((RREG32_SOC15(GC, 0, mmRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) break; udelay(1); } } static void gfx_v9_0_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0); WREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0, tmp); } static void gfx_v9_0_init_csb(struct amdgpu_device *adev) { /* csib */ WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CSIB_ADDR_HI), adev->gfx.rlc.clear_state_gpu_addr >> 32); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CSIB_ADDR_LO), adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CSIB_LENGTH), adev->gfx.rlc.clear_state_size); } static void gfx_v9_0_parse_ind_reg_list(int *register_list_format, int indirect_offset, int list_size, int *unique_indirect_regs, int *unique_indirect_reg_count, int max_indirect_reg_count, int *indirect_start_offsets, int *indirect_start_offsets_count, int max_indirect_start_offsets_count) { int idx; bool new_entry = true; for (; indirect_offset < list_size; indirect_offset++) { if (new_entry) { new_entry = false; indirect_start_offsets[*indirect_start_offsets_count] = indirect_offset; *indirect_start_offsets_count = *indirect_start_offsets_count + 1; BUG_ON(*indirect_start_offsets_count >= max_indirect_start_offsets_count); } if (register_list_format[indirect_offset] == 0xFFFFFFFF) { new_entry = true; continue; } indirect_offset += 2; /* look for the matching indice */ for (idx = 0; idx < *unique_indirect_reg_count; idx++) { if (unique_indirect_regs[idx] == register_list_format[indirect_offset]) break; } if (idx >= *unique_indirect_reg_count) { unique_indirect_regs[*unique_indirect_reg_count] = register_list_format[indirect_offset]; idx = *unique_indirect_reg_count; *unique_indirect_reg_count = *unique_indirect_reg_count + 1; BUG_ON(*unique_indirect_reg_count >= max_indirect_reg_count); } register_list_format[indirect_offset] = idx; } } static int gfx_v9_0_init_rlc_save_restore_list(struct amdgpu_device *adev) { int unique_indirect_regs[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; int unique_indirect_reg_count = 0; int indirect_start_offsets[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; int indirect_start_offsets_count = 0; int list_size = 0; int i = 0; u32 tmp = 0; u32 *register_list_format = kmalloc(adev->gfx.rlc.reg_list_format_size_bytes, GFP_KERNEL); if (!register_list_format) return -ENOMEM; memcpy(register_list_format, adev->gfx.rlc.register_list_format, adev->gfx.rlc.reg_list_format_size_bytes); /* setup unique_indirect_regs array and indirect_start_offsets array */ gfx_v9_0_parse_ind_reg_list(register_list_format, GFX9_RLC_FORMAT_DIRECT_REG_LIST_LENGTH, adev->gfx.rlc.reg_list_format_size_bytes >> 2, unique_indirect_regs, &unique_indirect_reg_count, sizeof(unique_indirect_regs)/sizeof(int), indirect_start_offsets, &indirect_start_offsets_count, sizeof(indirect_start_offsets)/sizeof(int)); /* enable auto inc in case it is disabled */ tmp = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL)); tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK; WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL), tmp); /* write register_restore table to offset 0x0 using RLC_SRM_ARAM_ADDR/DATA */ WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_ARAM_ADDR), RLC_SAVE_RESTORE_ADDR_STARTING_OFFSET); for (i = 0; i < adev->gfx.rlc.reg_list_size_bytes >> 2; i++) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_ARAM_DATA), adev->gfx.rlc.register_restore[i]); /* load direct register */ WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_ARAM_ADDR), 0); for (i = 0; i < adev->gfx.rlc.reg_list_size_bytes >> 2; i++) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_ARAM_DATA), adev->gfx.rlc.register_restore[i]); /* load indirect register */ WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_ADDR), adev->gfx.rlc.reg_list_format_start); for (i = 0; i < adev->gfx.rlc.reg_list_format_size_bytes >> 2; i++) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_DATA), register_list_format[i]); /* set save/restore list size */ list_size = adev->gfx.rlc.reg_list_size_bytes >> 2; list_size = list_size >> 1; WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_ADDR), adev->gfx.rlc.reg_restore_list_size); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_DATA), list_size); /* write the starting offsets to RLC scratch ram */ WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_ADDR), adev->gfx.rlc.starting_offsets_start); for (i = 0; i < sizeof(indirect_start_offsets)/sizeof(int); i++) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_GPM_SCRATCH_DATA), indirect_start_offsets[i]); /* load unique indirect regs*/ for (i = 0; i < sizeof(unique_indirect_regs)/sizeof(int); i++) { WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_INDEX_CNTL_ADDR_0) + i, unique_indirect_regs[i] & 0x3FFFF); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_INDEX_CNTL_DATA_0) + i, unique_indirect_regs[i] >> 20); } kfree(register_list_format); return 0; } static void gfx_v9_0_enable_save_restore_machine(struct amdgpu_device *adev) { u32 tmp = 0; tmp = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL)); tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK; WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL), tmp); } static void pwr_10_0_gfxip_control_over_cgpg(struct amdgpu_device *adev, bool enable) { uint32_t data = 0; uint32_t default_data = 0; default_data = data = RREG32(SOC15_REG_OFFSET(PWR, 0, mmPWR_MISC_CNTL_STATUS)); if (enable == true) { /* enable GFXIP control over CGPG */ data |= PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(PWR, 0, mmPWR_MISC_CNTL_STATUS), data); /* update status */ data &= ~PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK; data |= (2 << PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT); if(default_data != data) WREG32(SOC15_REG_OFFSET(PWR, 0, mmPWR_MISC_CNTL_STATUS), data); } else { /* restore GFXIP control over GCPG */ data &= ~PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(PWR, 0, mmPWR_MISC_CNTL_STATUS), data); } } static void gfx_v9_0_init_gfx_power_gating(struct amdgpu_device *adev) { uint32_t data = 0; if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG)) { /* init IDLE_POLL_COUNT = 60 */ data = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_RB_WPTR_POLL_CNTL)); data &= ~CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT_MASK; data |= (0x60 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_RB_WPTR_POLL_CNTL), data); /* init RLC PG Delay */ data = 0; data |= (0x10 << RLC_PG_DELAY__POWER_UP_DELAY__SHIFT); data |= (0x10 << RLC_PG_DELAY__POWER_DOWN_DELAY__SHIFT); data |= (0x10 << RLC_PG_DELAY__CMD_PROPAGATE_DELAY__SHIFT); data |= (0x40 << RLC_PG_DELAY__MEM_SLEEP_DELAY__SHIFT); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_DELAY), data); data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_DELAY_2)); data &= ~RLC_PG_DELAY_2__SERDES_CMD_DELAY_MASK; data |= (0x4 << RLC_PG_DELAY_2__SERDES_CMD_DELAY__SHIFT); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_DELAY_2), data); data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_DELAY_3)); data &= ~RLC_PG_DELAY_3__CGCG_ACTIVE_BEFORE_CGPG_MASK; data |= (0xff << RLC_PG_DELAY_3__CGCG_ACTIVE_BEFORE_CGPG__SHIFT); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_DELAY_3), data); data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_AUTO_PG_CTRL)); data &= ~RLC_AUTO_PG_CTRL__GRBM_REG_SAVE_GFX_IDLE_THRESHOLD_MASK; /* program GRBM_REG_SAVE_GFX_IDLE_THRESHOLD to 0x55f0 */ data |= (0x55f0 << RLC_AUTO_PG_CTRL__GRBM_REG_SAVE_GFX_IDLE_THRESHOLD__SHIFT); WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_AUTO_PG_CTRL), data); pwr_10_0_gfxip_control_over_cgpg(adev, true); } } static