/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include #include #include "nouveau_drm.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fence.h" #include "nv50_display.h" #define EVO_DMA_NR 9 #define EVO_MASTER (0x00) #define EVO_FLIP(c) (0x01 + (c)) #define EVO_OVLY(c) (0x05 + (c)) #define EVO_OIMM(c) (0x09 + (c)) #define EVO_CURS(c) (0x0d + (c)) /* offsets in shared sync bo of various structures */ #define EVO_SYNC(c, o) ((c) * 0x0100 + (o)) #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00) #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00) #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10) #define EVO_CORE_HANDLE (0xd1500000) #define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i)) #define EVO_CHAN_OCLASS(t,c) (((c)->oclass & 0xff00) | ((t) & 0x00ff)) #define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \ (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8)) /****************************************************************************** * EVO channel *****************************************************************************/ struct nv50_chan { struct nvif_object user; }; static int nv50_chan_create(struct nvif_object *disp, const u32 *oclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { while (oclass[0]) { int ret = nvif_object_init(disp, NULL, (oclass[0] << 16) | head, oclass[0], data, size, &chan->user); if (oclass++, ret == 0) return ret; } return -ENOSYS; } static void nv50_chan_destroy(struct nv50_chan *chan) { nvif_object_fini(&chan->user); } /****************************************************************************** * PIO EVO channel *****************************************************************************/ struct nv50_pioc { struct nv50_chan base; }; static void nv50_pioc_destroy(struct nv50_pioc *pioc) { nv50_chan_destroy(&pioc->base); } static int nv50_pioc_create(struct nvif_object *disp, const u32 *oclass, u8 head, void *data, u32 size, struct nv50_pioc *pioc) { return nv50_chan_create(disp, oclass, head, data, size, &pioc->base); } /****************************************************************************** * Cursor Immediate *****************************************************************************/ struct nv50_curs { struct nv50_pioc base; }; static int nv50_curs_create(struct nvif_object *disp, int head, struct nv50_curs *curs) { struct nv50_display_curs_class args = { .head = head, }; static const u32 oclass[] = { GM107_DISP_CURS_CLASS, NVF0_DISP_CURS_CLASS, NVE0_DISP_CURS_CLASS, NVD0_DISP_CURS_CLASS, NVA3_DISP_CURS_CLASS, NV94_DISP_CURS_CLASS, NVA0_DISP_CURS_CLASS, NV84_DISP_CURS_CLASS, NV50_DISP_CURS_CLASS, 0 }; return nv50_pioc_create(disp, oclass, head, &args, sizeof(args), &curs->base); } /****************************************************************************** * Overlay Immediate *****************************************************************************/ struct nv50_oimm { struct nv50_pioc base; }; static int nv50_oimm_create(struct nvif_object *disp, int head, struct nv50_oimm *oimm) { struct nv50_display_oimm_class args = { .head = head, }; static const u32 oclass[] = { GM107_DISP_OIMM_CLASS, NVF0_DISP_OIMM_CLASS, NVE0_DISP_OIMM_CLASS, NVD0_DISP_OIMM_CLASS, NVA3_DISP_OIMM_CLASS, NV94_DISP_OIMM_CLASS, NVA0_DISP_OIMM_CLASS, NV84_DISP_OIMM_CLASS, NV50_DISP_OIMM_CLASS, 0 }; return nv50_pioc_create(disp, oclass, head, &args, sizeof(args), &oimm->base); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ struct nv50_dmac { struct nv50_chan base; dma_addr_t handle; u32 *ptr; struct nvif_object sync; struct nvif_object vram; /* Protects against concurrent pushbuf access to this channel, lock is * grabbed by evo_wait (if the pushbuf reservation is successful) and * dropped again by evo_kick. */ struct mutex lock; }; static void nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp) { nvif_object_fini(&dmac->vram); nvif_object_fini(&dmac->sync); nv50_chan_destroy(&dmac->base); if (dmac->ptr) { struct pci_dev *pdev = nvkm_device(nvif_device(disp))->pdev; pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle); } } static int nv50_dmac_create(struct nvif_object *disp, const u32 *oclass, u8 head, void *data, u32 size, u64 syncbuf, struct nv50_dmac *dmac) { struct nouveau_fb *pfb = nvkm_fb(nvif_device(disp)); struct nvif_object pushbuf; u32 handle = *(u32 *)data; int ret; mutex_init(&dmac->lock); dmac->ptr = pci_alloc_consistent(nvkm_device(nvif_device(disp))->pdev, PAGE_SIZE, &dmac->handle); if (!dmac->ptr) return -ENOMEM; ret = nvif_object_init(nvif_object(nvif_device(disp)), NULL, handle, NV_DMA_FROM_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_PCI_US, .access = NV_DMA_V0_ACCESS_RD, .start = dmac->handle + 0x0000, .limit = dmac->handle + 0x0fff, }, sizeof(struct nv_dma_v0), &pushbuf); if (ret) return ret; ret = nv50_chan_create(disp, oclass, head, data, size, &dmac->base); nvif_object_fini(&pushbuf); if (ret) return ret; ret = nvif_object_init(&dmac->base.user, NULL, 0xf0000000, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_v0), &dmac->sync); if (ret) return ret; ret = nvif_object_init(&dmac->base.user, NULL, 0xf0000001, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = 0, .limit = pfb->ram->size - 1, }, sizeof(struct nv_dma_v0), &dmac->vram); if (ret) return ret; return ret; } /****************************************************************************** * Core *****************************************************************************/ struct nv50_mast { struct nv50_dmac base; }; static int nv50_core_create(struct nvif_object *disp, u64 syncbuf, struct nv50_mast *core) { struct nv50_display_mast_class args = { .pushbuf = EVO_PUSH_HANDLE(MAST, 0), }; static const u32 oclass[] = { GM107_DISP_MAST_CLASS, NVF0_DISP_MAST_CLASS, NVE0_DISP_MAST_CLASS, NVD0_DISP_MAST_CLASS, NVA3_DISP_MAST_CLASS, NV94_DISP_MAST_CLASS, NVA0_DISP_MAST_CLASS, NV84_DISP_MAST_CLASS, NV50_DISP_MAST_CLASS, 0 }; return nv50_dmac_create(disp, oclass, 