/* * ePAPR hcall interface * * Copyright 2008-2011 Freescale Semiconductor, Inc. * * Author: Timur Tabi * * This file is provided under a dual BSD/GPL license. When using or * redistributing this file, you may do so under either license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* A "hypercall" is an "sc 1" instruction. This header file file provides C * wrapper functions for the ePAPR hypervisor interface. It is inteded * for use by Linux device drivers and other operating systems. * * The hypercalls are implemented as inline assembly, rather than assembly * language functions in a .S file, for optimization. It allows * the caller to issue the hypercall instruction directly, improving both * performance and memory footprint. */ #ifndef _EPAPR_HCALLS_H #define _EPAPR_HCALLS_H #include #include #include #define EV_BYTE_CHANNEL_SEND 1 #define EV_BYTE_CHANNEL_RECEIVE 2 #define EV_BYTE_CHANNEL_POLL 3 #define EV_INT_SET_CONFIG 4 #define EV_INT_GET_CONFIG 5 #define EV_INT_SET_MASK 6 #define EV_INT_GET_MASK 7 #define EV_INT_IACK 9 #define EV_INT_EOI 10 #define EV_INT_SEND_IPI 11 #define EV_INT_SET_TASK_PRIORITY 12 #define EV_INT_GET_TASK_PRIORITY 13 #define EV_DOORBELL_SEND 14 #define EV_MSGSND 15 #define EV_IDLE 16 /* vendor ID: epapr */ #define EV_LOCAL_VENDOR_ID 0 /* for private use */ #define EV_EPAPR_VENDOR_ID 1 #define EV_FSL_VENDOR_ID 2 /* Freescale Semiconductor */ #define EV_IBM_VENDOR_ID 3 /* IBM */ #define EV_GHS_VENDOR_ID 4 /* Green Hills Software */ #define EV_ENEA_VENDOR_ID 5 /* Enea */ #define EV_WR_VENDOR_ID 6 /* Wind River Systems */ #define EV_AMCC_VENDOR_ID 7 /* Applied Micro Circuits */ #define EV_KVM_VENDOR_ID 42 /* KVM */ /* The max number of bytes that a byte channel can send or receive per call */ #define EV_BYTE_CHANNEL_MAX_BYTES 16 #define _EV_HCALL_TOKEN(id, num) (((id) << 16) | (num)) #define EV_HCALL_TOKEN(hcall_num) _EV_HCALL_TOKEN(EV_EPAPR_VENDOR_ID, hcall_num) /* epapr return codes */ #define EV_SUCCESS 0 #define EV_EPERM 1 /* Operation not permitted */ #define EV_ENOENT 2 /* Entry Not Found */ #define EV_EIO 3 /* I/O error occured */ #define EV_EAGAIN 4 /* The operation had insufficient * resources to complete and should be * retried */ #define EV_ENOMEM 5 /* There was insufficient memory to * complete the operation */ #define EV_EFAULT 6 /* Bad guest address */ #define EV_ENODEV 7 /* No such device */ #define EV_EINVAL 8 /* An argument supplied to the hcall was out of range or invalid */ #define EV_INTERNAL 9 /* An internal error occured */ #define EV_CONFIG 10 /* A configuration error was detected */ #define EV_INVALID_STATE 11 /* The object is in an invalid state */ #define EV_UNIMPLEMENTED 12 /* Unimplemented hypercall */ #define EV_BUFFER_OVERFLOW 13 /* Caller-supplied buffer too small */ /* * Hypercall register clobber list * * These macros are used to define the list of clobbered registers during a * hypercall. Technically, registers r0 and r3-r12 are always clobbered, * but the gcc inline assembly syntax does not allow us to specify registers * on the clobber list that are also on the input/output list. Therefore, * the lists of clobbered registers depends on the number of register * parmeters ("+r" and "=r") passed to the hypercall. * * Each assembly block should use one of the HCALL_CLOBBERSx macros. As a * general rule, 'x' is the number of parameters passed to the assembly * block *except* for r11. * * If you're not sure, just use the smallest value of 'x' that does not * generate a compilation error. Because these are static inline functions, * the compiler will only check the clobber list for a function if you * compile code that calls that function. * * r3 and r11 are not included in any clobbers list because they are always * listed as output registers. * * XER, CTR, and LR are currently listed as clobbers because it's uncertain * whether they will be clobbered. * * Note that r11 can be used as an output parameter. * * The "memory" clobber is only necessary for hcalls where the Hypervisor * will read or write guest memory. However, we add it to all hcalls because * the impact is minimal, and we want to ensure that it's