void gfx_v9_0_enable_sck_slow_down_on_power_up(struct amdgpu_device *adev, bool enable) { uint32_t data = 0; uint32_t default_data = 0; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) { data |= RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PU_ENABLE_MASK; if (default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } else { data &= ~RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PU_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } } static void gfx_v9_0_enable_sck_slow_down_on_power_down(struct amdgpu_device *adev, bool enable) { uint32_t data = 0; uint32_t default_data = 0; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) { data |= RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PD_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } else { data &= ~RLC_PG_CNTL__SMU_CLK_SLOWDOWN_ON_PD_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } } static void gfx_v9_0_enable_cp_power_gating(struct amdgpu_device *adev, bool enable) { uint32_t data = 0; uint32_t default_data = 0; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) { data &= ~RLC_PG_CNTL__CP_PG_DISABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } else { data |= RLC_PG_CNTL__CP_PG_DISABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } } static void gfx_v9_0_enable_gfx_cg_power_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, default_data; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) data |= RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; else data &= ~RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } static void gfx_v9_0_enable_gfx_pipeline_powergating(struct amdgpu_device *adev, bool enable) { uint32_t data, default_data; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) data |= RLC_PG_CNTL__GFX_PIPELINE_PG_ENABLE_MASK; else data &= ~RLC_PG_CNTL__GFX_PIPELINE_PG_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); if (!enable) /* read any GFX register to wake up GFX */ data = RREG32(SOC15_REG_OFFSET(GC, 0, mmDB_RENDER_CONTROL)); } void gfx_v9_0_enable_gfx_static_mg_power_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, default_data; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) data |= RLC_PG_CNTL__STATIC_PER_CU_PG_ENABLE_MASK; else data &= ~RLC_PG_CNTL__STATIC_PER_CU_PG_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } void gfx_v9_0_enable_gfx_dynamic_mg_power_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, default_data; default_data = data = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL)); if (enable == true) data |= RLC_PG_CNTL__DYN_PER_CU_PG_ENABLE_MASK; else data &= ~RLC_PG_CNTL__DYN_PER_CU_PG_ENABLE_MASK; if(default_data != data) WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_CNTL), data); } static void gfx_v9_0_init_pg(struct amdgpu_device *adev) { if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GDS | AMD_PG_SUPPORT_RLC_SMU_HS)) { gfx_v9_0_init_csb(adev); gfx_v9_0_init_rlc_save_restore_list(adev); gfx_v9_0_enable_save_restore_machine(adev); if (adev->asic_type == CHIP_RAVEN) { WREG32(mmRLC_JUMP_TABLE_RESTORE, adev->gfx.rlc.cp_table_gpu_addr >> 8); gfx_v9_0_init_gfx_power_gating(adev); if (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS) { gfx_v9_0_enable_sck_slow_down_on_power_up(adev, true); gfx_v9_0_enable_sck_slow_down_on_power_down(adev, true); } else { gfx_v9_0_enable_sck_slow_down_on_power_up(adev, false); gfx_v9_0_enable_sck_slow_down_on_power_down(adev, false); } if (adev->pg_flags & AMD_PG_SUPPORT_CP) gfx_v9_0_enable_cp_power_gating(adev, true); else gfx_v9_0_enable_cp_power_gating(adev, false); } } } void gfx_v9_0_rlc_stop(struct amdgpu_device *adev) { u32 tmp = RREG32_SOC15(GC, 0, mmRLC_CNTL); tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0); WREG32_SOC15(GC, 0, mmRLC_CNTL, tmp); gfx_v9_0_enable_gui_idle_interrupt(adev, false); gfx_v9_0_wait_for_rlc_serdes(adev); } static void gfx_v9_0_rlc_reset(struct amdgpu_device *adev) { WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); udelay(50); WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0); udelay(50); } static void gfx_v9_0_rlc_start(struct amdgpu_device *adev) { #ifdef AMDGPU_RLC_DEBUG_RETRY u32 rlc_ucode_ver; #endif WREG32_FIELD15(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1); /* carrizo do enable cp interrupt after cp inited */ if (!(adev->flags & AMD_IS_APU)) gfx_v9_0_enable_gui_idle_interrupt(adev, true); udelay(50); #ifdef AMDGPU_RLC_DEBUG_RETRY /* RLC_GPM_GENERAL_6 : RLC Ucode version */ rlc_ucode_ver = RREG32_SOC15(GC, 0, mmRLC_GPM_GENERAL_6); if(rlc_ucode_ver == 0x108) { DRM_INFO("Using rlc debug ucode. mmRLC_GPM_GENERAL_6 ==0x08%x / fw_ver == %i \n", rlc_ucode_ver, adev->gfx.rlc_fw_version); /* RLC_GPM_TIMER_INT_3 : Timer interval in RefCLK cycles, * default is 0x9C4 to create a 100us interval */ WREG32_SOC15(GC, 0, mmRLC_GPM_TIMER_INT_3, 0x9C4); /* RLC_GPM_GENERAL_12 : Minimum gap between wptr and rptr * to disable the page fault retry interrupts, default is * 0x100 (256) */ WREG32_SOC15(GC, 0, mmRLC_GPM_GENERAL_12, 0x100); } #endif } static int gfx_v9_0_rlc_load_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_0 *hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.rlc_fw) return -EINVAL; hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; amdgpu_ucode_print_rlc_hdr(&hdr->header); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR, RLCG_UCODE_LOADING_START_ADDRESS); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version); return 0; } static int gfx_v9_0_rlc_resume(struct amdgpu_device *adev) { int r; if (amdgpu_sriov_vf(adev)) return 0; gfx_v9_0_rlc_stop(adev); /* disable CG */ WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, 0); /* disable PG */ WREG32_SOC15(GC, 0, mmRLC_PG_CNTL, 0); gfx_v9_0_rlc_reset(adev); gfx_v9_0_init_pg(adev); if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { /* legacy rlc firmware loading */ r = gfx_v9_0_rlc_load_microcode(adev); if (r) return r; } if (adev->asic_type == CHIP_RAVEN) { if (amdgpu_lbpw != 0) gfx_v9_0_enable_lbpw(adev, true); else gfx_v9_0_enable_lbpw(adev, false); } gfx_v9_0_rlc_start(adev); return 0; } static void gfx_v9_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable) { int i; u32 tmp = RREG32_SOC15(GC, 0, mmCP_ME_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, enable ? 0 : 1); if (!enable) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].ready = false; } WREG32_SOC15(GC, 0, mmCP_ME_CNTL, tmp); udelay(50); } static int gfx_v9_0_cp_gfx_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *pfp_hdr; const struct gfx_firmware_header_v1_0 *ce_hdr; const struct gfx_firmware_header_v1_0 *me_hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw) return -EINVAL; pfp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; ce_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.ce_fw->data; me_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header); amdgpu_ucode_print_gfx_hdr(&ce_hdr->header); amdgpu_ucode_print_gfx_hdr(&me_hdr->header); gfx_v9_0_cp_gfx_enable(adev, false); /* PFP */ fw_data = (const __le32 *) (adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, mmCP_PFP_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, mmCP_PFP_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, mmCP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version); /* CE */ fw_data = (const __le32 *) (adev->gfx.ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, mmCP_CE_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, mmCP_CE_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, mmCP_CE_UCODE_ADDR, adev->gfx.ce_fw_version); /* ME */ fw_data = (const __le32 *) (adev->gfx.me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, mmCP_ME_RAM_WADDR, 0); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, mmCP_ME_RAM_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, mmCP_ME_RAM_WADDR, adev->gfx.me_fw_version); return 0; } static int gfx_v9_0_cp_gfx_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0]; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int r, i; /* init the CP */ WREG32_SOC15(GC, 0, mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1); WREG32_SOC15(GC, 0, mmCP_DEVICE_ID, 1); gfx_v9_0_cp_gfx_enable(adev, true); r = amdgpu_ring_alloc(ring, gfx_v9_0_get_csb_size(adev) + 4); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, 0x80000000); amdgpu_ring_write(ring, 0x80000000); for (sect = gfx9_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) amdgpu_ring_write(ring, ext->extent[i]); } } } amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_commit(ring); return 0; } static int gfx_v9_0_cp_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr, rptr_addr, wptr_gpu_addr; /* Set the write pointer delay */ WREG32_SOC15(GC, 0, mmCP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32_SOC15(GC, 0, mmCP_RB_VMID, 0); /* Set ring buffer size */ ring = &adev->gfx.gfx_ring[0]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1); #endif WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp); /* Initialize the ring buffer's write pointers */ ring->wptr = 0; WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); /* set the wb address wether it's enabled or not */ rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK); wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32_SOC15(GC, 0, mmCP_RB0_BASE, rb_addr); WREG32_SOC15(GC, 0, mmCP_RB0_BASE_HI, upper_32_bits(rb_addr)); tmp = RREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); } WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL, tmp); tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER, DOORBELL_RANGE_LOWER, ring->doorbell_index); WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_LOWER, tmp); WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_UPPER, CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK); /* start the ring */ gfx_v9_0_cp_gfx_start(adev); ring->ready = true; return 0; } static void gfx_v9_0_cp_compute_enable(struct amdgpu_device *adev, bool enable) { int i; if (enable) { WREG32_SOC15(GC, 0, mmCP_MEC_CNTL, 0); } else { WREG32_SOC15(GC, 0, mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK)); for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].ready = false; adev->gfx.kiq.ring.ready = false; } udelay(50); } static int gfx_v9_0_cp_compute_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *mec_hdr; const __le32 *fw_data; unsigned i; u32 tmp; if (!adev->gfx.mec_fw) return -EINVAL; gfx_v9_0_cp_compute_enable(adev, false); mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); tmp = 0; tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_CNTL, tmp); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_HI, upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr)); /* MEC1 */ WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, mec_hdr->jt_offset); for (i = 0; i < mec_hdr->jt_size; i++) WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_DATA, le32_to_cpup(fw_data + mec_hdr->jt_offset + i)); WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version); /* Todo : Loading MEC2 firmware is only necessary if MEC2 should run different microcode than MEC1. */ return 0; } /* KIQ functions */ static void gfx_v9_0_kiq_setting(struct amdgpu_ring *ring) { uint32_t tmp; struct amdgpu_device *adev = ring->adev; /* tell RLC which is KIQ queue */ tmp = RREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS); tmp &= 0xffffff00; tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue); WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp); tmp |= 0x80; WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp); } static int gfx_v9_0_kiq_kcq_enable(struct amdgpu_device *adev) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; uint32_t scratch, tmp = 0; int r, i; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("Failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(kiq_ring, (7 * adev->gfx.num_compute_rings) + 11); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); amdgpu_gfx_scratch_free(adev, scratch); return r; } /* set resources */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6)); amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) | PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); /* vmid_mask:0 queue_type:0 (KIQ) */ amdgpu_ring_write(kiq_ring, 0x000000FF); /* queue mask lo */ amdgpu_ring_write(kiq_ring, 0); /* queue mask hi */ amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */ amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */ amdgpu_ring_write(kiq_ring, 0); /* oac mask */ amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj); uint64_t wptr_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); /* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/ amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(0) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(ring->queue) | PACKET3_MAP_QUEUES_PIPE(ring->pipe) | PACKET3_MAP_QUEUES_ME((ring->me == 1 ? 0 : 1)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(1) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(0) | /* engine_sel: compute */ PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index)); amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr)); } /* write to scratch for completion */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(kiq_ring, (scratch - PACKET3_SET_UCONFIG_REG_START)); amdgpu_ring_write(kiq_ring, 0xDEADBEEF); amdgpu_ring_commit(kiq_ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i >= adev->usec_timeout) { DRM_ERROR("KCQ enable failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } amdgpu_gfx_scratch_free(adev, scratch); return r; } static int gfx_v9_0_kiq_kcq_disable(struct amdgpu_device *adev) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; uint32_t scratch, tmp = 0; int r, i; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("Failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(kiq_ring, 6 + 3); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); amdgpu_gfx_scratch_free(adev, scratch); return r; } /* unmap queues */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4)); amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_ACTION(1)| /* RESET_QUEUES */ PACKET3_UNMAP_QUEUES_QUEUE_SEL(2)); /* select all queues */ amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); /* write to scratch for completion */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(kiq_ring, (scratch - PACKET3_SET_UCONFIG_REG_START)); amdgpu_ring_write(kiq_ring, 0xDEADBEEF); amdgpu_ring_commit(kiq_ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i >= adev->usec_timeout) { DRM_ERROR("KCQ disable failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } amdgpu_gfx_scratch_free(adev, scratch); return r; } static int gfx_v9_0_mqd_init(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr; uint32_t tmp; mqd->header = 0xC0310800; mqd->compute_pipelinestat_enable = 0x00000001; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; mqd->compute_misc_reserved = 0x00000003; eop_base_addr = ring->eop_gpu_addr >> 8; mqd->cp_hqd_eop_base_addr_lo = eop_base_addr; mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE, (order_base_2(GFX9_MEC_HPD_SIZE / 4) - 1)); mqd->cp_hqd_eop_control = tmp; /* enable doorbell? */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } else tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 0); mqd->cp_hqd_pq_doorbell_control = tmp; /* disable the queue if it's active */ ring->wptr = 0; mqd->cp_hqd_dequeue_request = 0; mqd->cp_hqd_pq_rptr = 0; mqd->cp_hqd_pq_wptr_lo = 0; mqd->cp_hqd_pq_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr); /* set MQD vmid to 0 */ tmp = RREG32_SOC15(GC, 0, mmCP_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0); mqd->cp_mqd_control = tmp; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE, (order_base_2(ring->ring_size / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE, ((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8)); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1); #endif tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ROQ_PQ_IB_FLIP, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1); mqd->cp_hqd_pq_control = tmp; /* set the wb address whether it's enabled or not */ wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; tmp = 0; /* enable the doorbell if requested */ if (ring->use_doorbell) { tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE); tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53); mqd->cp_hqd_persistent_state = tmp; /* set MIN_IB_AVAIL_SIZE */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_IB_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3); mqd->cp_hqd_ib_control = tmp; /* activate the queue */ mqd->cp_hqd_active = 1; return 0; } static int gfx_v9_0_kiq_init_register(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; int j; /* disable wptr polling */ WREG32_FIELD15(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0); WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR, mqd->cp_hqd_eop_base_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR_HI, mqd->cp_hqd_eop_base_addr_hi); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ WREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL, mqd->cp_hqd_eop_control); /* enable doorbell? */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* disable the queue if it's active */ if (RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1) { WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, 1); for (j = 0; j < adev->usec_timeout; j++) { if (!(RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1)) break; udelay(1); } WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, mqd->cp_hqd_dequeue_request); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR, mqd->cp_hqd_pq_rptr); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); } /* set the pointer to the MQD */ WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr_lo); WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi); /* set MQD vmid to 0 */ WREG32_SOC15(GC, 0, mmCP_MQD_CONTROL, mqd->cp_mqd_control); /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE, mqd->cp_hqd_pq_base_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI, mqd->cp_hqd_pq_base_hi); /* set up the HQD, this is similar to CP_RB0_CNTL */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL, mqd->cp_hqd_pq_control); /* set the wb address whether it's enabled or not */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR, mqd->cp_hqd_pq_rptr_report_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI, mqd->cp_hqd_pq_rptr_report_addr_hi); /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR, mqd->cp_hqd_pq_wptr_poll_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, mqd->cp_hqd_pq_wptr_poll_addr_hi); /* enable the doorbell if requested */ if (ring->use_doorbell) { WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_LOWER, (AMDGPU_DOORBELL64_KIQ *2) << 2); WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_UPPER, (AMDGPU_DOORBELL64_USERQUEUE_END * 2) << 2); } WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); /* set the vmid for the queue */ WREG32_SOC15(GC, 0, mmCP_HQD_VMID, mqd->cp_hqd_vmid); WREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE, mqd->cp_hqd_persistent_state); /* activate the queue */ WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, mqd->cp_hqd_active); if (ring->use_doorbell) WREG32_FIELD15(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1); return 0; } static int gfx_v9_0_kiq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; int mqd_idx = AMDGPU_MAX_COMPUTE_RINGS; gfx_v9_0_kiq_setting(ring); if (adev->gfx.in_reset) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v9_0_kiq_init_register(ring); soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } else { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v9_0_mqd_init(ring); gfx_v9_0_kiq_init_register(ring); soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } return 0; } static int gfx_v9_0_kcq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.compute_ring[0]; if (!adev->gfx.in_reset && !adev->gfx.in_suspend) { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v9_0_mqd_init(ring); soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } else if (adev->gfx.in_reset) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); } else { amdgpu_ring_clear_ring(ring); } return 0; } static int gfx_v9_0_kiq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int r = 0, i; gfx_v9_0_cp_compute_enable(adev, true); ring = &adev->gfx.kiq.ring; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v9_0_kiq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v9_0_kcq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } r = gfx_v9_0_kiq_kcq_enable(adev); done: return r; } static int gfx_v9_0_cp_resume(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; if (!(adev->flags & AMD_IS_APU)) gfx_v9_0_enable_gui_idle_interrupt(adev, false); if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { /* legacy firmware loading */ r = gfx_v9_0_cp_gfx_load_microcode(adev); if (r) return r; r = gfx_v9_0_cp_compute_load_microcode(adev); if (r) return r; } r = gfx_v9_0_cp_gfx_resume(adev); if (r) return r; r = gfx_v9_0_kiq_resume(adev); if (r) return r; ring = &adev->gfx.gfx_ring[0]; r = amdgpu_ring_test_ring(ring); if (r) { ring->ready = false; return r; } ring = &adev->gfx.kiq.ring; ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) ring->ready = false; for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) ring->ready = false; } gfx_v9_0_enable_gui_idle_interrupt(adev, true); return 0; } static void gfx_v9_0_cp_enable(struct amdgpu_device *adev, bool enable) { gfx_v9_0_cp_gfx_enable(adev, enable); gfx_v9_0_cp_compute_enable(adev, enable); } static int gfx_v9_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gfx_v9_0_init_golden_registers(adev); gfx_v9_0_gpu_init(adev); r = gfx_v9_0_rlc_resume(adev); if (r) return r; r = gfx_v9_0_cp_resume(adev); if (r) return r; r = gfx_v9_0_ngg_en(adev); if (r) return r; return r; } static int gfx_v9_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); if (amdgpu_sriov_vf(adev)) { pr_debug("For SRIOV client, shouldn't do anything.