0, &args, sizeof(args), syncbuf, &core->base); } /****************************************************************************** * Base *****************************************************************************/ struct nv50_sync { struct nv50_dmac base; u32 addr; u32 data; }; static int nv50_base_create(struct nvif_object *disp, int head, u64 syncbuf, struct nv50_sync *base) { struct nv50_display_sync_class args = { .pushbuf = EVO_PUSH_HANDLE(SYNC, head), .head = head, }; static const u32 oclass[] = { GM107_DISP_SYNC_CLASS, NVF0_DISP_SYNC_CLASS, NVE0_DISP_SYNC_CLASS, NVD0_DISP_SYNC_CLASS, NVA3_DISP_SYNC_CLASS, NV94_DISP_SYNC_CLASS, NVA0_DISP_SYNC_CLASS, NV84_DISP_SYNC_CLASS, NV50_DISP_SYNC_CLASS, 0 }; return nv50_dmac_create(disp, oclass, head, &args, sizeof(args), syncbuf, &base->base); } /****************************************************************************** * Overlay *****************************************************************************/ struct nv50_ovly { struct nv50_dmac base; }; static int nv50_ovly_create(struct nvif_object *disp, int head, u64 syncbuf, struct nv50_ovly *ovly) { struct nv50_display_ovly_class args = { .pushbuf = EVO_PUSH_HANDLE(OVLY, head), .head = head, }; static const u32 oclass[] = { GM107_DISP_OVLY_CLASS, NVF0_DISP_OVLY_CLASS, NVE0_DISP_OVLY_CLASS, NVD0_DISP_OVLY_CLASS, NVA3_DISP_OVLY_CLASS, NV94_DISP_OVLY_CLASS, NVA0_DISP_OVLY_CLASS, NV84_DISP_OVLY_CLASS, NV50_DISP_OVLY_CLASS, 0 }; return nv50_dmac_create(disp, oclass, head, &args, sizeof(args), syncbuf, &ovly->base); } struct nv50_head { struct nouveau_crtc base; struct nouveau_bo *image; struct nv50_curs curs; struct nv50_sync sync; struct nv50_ovly ovly; struct nv50_oimm oimm; }; #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c)) #define nv50_curs(c) (&nv50_head(c)->curs) #define nv50_sync(c) (&nv50_head(c)->sync) #define nv50_ovly(c) (&nv50_head(c)->ovly) #define nv50_oimm(c) (&nv50_head(c)->oimm) #define nv50_chan(c) (&(c)->base.base) #define nv50_vers(c) nv50_chan(c)->user.oclass struct nv50_fbdma { struct list_head head; struct nvif_object core; struct nvif_object base[4]; }; struct nv50_disp { struct nvif_object *disp; struct nv50_mast mast; struct list_head fbdma; struct nouveau_bo *sync; }; static struct nv50_disp * nv50_disp(struct drm_device *dev) { return nouveau_display(dev)->priv; } #define nv50_mast(d) (&nv50_disp(d)->mast) static struct drm_crtc * nv50_display_crtc_get(struct drm_encoder *encoder) { return nouveau_encoder(encoder)->crtc; } /****************************************************************************** * EVO channel helpers *****************************************************************************/ static u32 * evo_wait(void *evoc, int nr) { struct nv50_dmac *dmac = evoc; u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4; mutex_lock(&dmac->lock); if (put + nr >= (PAGE_SIZE / 4) - 8) { dmac->ptr[put] = 0x20000000; nvif_wr32(&dmac->base.user, 0x0000, 0x00000000); if (!nvkm_wait(&dmac->base.user, 0x0004, ~0, 0x00000000)) { mutex_unlock(&dmac->lock); nv_error(nvkm_object(&dmac->base.user), "channel stalled\n"); return NULL; } put = 0; } return dmac->ptr + put; } static void evo_kick(u32 *push, void *evoc) { struct nv50_dmac *dmac = evoc; nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2); mutex_unlock(&dmac->lock); } #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m)) #define evo_data(p,d) *((p)++) = (d) static bool evo_sync_wait(void *data) { if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000) return true; usleep_range(1, 2); return false; } static int evo_sync(struct drm_device *dev) { struct nvif_device *device = &nouveau_drm(dev)->device; struct nv50_disp *disp = nv50_disp(dev); struct nv50_mast *mast = nv50_mast(dev); u32 *push = evo_wait(mast, 8); if (push) { nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000); evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000 | EVO_MAST_NTFY); evo_mthd(push, 0x0080, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_kick(push, mast); if (nv_wait_cb(nvkm_device(device), evo_sync_wait, disp->sync)) return 0; } return -EBUSY; } /****************************************************************************** * Page flipping channel *****************************************************************************/ struct nouveau_bo * nv50_display_crtc_sema(struct drm_device *dev, int crtc) { return nv50_disp(dev)->sync; } struct nv50_display_flip { struct nv50_disp *disp; struct nv50_sync *chan; }; static bool nv50_display_flip_wait(void *data) { struct nv50_display_flip *flip = data; if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) == flip->chan->data) return true; usleep_range(1, 2); return false; } void nv50_display_flip_stop(struct drm_crtc *crtc) { struct nvif_device *device = &nouveau_drm(crtc->dev)->device; struct nv50_display_flip flip = { .disp = nv50_disp(crtc->dev), .chan = nv50_sync(crtc), }; u32 *push; push = evo_wait(flip.chan, 8); if (push) { evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0094, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, flip.chan); } nv_wait_cb(nvkm_device(device), nv50_display_flip_wait, &flip); } int nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct nouveau_channel *chan, u32 swap_interval) { struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_head *head = nv50_head(crtc); struct nv50_sync *sync = nv50_sync(crtc); u32 *push; int ret; swap_interval <<= 4; if (swap_interval == 0) swap_interval |= 0x100; if (chan == NULL) evo_sync(crtc->dev); push = evo_wait(sync, 128); if (unlikely(push == NULL)) return -EBUSY; if (chan && chan->object->oclass < G82_CHANNEL_GPFIFO) { ret = RING_SPACE(chan, 8); if (ret) return ret; BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2); OUT_RING (chan, NvEvoSema0 + nv_crtc->index); OUT_RING (chan, sync->addr ^ 0x10); BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1); OUT_RING (chan, sync->data + 1); BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2); OUT_RING (chan, sync->addr); OUT_RING (chan, sync->data); } else if (chan && chan->object->oclass < FERMI_CHANNEL_GPFIFO) { u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr; ret = RING_SPACE(chan, 12); if (ret) return ret; BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1); OUT_RING (chan, chan->vram.handle); BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(addr ^ 0x10)); OUT_RING (chan, lower_32_bits(addr ^ 0x10)); OUT_RING (chan, sync->data + 1); OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG); BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(addr)); OUT_RING (chan, lower_32_bits(addr)); OUT_RING (chan, sync->data); OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL); } else if (chan) { u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr; ret = RING_SPACE(chan, 10); if (ret) return ret; BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(addr ^ 0x10)); OUT_RING (chan, lower_32_bits(addr ^ 0x10)); OUT_RING (chan, sync->data + 1); OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG | NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD); BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(addr)); OUT_RING (chan, lower_32_bits(addr)); OUT_RING (chan, sync->data); OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL | NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD); } if (chan) { sync->addr ^= 0x10; sync->data++; FIRE_RING (chan); } /* queue the flip */ evo_mthd(push, 0x0100, 1); evo_data(push, 0xfffe0000); evo_mthd(push, 0x0084, 1); evo_data(push, swap_interval); if (!(swap_interval & 0x00000100)) { evo_mthd(push, 0x00e0, 1); evo_data(push, 0x40000000); } evo_mthd(push, 0x0088, 4); evo_data(push, sync->addr); evo_data(push, sync->data++); evo_data(push, sync->data); evo_data(push, sync->base.sync.handle); evo_mthd(push, 0x00a0, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, nv_fb->r_handle); evo_mthd(push, 0x0110, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) { evo_mthd(push, 0x0800, 5); evo_data(push, nv_fb->nvbo->bo.offset >> 8); evo_data(push, 0); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nv_fb->r_pitch); evo_data(push, nv_fb->r_format); } else { evo_mthd(push, 0x0400, 5); evo_data(push, nv_fb->nvbo->bo.offset >> 8); evo_data(push, 0); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nv_fb->r_pitch); evo_data(push, nv_fb->r_format); } evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, sync); nouveau_bo_ref(nv_fb->nvbo, &head->image); return 0; } /****************************************************************************** * CRTC *****************************************************************************/ static int nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); struct nouveau_connector *nv_connector; struct drm_connector *connector; u32 *push, mode = 0x00; nv_connector = nouveau_crtc_connector_get(nv_crtc); connector = &nv_connector->base; if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) { if (nv_crtc->base.primary->fb->depth > connector->display_info.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = nv_connector->dithering_mode; } if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) { if (connector->display_info.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= nv_connector->dithering_depth; } push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1); evo_data(push, mode); } else if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) { evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1); evo_data(push, mode); } else { evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1); evo_data(push, mode); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } return 0; } static int nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); struct drm_display_mode *omode, *umode = &nv_crtc->base.mode; struct drm_crtc *crtc = &nv_crtc->base; struct nouveau_connector *nv_connector; int mode = DRM_MODE_SCALE_NONE; u32 oX, oY, *push; /* start off at the resolution we programmed the crtc for, this * effectively handles NONE/FULL scaling */ nv_connector = nouveau_crtc_connector_get(nv_crtc); if (nv_connector && nv_connector->native_mode) mode = nv_connector->scaling_mode; if (mode != DRM_MODE_SCALE_NONE) omode = nv_connector->native_mode; else omode = umode; oX = omode->hdisplay; oY = omode->vdisplay; if (omode->flags & DRM_MODE_FLAG_DBLSCAN) oY *= 2; /* add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON || (nv_connector->underscan == UNDERSCAN_AUTO && nv_connector->edid && drm_detect_hdmi_monitor(nv_connector->edid)))) { u32 bX = nv_connector->underscan_hborder; u32 bY = nv_connector->underscan_vborder; u32 aspect = (oY << 19) / oX; if (bX) { oX -= (bX * 2); if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } else { oX -= (oX >> 4) + 32; if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } } /* handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation */ switch (mode) { case DRM_MODE_SCALE_CENTER: oX = min((u32)umode->hdisplay, oX); oY = min((u32)umode->vdisplay, oY); /* fall-through */ case DRM_MODE_SCALE_ASPECT: if (oY < oX) { u32 aspect = (umode->hdisplay << 19) / umode->vdisplay; oX = ((oY * aspect) + (aspect / 2)) >> 19; } else { u32 aspect = (umode->vdisplay << 19) / umode->hdisplay; oY = ((oX * aspect) + (aspect / 2)) >> 19; } break; default: break; } push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { /*XXX: SCALE_CTRL_ACTIVE??? */ evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1); evo_data(push, umode->vdisplay << 16 | umode->hdisplay); } else { evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1); evo_data(push, umode->vdisplay << 16 | umode->hdisplay); } evo_kick(push, mast); if (update) { nv50_display_flip_stop(crtc); nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1); } } return 0; } static int nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push, hue, vib; int adj; adj = (nv_crtc->color_vibrance > 0) ? 