present for the * hcalls that need it. */ /* List of common clobbered registers. Do not use this macro. */ #define EV_HCALL_CLOBBERS "r0", "r12", "xer", "ctr", "lr", "cc", "memory" #define EV_HCALL_CLOBBERS8 EV_HCALL_CLOBBERS #define EV_HCALL_CLOBBERS7 EV_HCALL_CLOBBERS8, "r10" #define EV_HCALL_CLOBBERS6 EV_HCALL_CLOBBERS7, "r9" #define EV_HCALL_CLOBBERS5 EV_HCALL_CLOBBERS6, "r8" #define EV_HCALL_CLOBBERS4 EV_HCALL_CLOBBERS5, "r7" #define EV_HCALL_CLOBBERS3 EV_HCALL_CLOBBERS4, "r6" #define EV_HCALL_CLOBBERS2 EV_HCALL_CLOBBERS3, "r5" #define EV_HCALL_CLOBBERS1 EV_HCALL_CLOBBERS2, "r4" extern bool epapr_paravirt_enabled; extern u32 epapr_hypercall_start[]; /* * We use "uintptr_t" to define a register because it's guaranteed to be a * 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit * platform. * * All registers are either input/output or output only. Registers that are * initialized before making the hypercall are input/output. All * input/output registers are represented with "+r". Output-only registers * are represented with "=r". Do not specify any unused registers. The * clobber list will tell the compiler that the hypercall modifies those * registers, which is good enough. */ /** * ev_int_set_config - configure the specified interrupt * @interrupt: the interrupt number * @config: configuration for this interrupt * @priority: interrupt priority * @destination: destination CPU number * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_set_config(unsigned int interrupt, uint32_t config, unsigned int priority, uint32_t destination) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); r11 = EV_HCALL_TOKEN(EV_INT_SET_CONFIG); r3 = interrupt; r4 = config; r5 = priority; r6 = destination; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6) : : EV_HCALL_CLOBBERS4 ); return r3; } /** * ev_int_get_config - return the config of the specified interrupt * @interrupt: the interrupt number * @config: returned configuration for this interrupt * @priority: returned interrupt priority * @destination: returned destination CPU number * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_get_config(unsigned int interrupt, uint32_t *config, unsigned int *priority, uint32_t *destination) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); r11 = EV_HCALL_TOKEN(EV_INT_GET_CONFIG); r3 = interrupt; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5), "=r" (r6) : : EV_HCALL_CLOBBERS4 ); *config = r4; *priority = r5; *destination = r6; return r3; } /** * ev_int_set_mask - sets the mask for the specified interrupt source * @interrupt: the interrupt number * @mask: 0=enable interrupts, 1=disable interrupts * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_set_mask(unsigned int interrupt, unsigned int mask) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = EV_HCALL_TOKEN(EV_INT_SET_MASK); r3 = interrupt; r4 = mask; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "+r" (r4) : : EV_HCALL_CLOBBERS2 ); return r3; } /** * ev_int_get_mask - returns the mask for the specified interrupt source * @interrupt: the interrupt number * @mask: returned mask for this interrupt (0=enabled, 1=disabled) * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_get_mask(unsigned int interrupt, unsigned int *mask) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = EV_HCALL_TOKEN(EV_INT_GET_MASK); r3 = interrupt; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "=r" (r4) : : EV_HCALL_CLOBBERS2 ); *mask = r4; return r3; } /** * ev_int_eoi - signal the end of interrupt processing * @interrupt: the interrupt number * * This function signals the end of processing for the the specified * interrupt, which must be the interrupt currently in service. By * definition, this is also the highest-priority interrupt. * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_eoi(unsigned int interrupt) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = EV_HCALL_TOKEN(EV_INT_EOI); r3 = interrupt; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * ev_byte_channel_send - send characters to a byte stream * @handle: byte stream handle * @count: (input) num of chars to send, (output) num chars sent * @buffer: pointer to a 16-byte buffer * * @buffer must be at least 16 bytes long, because all 16 bytes will be * read from memory into registers, even if count < 16. * * Returns 0 for success, or an error code. */ static inline unsigned int ev_byte_channel_send(unsigned int handle, unsigned int *count, const char buffer[EV_BYTE_CHANNEL_MAX_BYTES]) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); register uintptr_t r7 __asm__("r7"); register uintptr_t r8 __asm__("r8"); const uint32_t *p = (const uint32_t *) buffer; r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_SEND); r3 = handle; r4 = *count; r5 = be32_to_cpu(p[0]); r6 = be32_to_cpu(p[1]); r7 = be32_to_cpu(p[2]); r8 = be32_to_cpu(p[3]); __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "+r" (r8) : : EV_HCALL_CLOBBERS6 ); *count = r4; return r3; } /** * ev_byte_channel_receive - fetch characters from a byte channel * @handle: byte channel handle * @count: (input) max num of chars to receive, (output) num chars received * @buffer: pointer to a 16-byte buffer * * The size of @buffer must be at least 16 bytes, even if you request fewer * than 16 characters, because we always write 16 bytes to @buffer. This is * for performance reasons. * * Returns 0 for success, or an error code. */ static inline unsigned int ev_byte_channel_receive(unsigned int handle, unsigned int *count, char buffer[EV_BYTE_CHANNEL_MAX_BYTES]) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); register uintptr_t r7 __asm__("r7"); register uintptr_t r8 __asm__("r8"); uint32_t *p = (uint32_t *) buffer; r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_RECEIVE); r3 = handle; r4 = *count; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "+r" (r4), "=r" (r5), "=r" (r6), "=r" (r7), "=r" (r8) : : EV_HCALL_CLOBBERS6 ); *count = r4; p[0] = cpu_to_be32(r5); p[1] = cpu_to_be32(r6); p[2] = cpu_to_be32(r7); p[3] = cpu_to_be32(r8); return r3; } /** * ev_byte_channel_poll - returns the status of the byte channel buffers * @handle: byte channel handle * @rx_count: returned count of bytes in receive queue * @tx_count: returned count of free space in transmit queue * * This function reports the amount of data in the receive queue (i.e. the * number of bytes you can read), and the amount of free space in the transmit * queue (i.e. the number of bytes you can write). * * Returns 0 for success, or an error code. */ static inline unsigned int ev_byte_channel_poll(unsigned int handle, unsigned int *rx_count, unsigned int *tx_count) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_POLL); r3 = handle; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5) : : EV_HCALL_CLOBBERS3 ); *rx_count = r4; *tx_count = r5; return r3; } /** * ev_int_iack - acknowledge an interrupt * @handle: handle to the target interrupt controller * @vector: returned interrupt vector * * If handle is zero, the function returns the next interrupt source * number to be handled irrespective of the hierarchy or cascading * of interrupt controllers. If non-zero, specifies a handle to the * interrupt controller that is the target of the acknowledge. * * Returns 0 for success, or an error code. */ static inline unsigned int ev_int_iack(unsigned int handle, unsigned int *vector) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = EV_HCALL_TOKEN(EV_INT_IACK); r3 = handle; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3), "=r" (r4) : : EV_HCALL_CLOBBERS2 ); *vector = r4; return r3; } /** * ev_doorbell_send - send a doorbell to another partition * @handle: doorbell send handle * * Returns 0 for success, or an error code. */ static inline unsigned int ev_doorbell_send(unsigned int handle) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = EV_HCALL_TOKEN(EV_DOORBELL_SEND); r3 = handle; __asm__ __volatile__ ("sc 1" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * ev_idle -- wait for next interrupt on this core * * Returns 0 for success, or an error code. */ static inline unsigned int ev_idle(void) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = EV_HCALL_TOKEN(EV_IDLE); __asm__ __volatile__ ("sc 1" : "+r" (r11), "=r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } #endif