\n"); return 0; } gfx_v9_0_kiq_kcq_disable(adev); gfx_v9_0_cp_enable(adev, false); gfx_v9_0_rlc_stop(adev); return 0; } static int gfx_v9_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.in_suspend = true; return gfx_v9_0_hw_fini(adev); } static int gfx_v9_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = gfx_v9_0_hw_init(adev); adev->gfx.in_suspend = false; return r; } static bool gfx_v9_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (REG_GET_FIELD(RREG32_SOC15(GC, 0, mmGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE)) return false; else return true; } static int gfx_v9_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK; if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v9_0_soft_reset(void *handle) { u32 grbm_soft_reset = 0; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* GRBM_STATUS */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS); if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK | GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK | GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 1); } if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); } /* GRBM_STATUS2 */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS2); if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY)) grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); if (grbm_soft_reset) { /* stop the rlc */ gfx_v9_0_rlc_stop(adev); /* Disable GFX parsing/prefetching */ gfx_v9_0_cp_gfx_enable(adev, false); /* Disable MEC parsing/prefetching */ gfx_v9_0_cp_compute_enable(adev, false); if (grbm_soft_reset) { tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); } return 0; } static uint64_t gfx_v9_0_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; mutex_lock(&adev->gfx.gpu_clock_mutex); WREG32_SOC15(GC, 0, mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&adev->gfx.gpu_clock_mutex); return clock; } static void gfx_v9_0_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { gds_base = gds_base >> AMDGPU_GDS_SHIFT; gds_size = gds_size >> AMDGPU_GDS_SHIFT; gws_base = gws_base >> AMDGPU_GWS_SHIFT; gws_size = gws_size >> AMDGPU_GWS_SHIFT; oa_base = oa_base >> AMDGPU_OA_SHIFT; oa_size = oa_size >> AMDGPU_OA_SHIFT; /* GDS Base */ gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[vmid].mem_base, gds_base); /* GDS Size */ gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[vmid].mem_size, gds_size); /* GWS */ gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[vmid].gws, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ gfx_v9_0_write_data_to_reg(ring, 0, false, amdgpu_gds_reg_offset[vmid].oa, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static int gfx_v9_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.num_gfx_rings = GFX9_NUM_GFX_RINGS; adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS; gfx_v9_0_set_ring_funcs(adev); gfx_v9_0_set_irq_funcs(adev); gfx_v9_0_set_gds_init(adev); gfx_v9_0_set_rlc_funcs(adev); return 0; } static int gfx_v9_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; return 0; } static void gfx_v9_0_enter_rlc_safe_mode(struct amdgpu_device *adev) { uint32_t rlc_setting, data; unsigned i; if (adev->gfx.rlc.in_safe_mode) return; /* if RLC is not enabled, do nothing */ rlc_setting = RREG32_SOC15(GC, 0, mmRLC_CNTL); if (!(rlc_setting & RLC_CNTL__RLC_ENABLE_F32_MASK)) return; if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_3D_CGCG)) { data = RLC_SAFE_MODE__CMD_MASK; data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT); WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data); /* wait for RLC_SAFE_MODE */ for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(SOC15_REG_OFFSET(GC, 0, mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } adev->gfx.rlc.in_safe_mode = true; } } static void gfx_v9_0_exit_rlc_safe_mode(struct amdgpu_device *adev) { uint32_t rlc_setting, data; if (!adev->gfx.rlc.in_safe_mode) return; /* if RLC is not enabled, do nothing */ rlc_setting = RREG32_SOC15(GC, 0, mmRLC_CNTL); if (!(rlc_setting & RLC_CNTL__RLC_ENABLE_F32_MASK)) return; if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_MGCG)) { /* * Try to exit safe mode only if it is already in safe * mode. */ data = RLC_SAFE_MODE__CMD_MASK; WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data); adev->gfx.rlc.in_safe_mode = false; } } static void gfx_v9_0_update_gfx_cg_power_gating(struct amdgpu_device *adev, bool enable) { /* TODO: double check if we need to perform under safe mdoe */ /* gfx_v9_0_enter_rlc_safe_mode(adev); */ if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) && enable) { gfx_v9_0_enable_gfx_cg_power_gating(adev, true); if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PIPELINE) gfx_v9_0_enable_gfx_pipeline_powergating(adev, true); } else { gfx_v9_0_enable_gfx_cg_power_gating(adev, false); gfx_v9_0_enable_gfx_pipeline_powergating(adev, false); } /* gfx_v9_0_exit_rlc_safe_mode(adev); */ } static void gfx_v9_0_update_gfx_mg_power_gating(struct amdgpu_device *adev, bool enable) { /* TODO: double check if we need to perform under safe mode */ /* gfx_v9_0_enter_rlc_safe_mode(adev); */ if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG) && enable) gfx_v9_0_enable_gfx_static_mg_power_gating(adev, true); else gfx_v9_0_enable_gfx_static_mg_power_gating(adev, false); if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG) && enable) gfx_v9_0_enable_gfx_dynamic_mg_power_gating(adev, true); else gfx_v9_0_enable_gfx_dynamic_mg_power_gating(adev, false); /* gfx_v9_0_exit_rlc_safe_mode(adev); */ } static void gfx_v9_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; /* It is disabled by HW by default */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) { /* 1 - RLC_CGTT_MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); /* only for Vega10 & Raven1 */ data |= RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* MGLS is a global flag to control all MGLS in GFX */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { /* 2 - RLC memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) { def = data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); data |= RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data); } /* 3 - CP memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) { def = data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data); } } } else { /* 1 - MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); data |= (RLC_CGTT_MGCG_OVERRIDE__CPF_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* 2 - disable MGLS in RLC */ data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) { data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data); } /* 3 - disable MGLS in CP */ data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) { data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data); } } } static void gfx_v9_0_update_3d_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; adev->gfx.rlc.funcs->enter_safe_mode(adev); /* Enable 3D CGCG/CGLS */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG)) { /* write cmd to clear cgcg/cgls ov */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK; /* update CGCG and CGLS override bits */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* enable 3Dcgcg FSM(0x0020003f) */ def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); data = (0x2000 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) data |= (0x000F << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL); data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data); } else { /* Disable CGCG/CGLS */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); /* disable cgcg, cgls should be disabled */ data &= ~(RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK); /* disable cgcg and cgls in FSM */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data); } adev->gfx.rlc.funcs->exit_safe_mode(adev); } static void gfx_v9_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t def, data; adev->gfx.rlc.funcs->enter_safe_mode(adev); if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) { def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; /* update CGCG and CGLS