50 : 0; vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff; hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff; push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1); evo_data(push, (hue << 20) | (vib << 8)); } else { evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1); evo_data(push, (hue << 20) | (vib << 8)); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } return 0; } static int nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb, int x, int y, bool update) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb); struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push; push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1); evo_data(push, (y << 16) | x); if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, nvfb->r_handle); } } else { evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_data(push, nvfb->r_handle); evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1); evo_data(push, (y << 16) | x); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } nv_crtc->fb.handle = nvfb->r_handle; return 0; } static void nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1); evo_data(push, mast->base.vram.handle); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, mast->base.vram.handle); } evo_kick(push, mast); } } static void nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); u32 *push = evo_wait(mast, 16); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x05000000); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } static void nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update) { struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev); if (show) nv50_crtc_cursor_show(nv_crtc); else nv50_crtc_cursor_hide(nv_crtc); if (update) { u32 *push = evo_wait(mast, 2); if (push) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, mast); } } } static void nv50_crtc_dpms(struct drm_crtc *crtc, int mode) { } static void nv50_crtc_prepare(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_mast *mast = nv50_mast(crtc->dev); u32 *push; nv50_display_flip_stop(crtc); push = evo_wait(mast, 6); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x40000000); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1); evo_data(push, 0x40000000); evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x03000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } nv50_crtc_cursor_show_hide(nv_crtc, false, false); } static void nv50_crtc_commit(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_mast *mast = nv50_mast(crtc->dev); u32 *push; push = evo_wait(mast, 32); if (push) { if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, nv_crtc->fb.handle); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); } else if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1); evo_data(push, nv_crtc->fb.handle); evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1); evo_data(push, mast->base.vram.handle); } else { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, nv_crtc->fb.handle); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4); evo_data(push, 0x83000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, mast->base.vram.handle); evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1); evo_data(push, 0xffffff00); } evo_kick(push, mast); } nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true); nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1); } static bool nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); return true; } static int nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb); struct nv50_head *head = nv50_head(crtc); int ret; ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM); if (ret == 0) { if (head->image) nouveau_bo_unpin(head->image); nouveau_bo_ref(nvfb->nvbo, &head->image); } return ret; } static int nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb) { struct nv50_mast *mast = nv50_mast(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_connector *nv_connector; u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks; u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks; u32 vblan2e = 0, vblan2s = 1; u32 *push; int ret; hactive = mode->htotal; hsynce = mode->hsync_end - mode->hsync_start - 1; hbackp = mode->htotal - mode->hsync_end; hblanke = hsynce + hbackp; hfrontp = mode->hsync_start - mode->hdisplay; hblanks = mode->htotal - hfrontp - 1; vactive = mode->vtotal * vscan / ilace; vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; vblanke = vsynce + vbackp; vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; vblanks = vactive - vfrontp - 1; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vblan2e = vactive + vsynce + vbackp; vblan2s = vblan2e + (mode->vdisplay * vscan / ilace); vactive = (vactive * 2) + 1; } ret = nv50_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; push = evo_wait(mast, 64); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x00800000 | mode->clock); evo_data(push, (ilace == 2) ? 2 : 0); evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6); evo_data(push, 0x00000000); evo_data(push, (vactive << 16) | hactive); evo_data(push, ( vsynce << 16) | hsynce); evo_data(push, (vblanke << 16) | hblanke); evo_data(push, (vblanks << 16) | hblanks); evo_data(push, (vblan2e << 16) | vblan2s); evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2); evo_data(push, 0x00000311); evo_data(push, 0x00000100); } else { evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6); evo_data(push, 0x00000000); evo_data(push, (vactive << 16) | hactive); evo_data(push, ( vsynce << 16) | hsynce); evo_data(push, (vblanke << 16) | hblanke); evo_data(push, (vblanks << 16) | hblanks); evo_data(push, (vblan2e << 16) | vblan2s); evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); /* ??? */ evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3); evo_data(push, mode->clock * 1000); evo_data(push, 0x00200000); /* ??? */ evo_data(push, mode->clock * 1000); evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x00000311); evo_data(push, 0x00000100); } evo_kick(push, mast); } nv_connector = nouveau_crtc_connector_get(nv_crtc); nv50_crtc_set_dither(nv_crtc, false); nv50_crtc_set_scale(nv_crtc, false); nv50_crtc_set_color_vibrance(nv_crtc, false); nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, false); return 0; } static int nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; if (!crtc->primary->fb) { NV_DEBUG(drm, "No FB bound\n"); return 0; } ret = nv50_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; nv50_display_flip_stop(crtc); nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, true); nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1); return 0; } static int nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv50_display_flip_stop(crtc); nv50_crtc_set_image(nv_crtc, fb, x, y, true); return 0; } static void nv50_crtc_lut_load(struct drm_crtc *crtc) { struct nv50_disp *disp = nv50_disp(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; for (i = 0; i < 256; i++) { u16 r = nv_crtc->lut.r[i] >> 2; u16 g = nv_crtc->lut.g[i] >> 2; u16 b = nv_crtc->lut.b[i] >> 2; if (disp->disp->oclass < NVD0_DISP_CLASS) { writew(r + 0x0000, lut + (i * 0x08) + 0); writew(g + 0x0000, lut + (i * 0x08) + 2); writew(b + 0x0000, lut + (i * 0x08) + 4); } else { writew(r + 0x6000, lut + (i * 0x20) + 0); writew(g + 0x6000, lut + (i * 0x20) + 2); writew(b + 0x6000, lut + (i * 0x20) + 4); } } } static void nv50_crtc_disable(struct drm_crtc *crtc) { struct nv50_head *head = nv50_head(crtc); evo_sync(crtc->dev); if (head->image) nouveau_bo_unpin(head->image); nouveau_bo_ref(NULL, &head->image); } static int nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_gem_object *gem; struct nouveau_bo *nvbo; bool visible = (handle != 0); int i, ret = 0; if (visible) { if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(dev, file_priv, handle); if (unlikely(!gem)) return -ENOENT; nvbo = nouveau_gem_object(gem); ret = nouveau_bo_map(nvbo); if (ret == 0) { for (i = 0; i < 64 * 64; i++) { u32 v = nouveau_bo_rd32(nvbo, i); nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v); } nouveau_bo_unmap(nvbo); } drm_gem_object_unreference_unlocked(gem); } if (visible != nv_crtc->cursor.visible) { nv50_crtc_cursor_show_hide(nv_crtc, visible, true); nv_crtc->cursor.visible = visible; } return ret; } static int nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nv50_curs *curs = nv50_curs(crtc); struct nv50_chan *chan = nv50_chan(curs); nvif_wr32(&chan->user, 0x0084, (y << 16) | (x & 0xffff)); nvif_wr32(&chan->user, 0x0080, 0x00000000); return 0; } static void nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start, uint32_t size) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 end = min_t(u32, start + size, 256); u32 i; for (i = start; i < end; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } nv50_crtc_lut_load(crtc); } static void nv50_crtc_destroy(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_disp *disp = nv50_disp(crtc->dev); struct nv50_head *head = nv50_head(crtc); struct nv50_fbdma *fbdma; list_for_each_entry(fbdma, &disp->fbdma, head) { nvif_object_fini(&fbdma->base[nv_crtc->index]); } nv50_dmac_destroy(&head->ovly.base, disp->disp); nv50_pioc_destroy(&head->oimm.base); nv50_dmac_destroy(&head->sync.base, disp->disp); nv50_pioc_destroy(&head->curs.base); /*XXX: this shouldn't be necessary, but the core doesn't call * disconnect() during the cleanup paths */ if (head->image) nouveau_bo_unpin(head->image); nouveau_bo_ref(NULL, &head->image); nouveau_bo_unmap(nv_crtc->cursor.nvbo); if (nv_crtc->cursor.nvbo) nouveau_bo_unpin(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); nouveau_bo_unmap(nv_crtc->lut.nvbo); if (nv_crtc->lut.nvbo) nouveau_bo_unpin(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); drm_crtc_cleanup(crtc); kfree(crtc); } static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = { .dpms = nv50_crtc_dpms, .prepare = nv50_crtc_prepare, .commit = nv50_crtc_commit, .mode_fixup = nv50_crtc_mode_fixup, .mode_set = nv50_crtc_mode_set, .mode_set_base = nv50_crtc_mode_set_base, .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic, .load_lut = nv50_crtc_lut_load, .disable = nv50_crtc_disable, }; static const struct drm_crtc_funcs nv50_crtc_func = { .cursor_set = nv50_crtc_cursor_set, .cursor_move = nv50_crtc_cursor_move, .gamma_set = nv50_crtc_gamma_set, .set_config = nouveau_crtc_set_config, .destroy = nv50_crtc_destroy, .page_flip = nouveau_crtc_page_flip, }; static void nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y) { } static void nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset) { } static int nv50_crtc_create(struct drm_device *dev, int index) { struct nv50_disp *disp = nv50_disp(dev); struct nv50_head *head; struct drm_crtc *crtc; int ret, i; head = kzalloc(sizeof(*head), GFP_KERNEL); if (!head) return -ENOMEM; head->base.index = index; head->base.set_dither = nv50_crtc_set_dither; head->base.set_scale = nv50_crtc_set_scale; head->base.set_color_vibrance = nv50_crtc_set_color_vibrance; head->base.color_vibrance = 50; head->base.vibrant_hue = 0; head->base.cursor.set_offset = nv50_cursor_set_offset; head->base.cursor.set_pos = nv50_cursor_set_pos; for (i = 0; i < 256; i++) { head->base.lut.r[i] = i << 8; head->base.lut.g[i] = i << 8; head->base.lut.b[i] = i << 8; } crtc = &head->base.base; drm_crtc_init(dev, crtc, &nv50_crtc_func); drm_crtc_helper_add(crtc, &nv50_crtc_hfunc); drm_mode_crtc_set_gamma_size(crtc, 256); ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &head->base.lut.nvbo); if (!ret) { ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(head->base.lut.nvbo); if (ret) nouveau_bo_unpin(head->base.lut.nvbo); } if (ret) nouveau_bo_ref(NULL, &head->base.lut.nvbo); } if (ret) goto out; nv50_crtc_lut_load(crtc); /* allocate cursor resources */ ret = nv50_curs_create(disp->disp, index, &head->curs); if (ret) goto out; ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &head->base.cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(head->base.cursor.nvbo); if (ret) nouveau_bo_unpin(head->base.lut.nvbo); } if (ret) nouveau_bo_ref(NULL, &head->base.cursor.nvbo); } if (ret) goto out; /* allocate page flip / sync resources */ ret = nv50_base_create(disp->disp, index, disp->sync->bo.offset, &head->sync); if (ret) goto out; head->sync.addr = EVO_FLIP_SEM0(index); head->sync.data = 0x00000000; /* allocate overlay resources */ ret = nv50_oimm_create(disp->disp, index, &head->oimm); if (ret) goto out; ret = nv50_ovly_create(disp->disp, index, disp->sync->bo.offset, &head->ovly); if (ret) goto out; out: if (ret) nv50_crtc_destroy(crtc); return ret; } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_dac_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_DAC_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, .pwr.state = 1, .pwr.data = 1, .pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND && mode != DRM_MODE_DPMS_OFF), .pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY && mode != DRM_MODE_DPMS_OFF), }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static bool nv50_dac_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nv50_dac_commit(struct drm_encoder *encoder) { } static void nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nv50_mast *mast = nv50_mast(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); u32 *push; nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { u32 syncs = 0x00000000; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000001; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000002; evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2); evo_data(push, 1 << nv_crtc->index); evo_data(push, syncs); } else { u32 magic = 0x31ec6000 | (nv_crtc->index << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs); evo_data(push, magic); evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1); evo_data(push, 1 << nv_crtc->index); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static void nv50_dac_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { nv50_crtc_prepare(nv_encoder->crtc); push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0400 + (or * 0x080), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0180 + (or * 0x020), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } nv_encoder->crtc = NULL; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_dac_load_v0 load; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; int ret; args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; if (args.load.data == 0) args.load.data = 340; ret = nvif_mthd(disp->disp, 0, &args, sizeof(args)); if (ret || !args.load.load) return connector_status_disconnected; return connector_status_connected; } static void nv50_dac_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nv50_dac_hfunc = { .dpms = nv50_dac_dpms, .mode_fixup = nv50_dac_mode_fixup, .prepare = nv50_dac_disconnect, .commit = nv50_dac_commit, .mode_set = nv50_dac_mode_set, .disable = nv50_dac_disconnect, .get_crtc = nv50_display_crtc_get, .detect = nv50_dac_detect }; static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nouveau_i2c *i2c = nvkm_i2c(&drm->device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type = DRM_MODE_ENCODER_DAC; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index); encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type); drm_encoder_helper_add(encoder, &nv50_dac_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Audio *****************************************************************************/ static void nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hda_eld_v0 eld; u8 data[sizeof(nv_connector->base.eld)]; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_monitor_audio(nv_connector->edid)) return; drm_edid_to_eld(&nv_connector->base, nv_connector->edid); memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static void nv50_audio_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hda_eld_v0 eld; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), .pwr.state = 1, .pwr.rekey = 56, /* binary driver, and tegra, constant */ }; struct nouveau_connector *nv_connector; u32 max_ac_packet; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_hdmi_monitor(nv_connector->edid)) return; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= args.pwr.rekey; max_ac_packet -= 18; /* constant from tegra */ args.pwr.max_ac_packet = max_ac_packet / 32; nvif_mthd(disp->disp, 0, &args, sizeof(args)); nv50_audio_mode_set(encoder, mode); } static void nv50_hdmi_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nv50_audio_disconnect(encoder); nvif_mthd(disp->disp, 0, &args, sizeof(args)); } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, .pwr.state = mode == DRM_MODE_DPMS_ON, }; struct drm_device *dev = encoder->dev; struct drm_encoder *partner; u32 mthd, data; nv_encoder->last_dpms = mode; list_for_each_entry(partner, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_partner = nouveau_encoder(partner); if (partner->encoder_type != DRM_MODE_ENCODER_TMDS) continue; if (nv_partner != nv_encoder && nv_partner->dcb->or == nv_encoder->dcb->or) { if (nv_partner->last_dpms == DRM_MODE_DPMS_ON) return; break; } } mthd = (ffs(nv_encoder->dcb->heads) - 1) << 3; mthd |= (ffs(nv_encoder->dcb->sorconf.link) - 1) << 2; mthd |= nv_encoder->or; if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { args.pwr.state = 1; nvif_mthd(disp->disp, 0, &args, sizeof(args)); data = (mode == DRM_MODE_DPMS_ON); mthd |= NV94_DISP_SOR_DP_PWR; nvif_exec(disp->disp, mthd, &data, sizeof(data)); } else { nvif_mthd(disp->disp, 0, &args, sizeof(args)); } } static bool nv50_sor_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nv50_sor_ctrl(struct nouveau_encoder *nv_encoder, u32 mask, u32 data) { struct nv50_mast *mast = nv50_mast(nv_encoder->base.base.dev); u32 temp = (nv_encoder->ctrl & ~mask) | (data & mask), *push; if (temp != nv_encoder->ctrl && (push = evo_wait(mast, 2))) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1); evo_data(push, (nv_encoder->ctrl = temp)); } else { evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1); evo_data(push, (nv_encoder->ctrl = temp)); } evo_kick(push, mast); } } static void nv50_sor_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; nv_encoder->crtc = NULL; if (nv_crtc) { nv50_crtc_prepare(&nv_crtc->base); nv50_sor_ctrl(nv_encoder, 1 << nv_crtc->index, 0); nv50_hdmi_disconnect(&nv_encoder->base.base, nv_crtc); } } static void nv50_sor_commit(struct drm_encoder *encoder) { } static void nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode, struct drm_display_mode *mode) { struct nv50_disp *disp = nv50_disp(encoder->dev); struct nv50_mast *mast = nv50_mast(encoder->dev); struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nvbios *bios = &drm->vbios; u32 lvds = 0, mask, ctrl; u8 owner = 1 << nv_crtc->index; u8 proto = 0xf; u8 depth = 0x0; nv_connector = nouveau_encoder_connector_get(nv_encoder); nv_encoder->crtc = encoder->crtc; switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (nv_encoder->dcb->sorconf.link & 1) { if (mode->clock < 165000) proto = 0x1; else proto = 0x5; } else { proto = 0x2; } nv50_hdmi_mode_set(&nv_encoder->base.base, mode); break; case DCB_OUTPUT_LVDS: proto = 0x0; if (bios->fp_no_ddc) { if (bios->fp.dual_link) lvds |= 0x0100; if (bios->fp.if_is_24bit) lvds |= 0x0200; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds |= 0x0100; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds |= 0x0100; } if (lvds & 0x0100) { if (bios->fp.strapless_is_24bit & 2) lvds |= 0x0200; } else { if (bios->fp.strapless_is_24bit & 1) lvds |= 0x0200; } if (nv_connector->base.display_info.bpc == 8) lvds |= 0x0200; } nvif_exec(disp->disp, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, &lvds, sizeof(lvds)); break; case DCB_OUTPUT_DP: if (nv_connector->base.display_info.bpc == 6) { nv_encoder->dp.datarate = mode->clock * 18 / 8; depth = 0x2; } else if (nv_connector->base.display_info.bpc == 8) { nv_encoder->dp.datarate = mode->clock * 24 / 8; depth = 0x5; } else { nv_encoder->dp.datarate = mode->clock * 30 / 8; depth = 0x6; } if (nv_encoder->dcb->sorconf.link & 1) proto = 0x8; else proto = 0x9; break; default: BUG_ON(1); break; } nv50_sor_dpms(&nv_encoder->base.base, DRM_MODE_DPMS_ON); if (nv50_vers(mast) >= NVD0_DISP_CLASS) { u32 *push = evo_wait(mast, 3); if (push) { u32 magic = 0x31ec6000 | (nv_crtc->index << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs | (depth << 6)); evo_data(push, magic); evo_kick(push, mast); } ctrl = proto << 8; mask = 0x00000f00; } else { ctrl = (depth << 16) | (proto << 8); if (mode->flags & DRM_MODE_FLAG_NHSYNC) ctrl |= 0x00001000; if (mode->flags & DRM_MODE_FLAG_NVSYNC) ctrl |= 0x00002000; mask = 0x000f3f00; } nv50_sor_ctrl(nv_encoder, mask | owner, ctrl | owner); } static void nv50_sor_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nv50_sor_hfunc = { .dpms = nv50_sor_dpms, .mode_fixup = nv50_sor_mode_fixup, .prepare = nv50_sor_disconnect, .commit = nv50_sor_commit, .mode_set = nv50_sor_mode_set, .disable = nv50_sor_disconnect, .get_crtc = nv50_display_crtc_get, }; static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; static int nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nouveau_i2c *i2c = nvkm_i2c(&drm->device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index); nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type); drm_encoder_helper_add(encoder, &nv50_sor_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * PIOR *****************************************************************************/ static void nv50_pior_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); u32 mthd = (nv_encoder->dcb->type << 12) | nv_encoder->or; u32 ctrl = (mode == DRM_MODE_DPMS_ON); nvif_exec(disp->disp, NV50_DISP_PIOR_PWR + mthd, &ctrl, sizeof(ctrl)); } static bool nv50_pior_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } adjusted_mode->clock *= 2; return true; } static void nv50_pior_commit(struct drm_encoder *encoder) { } static void nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nv50_mast *mast = nv50_mast(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; u8 owner = 1 << nv_crtc->index; u8 proto, depth; u32 *push; nv_connector = nouveau_encoder_connector_get(nv_encoder); switch (nv_connector->base.display_info.bpc) { case 10: depth = 0x6; break; case 8: depth = 0x5; break; case 6: depth = 0x2; break; default: depth = 0x0; break; } switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: proto = 0x0; break; default: BUG_ON(1); break; } nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { u32 ctrl = (depth << 16) | (proto << 8) | owner; if (mode->flags & DRM_MODE_FLAG_NHSYNC) ctrl |= 0x00001000; if (mode->flags & DRM_MODE_FLAG_NVSYNC) ctrl |= 0x00002000; evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1); evo_data(push, ctrl); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static void nv50_pior_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { nv50_crtc_prepare(nv_encoder->crtc); push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) { evo_mthd(push, 0x0700 + (or * 0x040), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } nv_encoder->crtc = NULL; } static void nv50_pior_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nv50_pior_hfunc = { .dpms = nv50_pior_dpms, .mode_fixup = nv50_pior_mode_fixup, .prepare = nv50_pior_disconnect, .commit = nv50_pior_commit, .mode_set = nv50_pior_mode_set, .disable = nv50_pior_disconnect, .get_crtc = nv50_display_crtc_get, }; static const struct drm_encoder_funcs nv50_pior_func = { .destroy = nv50_pior_destroy, }; static int nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nouveau_i2c *i2c = nvkm_i2c(&drm->device); struct nouveau_i2c_port *ddc = NULL; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_TMDS: ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev)); type = DRM_MODE_ENCODER_TMDS; break; case DCB_OUTPUT_DP: ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev)); type = DRM_MODE_ENCODER_TMDS; break; default: return -ENODEV; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = ddc; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type); drm_encoder_helper_add(encoder, &nv50_pior_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Framebuffer *****************************************************************************/ static void nv50_fbdma_fini(struct nv50_fbdma *fbdma) { int i; for (i = 0; i < ARRAY_SIZE(fbdma->base); i++) nvif_object_fini(&fbdma->base[i]); nvif_object_fini(&fbdma->core); list_del(&fbdma->head); kfree(fbdma); } static int nv50_fbdma_init(struct drm_device *dev, u32 name, u64 offset, u64 length, u8 kind) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_mast *mast = nv50_mast(dev); struct __attribute__ ((packed)) { struct nv_dma_v0 base; union { struct nv50_dma_v0 nv50; struct gf100_dma_v0 gf100; struct gf110_dma_v0 gf110; }; } args = {}; struct nv50_fbdma *fbdma; struct drm_crtc *crtc; u32 size = sizeof(args.base); int ret; list_for_each_entry(fbdma, &disp->fbdma, head) { if (fbdma->core.handle == name) return 0; } fbdma = kzalloc(sizeof(*fbdma), GFP_KERNEL); if (!fbdma) return -ENOMEM; list_add(&fbdma->head, &disp->fbdma); args.base.target = NV_DMA_V0_TARGET_VRAM; args.base.access = NV_DMA_V0_ACCESS_RDWR; args.base.start = offset; args.base.limit = offset + length - 1; if (drm->device.info.chipset < 0x80) { args.nv50.part = NV50_DMA_V0_PART_256; size += sizeof(args.nv50); } else if (drm->device.info.chipset < 0xc0) { args.nv50.part = NV50_DMA_V0_PART_256; args.nv50.kind = kind; size += sizeof(args.nv50); } else if (drm->device.info.chipset < 0xd0) { args.gf100.kind = kind; size += sizeof(args.gf100); } else { args.gf110.page = GF110_DMA_V0_PAGE_LP; args.gf110.kind = kind; size += sizeof(args.gf110); } list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nv50_head *head = nv50_head(crtc); int ret = nvif_object_init(&head->sync.base.base.user, NULL, name, NV_DMA_IN_MEMORY, &args, size, &fbdma->base[head->base.index]); if (ret) { nv50_fbdma_fini(fbdma); return ret; } } ret = nvif_object_init(&mast->base.base.user, NULL, name, NV_DMA_IN_MEMORY, &args, size, &fbdma->core); if (ret) { nv50_fbdma_fini(fbdma); return ret; } return 0; } static void nv50_fb_dtor(struct drm_framebuffer *fb) { } static int nv50_fb_ctor(struct drm_framebuffer *fb) { struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb); struct nouveau_drm *drm = nouveau_drm(fb->dev); struct nouveau_bo *nvbo = nv_fb->nvbo; struct nv50_disp *disp = nv50_disp(fb->dev); struct nouveau_fb *pfb = nvkm_fb(&drm->device); u8 kind = nouveau_bo_tile_layout(nvbo) >> 8; u8 tile = nvbo->tile_mode; if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) { NV_ERROR(drm, "framebuffer requires contiguous bo\n"); return -EINVAL; } if (drm->device.info.chipset >= 0xc0) tile >>= 4; /* yep.. */ switch (fb->depth) { case 8: nv_fb->r_format = 0x1e00; break; case 15: nv_fb->r_format = 0xe900; break; case 16: nv_fb->r_format = 0xe800; break; case 24: case 32: nv_fb->r_format = 0xcf00; break; case 30: nv_fb->r_format = 0xd100; break; default: NV_ERROR(drm, "unknown depth %d\n", fb->depth); return -EINVAL; } if (disp->disp->oclass < NV84_DISP_CLASS) { nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) : (fb->pitches[0] | 0x00100000); nv_fb->r_format |= kind << 16; } else if (disp->disp->oclass < NVD0_DISP_CLASS) { nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) : (fb->pitches[0] | 0x00100000); } else { nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) : (fb->pitches[0] | 0x01000000); } nv_fb->r_handle = 0xffff0000 | kind; return nv50_fbdma_init(fb->dev, nv_fb->r_handle, 0, pfb->ram->size, kind); } /****************************************************************************** * Init *****************************************************************************/ void nv50_display_fini(struct drm_device *dev) { } int nv50_display_init(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); struct drm_crtc *crtc; u32 *push; push = evo_wait(nv50_mast(dev), 32); if (!push) return -EBUSY; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nv50_sync *sync = nv50_sync(crtc); nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data); } evo_mthd(push, 0x0088, 1); evo_data(push, nv50_mast(dev)->base.sync.handle); evo_kick(push, nv50_mast(dev)); return 0; } void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); struct nv50_fbdma *fbdma, *fbtmp; list_for_each_entry_safe(fbdma, fbtmp, &disp->fbdma, head) { nv50_fbdma_fini(fbdma); } nv50_dmac_destroy(&disp->mast.base, disp->disp); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nv50_display_create(struct drm_device *dev) { struct nvif_device *device = &nouveau_drm(dev)->device; struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct nv50_disp *disp; struct dcb_output *dcbe; int crtcs, ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; INIT_LIST_HEAD(&disp->fbdma); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; nouveau_display(dev)->fb_ctor = nv50_fb_ctor; nouveau_display(dev)->fb_dtor = nv50_fb_dtor; disp->disp = &nouveau_display(dev)->disp; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_core_create(disp->disp, disp->sync->bo.offset, &disp->mast); if (ret) goto out; /* create crtc objects to represent the hw heads */ if (disp->disp->oclass >= NVD0_DISP_CLASS) crtcs = nvif_rd32(device, 0x022448); else crtcs = 2; for (i = 0; i < crtcs; i++) { ret = nv50_crtc_create(dev, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe->connector); if (IS_ERR(connector)) continue; if (dcbe->location == DCB_LOC_ON_CHIP) { switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: ret = nv50_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: ret = nv50_dac_create(connector, dcbe); break; default: ret = -ENODEV; break; } } else { ret = nv50_pior_create(connector, dcbe); } if (ret) { NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", dcbe->location, dcbe->type, ffs(dcbe->or) - 1, ret); ret = 0; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } out: if (ret) nv50_display_destroy(dev); return ret; }