override bits */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* enable cgcg FSM(0x0020003F) */ def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); data = (0x2000 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL); data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data); } else { def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); /* reset CGCG/CGLS bits */ data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK); /* disable cgcg and cgls in FSM */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data); } adev->gfx.rlc.funcs->exit_safe_mode(adev); } static int gfx_v9_0_update_gfx_clock_gating(struct amdgpu_device *adev, bool enable) { if (enable) { /* CGCG/CGLS should be enabled after MGCG/MGLS * === MGCG + MGLS === */ gfx_v9_0_update_medium_grain_clock_gating(adev, enable); /* === CGCG /CGLS for GFX 3D Only === */ gfx_v9_0_update_3d_clock_gating(adev, enable); /* === CGCG + CGLS === */ gfx_v9_0_update_coarse_grain_clock_gating(adev, enable); } else { /* CGCG/CGLS should be disabled before MGCG/MGLS * === CGCG + CGLS === */ gfx_v9_0_update_coarse_grain_clock_gating(adev, enable); /* === CGCG /CGLS for GFX 3D Only === */ gfx_v9_0_update_3d_clock_gating(adev, enable); /* === MGCG + MGLS === */ gfx_v9_0_update_medium_grain_clock_gating(adev, enable); } return 0; } static const struct amdgpu_rlc_funcs gfx_v9_0_rlc_funcs = { .enter_safe_mode = gfx_v9_0_enter_rlc_safe_mode, .exit_safe_mode = gfx_v9_0_exit_rlc_safe_mode }; static int gfx_v9_0_set_powergating_state(void *handle, enum amd_powergating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool enable = (state == AMD_PG_STATE_GATE) ? true : false; switch (adev->asic_type) { case CHIP_RAVEN: if (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS) { gfx_v9_0_enable_sck_slow_down_on_power_up(adev, true); gfx_v9_0_enable_sck_slow_down_on_power_down(adev, true); } else { gfx_v9_0_enable_sck_slow_down_on_power_up(adev, false); gfx_v9_0_enable_sck_slow_down_on_power_down(adev, false); } if (adev->pg_flags & AMD_PG_SUPPORT_CP) gfx_v9_0_enable_cp_power_gating(adev, true); else gfx_v9_0_enable_cp_power_gating(adev, false); /* update gfx cgpg state */ gfx_v9_0_update_gfx_cg_power_gating(adev, enable); /* update mgcg state */ gfx_v9_0_update_gfx_mg_power_gating(adev, enable); break; default: break; } return 0; } static int gfx_v9_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_RAVEN: gfx_v9_0_update_gfx_clock_gating(adev, state == AMD_CG_STATE_GATE ? true : false); break; default: break; } return 0; } static void gfx_v9_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_GFX_MGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_MGCG; /* AMD_CG_SUPPORT_GFX_CGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGCG; /* AMD_CG_SUPPORT_GFX_CGLS */ if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGLS; /* AMD_CG_SUPPORT_GFX_RLC_LS */ data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_CP_LS */ data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_3D_CGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGCG; /* AMD_CG_SUPPORT_GFX_3D_CGLS */ if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGLS; } static u64 gfx_v9_0_ring_get_rptr_gfx(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; /* gfx9 is 32bit rptr*/ } static u64 gfx_v9_0_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { wptr = atomic64_read((atomic64_t *)&adev->wb.wb[ring->wptr_offs]); } else { wptr = RREG32_SOC15(GC, 0, mmCP_RB0_WPTR); wptr += (u64)RREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI) << 32; } return wptr; } static void gfx_v9_0_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ atomic64_set((atomic64_t*)&adev->wb.wb[ring->wptr_offs], ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); } } static void gfx_v9_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { u32 ref_and_mask, reg_mem_engine; struct nbio_hdp_flush_reg *nbio_hf_reg; if (ring->adev->asic_type == CHIP_VEGA10) nbio_hf_reg = &nbio_v6_1_hdp_flush_reg; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { switch (ring->me) { case 1: ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; break; case 2: ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe; break; default: return; } reg_mem_engine = 0; } else { ref_and_mask = nbio_hf_reg->ref_and_mask_cp0; reg_mem_engine = 1; /* pfp */ } gfx_v9_0_wait_reg_mem(ring, reg_mem_engine, 0, 1, nbio_hf_reg->hdp_flush_req_offset, nbio_hf_reg->hdp_flush_done_offset, ref_and_mask, ref_and_mask, 0x20); } static void gfx_v9_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring) { gfx_v9_0_write_data_to_reg(ring, 0, true, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0), 1); } static void gfx_v9_0_ring_emit_ib_gfx(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vm_id, bool ctx_switch) { u32 header, control = 0; if (ib->flags & AMDGPU_IB_FLAG_CE) header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); else header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); control |= ib->length_dw | (vm_id << 24); if (amdgpu_sriov_vf(ring->adev) && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) { control |= INDIRECT_BUFFER_PRE_ENB(1); if (!(ib->flags & AMDGPU_IB_FLAG_CE)) gfx_v9_0_ring_emit_de_meta(ring); } amdgpu_ring_write(ring, header); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v9_0_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vm_id, bool ctx_switch) { u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vm_id << 24); amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v9_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EOP_TC_WB_ACTION_EN | EOP_TC_MD_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); /* * the address should be Qword aligned if 64bit write, Dword * aligned if only send 32bit data low (discard data high) */ if (write64bit) BUG_ON(addr & 0x7); else BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); amdgpu_ring_write(ring, 0); } static void gfx_v9_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; gfx_v9_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr), upper_32_bits(addr), seq, 0xffffffff, 4); } static void gfx_v9_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vm_id, uint64_t pd_addr) { struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub]; int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id); unsigned eng = ring->vm_inv_eng; pd_addr = amdgpu_gart_get_vm_pde(ring->adev, pd_addr); pd_addr |= AMDGPU_PTE_VALID; gfx_v9_0_write_data_to_reg(ring, usepfp, true, hub->ctx0_ptb_addr_lo32 + (2 * vm_id), lower_32_bits(pd_addr)); gfx_v9_0_write_data_to_reg(ring, usepfp, true, hub->ctx0_ptb_addr_hi32 + (2 * vm_id), upper_32_bits(pd_addr)); gfx_v9_0_write_data_to_reg(ring, usepfp, true, hub->vm_inv_eng0_req + eng, req); /* wait for the invalidate to complete */ gfx_v9_0_wait_reg_mem(ring, 0, 0, 0, hub->vm_inv_eng0_ack + eng, 0, 1 << vm_id, 1 << vm_id, 0x20); /* compute doesn't have PFP */ if (usepfp) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); amdgpu_ring_write(ring, 0x0); } } static u64 gfx_v9_0_ring_get_rptr_compute(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; /* gfx9 hardware is 32bit rptr */ } static u64 gfx_v9_0_ring_get_wptr_compute(struct amdgpu_ring *ring) { u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) wptr = atomic64_read((atomic64_t *)&ring->adev->wb.wb[ring->wptr_offs]); else BUG(); return wptr; } static void gfx_v9_0_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { atomic64_set((atomic64_t*)&adev->wb.wb[ring->wptr_offs], ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else{ BUG(); /* only DOORBELL method supported on gfx9 now */ } } static void gfx_v9_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned int flags) { /* we only allocate 32bit for each seq wb address */ BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT); /* write fence seq to the "addr" */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(5) | WR_CONFIRM)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* set register to trigger INT */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, mmCPC_INT_STATUS)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */ } } static void gfx_v9_ring_emit_sb(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } static void gfx_v9_0_ring_emit_ce_meta(struct amdgpu_ring *ring) { static struct v9_ce_ib_state ce_payload = {0}; uint64_t csa_addr; int cnt; cnt = (sizeof(ce_payload) >> 2) + 4 - 2; csa_addr = AMDGPU_VA_RESERVED_SIZE - 2 * 4096; amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(2) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(csa_addr + offsetof(struct v9_gfx_meta_data, ce_payload))); amdgpu_ring_write(ring, upper_32_bits(csa_addr + offsetof(struct v9_gfx_meta_data, ce_payload))); amdgpu_ring_write_multiple(ring, (void *)&ce_payload, sizeof(ce_payload) >> 2); } static void gfx_v9_0_ring_emit_de_meta(struct amdgpu_ring *ring) { static struct v9_de_ib_state de_payload = {0}; uint64_t csa_addr, gds_addr; int cnt; csa_addr = AMDGPU_VA_RESERVED_SIZE - 2 * 4096; gds_addr = csa_addr + 4096; de_payload.gds_backup_addrlo = lower_32_bits(gds_addr); de_payload.gds_backup_addrhi = upper_32_bits(gds_addr); cnt = (sizeof(de_payload) >> 2) + 4 - 2; amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(csa_addr + offsetof(struct v9_gfx_meta_data, de_payload))); amdgpu_ring_write(ring, upper_32_bits(csa_addr + offsetof(struct v9_gfx_meta_data, de_payload))); amdgpu_ring_write_multiple(ring, (void *)&de_payload, sizeof(de_payload) >> 2); } static void gfx_v9_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags) { uint32_t dw2 = 0; if (amdgpu_sriov_vf(ring->adev)) gfx_v9_0_ring_emit_ce_meta(ring); dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */ if (flags & AMDGPU_HAVE_CTX_SWITCH) { /* set load_global_config & load_global_uconfig */ dw2 |= 0x8001; /* set load_cs_sh_regs */ dw2 |= 0x01000000; /* set load_per_context_state & load_gfx_sh_regs for GFX */ dw2 |= 0x10002; /* set load_ce_ram if preamble presented */ if (AMDGPU_PREAMBLE_IB_PRESENT & flags) dw2 |= 0x10000000; } else { /* still load_ce_ram if this is the first time preamble presented * although there is no context switch happens. */ if (AMDGPU_PREAMBLE_IB_PRESENT_FIRST & flags) dw2 |= 0x10000000; } amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, dw2); amdgpu_ring_write(ring, 0); } static unsigned gfx_v9_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring) { unsigned ret; amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3)); amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, 0); /* discard following DWs if *cond_exec_gpu_addr==0 */ ret = ring->wptr & ring->buf_mask; amdgpu_ring_write(ring, 0x55aa55aa); /* patch dummy value later */ return ret; } static void gfx_v9_0_ring_emit_patch_cond_exec(struct amdgpu_ring *ring, unsigned offset) { unsigned cur; BUG_ON(offset > ring->buf_mask); BUG_ON(ring->ring[offset] != 0x55aa55aa); cur = (ring->wptr & ring->buf_mask) - 1; if (likely(cur > offset)) ring->ring[offset] = cur - offset; else ring->ring[offset] = (ring->ring_size>>2) - offset + cur; } static void gfx_v9_0_ring_emit_tmz(struct amdgpu_ring *ring, bool start) { amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0)); amdgpu_ring_write(ring, FRAME_CMD(start ? 0 : 1)); /* frame_end */ } static void gfx_v9_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg) { struct amdgpu_device *adev = ring->adev; amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4)); amdgpu_ring_write(ring, 0 | /* src: register*/ (5 << 8) | /* dst: memory */ (1 << 20)); /* write confirm */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr + adev->virt.reg_val_offs * 4)); amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr + adev->virt.reg_val_offs * 4)); } static void gfx_v9_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (1 << 16)); /* no inc addr */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v9_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } } static void gfx_v9_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state) { /* Me 0 is reserved for graphics */ if (me < 1 || me > adev->gfx.mec.num_mec) { DRM_ERROR("Ignoring request to enable interrupts for invalid me:%d\n", me); return; } if (pipe >= adev->gfx.mec.num_pipe_per_mec) { DRM_ERROR("Ignoring request to enable interrupts for invalid " "me:%d pipe:%d\n", pipe, me); return; } mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, me, pipe, 0, 0); WREG32_FIELD(CPC_INT_CNTL, TIME_STAMP_INT_ENABLE, state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1); soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static int gfx_v9_0_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static int gfx_v9_0_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); default: break; } return 0; } static int gfx_v9_0_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CP_IRQ_GFX_EOP: gfx_v9_0_set_gfx_eop_interrupt_state(adev, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 1, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 1, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 1, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 1, 3, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 2, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 2, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 2, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP: gfx_v9_0_set_compute_eop_interrupt_state(adev, 2, 3, state); break; default: break; } return 0; } static int gfx_v9_0_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int i; u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; DRM_DEBUG("IH: CP EOP\n"); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: amdgpu_fence_process(&adev->gfx.gfx_ring[0]); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; /* Per-queue interrupt is supported for MEC starting from VI. * The interrupt can only be enabled/disabled per pipe instead of per queue. */ if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id)) amdgpu_fence_process(ring); } break; } return 0; } static int gfx_v9_0_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); schedule_work(&adev->reset_work); return 0; } static int gfx_v9_0_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); schedule_work(&adev->reset_work); return 0; } static int gfx_v9_0_kiq_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned int type, enum amdgpu_interrupt_state state) { uint32_t tmp, target; struct amdgpu_ring *ring = &(adev->gfx.kiq.ring); if (ring->me == 1) target = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE0_INT_CNTL); else target = SOC15_REG_OFFSET(GC, 0, mmCP_ME2_PIPE0_INT_CNTL); target += ring->pipe; switch (type) { case AMDGPU_CP_KIQ_IRQ_DRIVER0: if (state == AMDGPU_IRQ_STATE_DISABLE) { tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp); tmp = RREG32(target); tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32(target, tmp); } else { tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp); tmp = RREG32(target); tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32(target, tmp); } break; default: BUG(); /* kiq only support GENERIC2_INT now */ break; } return 0; } static int gfx_v9_0_kiq_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring = &(adev->gfx.kiq.ring); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; DRM_DEBUG("IH: CPC GENERIC2_INT, me:%d, pipe:%d, queue:%d\n", me_id, pipe_id, queue_id); amdgpu_fence_process(ring); return 0; } const struct amd_ip_funcs gfx_v9_0_ip_funcs = { .name = "gfx_v9_0", .early_init = gfx_v9_0_early_init, .late_init = gfx_v9_0_late_init, .sw_init = gfx_v9_0_sw_init, .sw_fini = gfx_v9_0_sw_fini, .hw_init = gfx_v9_0_hw_init, .hw_fini = gfx_v9_0_hw_fini, .suspend = gfx_v9_0_suspend, .resume = gfx_v9_0_resume, .is_idle = gfx_v9_0_is_idle, .wait_for_idle = gfx_v9_0_wait_for_idle, .soft_reset = gfx_v9_0_soft_reset, .set_clockgating_state = gfx_v9_0_set_clockgating_state, .set_powergating_state = gfx_v9_0_set_powergating_state, .get_clockgating_state = gfx_v9_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs gfx_v9_0_ring_funcs_gfx = { .type = AMDGPU_RING_TYPE_GFX, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB, .get_rptr = gfx_v9_0_ring_get_rptr_gfx, .get_wptr = gfx_v9_0_ring_get_wptr_gfx, .set_wptr = gfx_v9_0_ring_set_wptr_gfx, .emit_frame_size = /* totally 242 maximum if 16 IBs */ 5 + /* COND_EXEC */ 7 + /* PIPELINE_SYNC */ 24 + /* VM_FLUSH */ 8 + /* FENCE for VM_FLUSH */ 20 + /* GDS switch */ 4 + /* double SWITCH_BUFFER, the first COND_EXEC jump to the place just prior to this double SWITCH_BUFFER */ 5 + /* COND_EXEC */ 7 + /* HDP_flush */ 4 + /* VGT_flush */ 14 + /* CE_META */ 31 + /* DE_META */ 3 + /* CNTX_CTRL */ 5 + /* HDP_INVL */ 8 + 8 + /* FENCE x2 */ 2, /* SWITCH_BUFFER */ .emit_ib_size = 4, /* gfx_v9_0_ring_emit_ib_gfx */ .emit_ib = gfx_v9_0_ring_emit_ib_gfx, .emit_fence = gfx_v9_0_ring_emit_fence, .emit_pipeline_sync = gfx_v9_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v9_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v9_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v9_0_ring_emit_hdp_flush, .emit_hdp_invalidate = gfx_v9_0_ring_emit_hdp_invalidate, .test_ring = gfx_v9_0_ring_test_ring, .test_ib = gfx_v9_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_switch_buffer = gfx_v9_ring_emit_sb, .emit_cntxcntl = gfx_v9_ring_emit_cntxcntl, .init_cond_exec = gfx_v9_0_ring_emit_init_cond_exec, .patch_cond_exec = gfx_v9_0_ring_emit_patch_cond_exec, .emit_tmz = gfx_v9_0_ring_emit_tmz, }; static const struct amdgpu_ring_funcs gfx_v9_0_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB, .get_rptr = gfx_v9_0_ring_get_rptr_compute, .get_wptr = gfx_v9_0_ring_get_wptr_compute, .set_wptr = gfx_v9_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v9_0_ring_emit_gds_switch */ 7 + /* gfx_v9_0_ring_emit_hdp_flush */ 5 + /* gfx_v9_0_ring_emit_hdp_invalidate */ 7 + /* gfx_v9_0_ring_emit_pipeline_sync */ 24 + /* gfx_v9_0_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v9_0_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 4, /* gfx_v9_0_ring_emit_ib_compute */ .emit_ib = gfx_v9_0_ring_emit_ib_compute, .emit_fence = gfx_v9_0_ring_emit_fence, .emit_pipeline_sync = gfx_v9_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v9_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v9_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v9_0_ring_emit_hdp_flush, .emit_hdp_invalidate = gfx_v9_0_ring_emit_hdp_invalidate, .test_ring = gfx_v9_0_ring_test_ring, .test_ib = gfx_v9_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, }; static const struct amdgpu_ring_funcs gfx_v9_0_ring_funcs_kiq = { .type = AMDGPU_RING_TYPE_KIQ, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB, .get_rptr = gfx_v9_0_ring_get_rptr_compute, .get_wptr = gfx_v9_0_ring_get_wptr_compute, .set_wptr = gfx_v9_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v9_0_ring_emit_gds_switch */ 7 + /* gfx_v9_0_ring_emit_hdp_flush */ 5 + /* gfx_v9_0_ring_emit_hdp_invalidate */ 7 + /* gfx_v9_0_ring_emit_pipeline_sync */ 24 + /* gfx_v9_0_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v9_0_ring_emit_fence_kiq x3 for user fence, vm fence */ .emit_ib_size = 4, /* gfx_v9_0_ring_emit_ib_compute */ .emit_ib = gfx_v9_0_ring_emit_ib_compute, .emit_fence = gfx_v9_0_ring_emit_fence_kiq, .test_ring = gfx_v9_0_ring_test_ring, .test_ib = gfx_v9_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_rreg = gfx_v9_0_ring_emit_rreg, .emit_wreg = gfx_v9_0_ring_emit_wreg, }; static void gfx_v9_0_set_ring_funcs(struct amdgpu_device *adev) { int i; adev->gfx.kiq.ring.funcs = &gfx_v9_0_ring_funcs_kiq; for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].funcs = &gfx_v9_0_ring_funcs_gfx; for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].funcs = &gfx_v9_0_ring_funcs_compute; } static const struct amdgpu_irq_src_funcs gfx_v9_0_kiq_irq_funcs = { .set = gfx_v9_0_kiq_set_interrupt_state, .process = gfx_v9_0_kiq_irq, }; static const struct amdgpu_irq_src_funcs gfx_v9_0_eop_irq_funcs = { .set = gfx_v9_0_set_eop_interrupt_state, .process = gfx_v9_0_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v9_0_priv_reg_irq_funcs = { .set = gfx_v9_0_set_priv_reg_fault_state, .process = gfx_v9_0_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v9_0_priv_inst_irq_funcs = { .set = gfx_v9_0_set_priv_inst_fault_state, .process = gfx_v9_0_priv_inst_irq, }; static void gfx_v9_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v9_0_eop_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v9_0_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v9_0_priv_inst_irq_funcs; adev->gfx.kiq.irq.num_types = AMDGPU_CP_KIQ_IRQ_LAST; adev->gfx.kiq.irq.funcs = &gfx_v9_0_kiq_irq_funcs; } static void gfx_v9_0_set_rlc_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_RAVEN: adev->gfx.rlc.funcs = &gfx_v9_0_rlc_funcs; break; default: break; } } static void gfx_v9_0_set_gds_init(struct amdgpu_device *adev) { /* init asci gds info */ adev->gds.mem.total_size = RREG32_SOC15(GC, 0, mmGDS_VMID0_SIZE); adev->gds.gws.total_size = 64; adev->gds.oa.total_size = 16; if (adev->gds.mem.total_size == 64 * 1024) { adev->gds.mem.gfx_partition_size = 4096; adev->gds.mem.cs_partition_size = 4096; adev->gds.gws.gfx_partition_size = 4; adev->gds.gws.cs_partition_size = 4; adev->gds.oa.gfx_partition_size = 4; adev->gds.oa.cs_partition_size = 1; } else { adev->gds.mem.gfx_partition_size = 1024; adev->gds.mem.cs_partition_size = 1024; adev->gds.gws.gfx_partition_size = 16; adev->gds.gws.cs_partition_size = 16; adev->gds.oa.gfx_partition_size = 4; adev->gds.oa.cs_partition_size = 4; } } static u32 gfx_v9_0_get_cu_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32_SOC15(GC, 0, mmCC_GC_SHADER_ARRAY_CONFIG); data |= RREG32_SOC15(GC, 0, mmGC_USER_SHADER_ARRAY_CONFIG); data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; mask = gfx_v9_0_create_bitmask(adev->gfx.config.max_cu_per_sh); return (~data) & mask; } static int gfx_v9_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0; if (!adev || !cu_info) return -EINVAL; memset(cu_info, 0, sizeof(*cu_info)); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; ao_bitmap = 0; counter = 0; gfx_v9_0_select_se_sh(adev, i, j, 0xffffffff); bitmap = gfx_v9_0_get_cu_active_bitmap(adev); cu_info->bitmap[i][j] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) { if (bitmap & mask) { if (counter < adev->gfx.config.max_cu_per_sh) ao_bitmap |= mask; counter ++; } mask <<= 1; } active_cu_number += counter; ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8)); } } gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->ao_cu_mask = ao_cu_mask; return 0; } const struct amdgpu_ip_block_version gfx_v9_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 9, .minor = 0, .rev = 0, .funcs = &gfx_v9_0_ip_funcs, };