/* * Copyright (c) 2015 Linaro Ltd. * Copyright (c) 2015 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include "hisi_sas.h" #define DRV_NAME "hisi_sas_v1_hw" /* global registers need init*/ #define DLVRY_QUEUE_ENABLE 0x0 #define IOST_BASE_ADDR_LO 0x8 #define IOST_BASE_ADDR_HI 0xc #define ITCT_BASE_ADDR_LO 0x10 #define ITCT_BASE_ADDR_HI 0x14 #define BROKEN_MSG_ADDR_LO 0x18 #define BROKEN_MSG_ADDR_HI 0x1c #define PHY_CONTEXT 0x20 #define PHY_STATE 0x24 #define PHY_PORT_NUM_MA 0x28 #define PORT_STATE 0x2c #define PHY_CONN_RATE 0x30 #define HGC_TRANS_TASK_CNT_LIMIT 0x38 #define AXI_AHB_CLK_CFG 0x3c #define HGC_SAS_TXFAIL_RETRY_CTRL 0x84 #define HGC_GET_ITV_TIME 0x90 #define DEVICE_MSG_WORK_MODE 0x94 #define I_T_NEXUS_LOSS_TIME 0xa0 #define BUS_INACTIVE_LIMIT_TIME 0xa8 #define REJECT_TO_OPEN_LIMIT_TIME 0xac #define CFG_AGING_TIME 0xbc #define CFG_AGING_TIME_ITCT_REL_OFF 0 #define CFG_AGING_TIME_ITCT_REL_MSK (0x1 << CFG_AGING_TIME_ITCT_REL_OFF) #define HGC_DFX_CFG2 0xc0 #define FIS_LIST_BADDR_L 0xc4 #define CFG_1US_TIMER_TRSH 0xcc #define CFG_SAS_CONFIG 0xd4 #define HGC_IOST_ECC_ADDR 0x140 #define HGC_IOST_ECC_ADDR_BAD_OFF 16 #define HGC_IOST_ECC_ADDR_BAD_MSK (0x3ff << HGC_IOST_ECC_ADDR_BAD_OFF) #define HGC_DQ_ECC_ADDR 0x144 #define HGC_DQ_ECC_ADDR_BAD_OFF 16 #define HGC_DQ_ECC_ADDR_BAD_MSK (0xfff << HGC_DQ_ECC_ADDR_BAD_OFF) #define HGC_INVLD_DQE_INFO 0x148 #define HGC_INVLD_DQE_INFO_DQ_OFF 0 #define HGC_INVLD_DQE_INFO_DQ_MSK (0xffff << HGC_INVLD_DQE_INFO_DQ_OFF) #define HGC_INVLD_DQE_INFO_TYPE_OFF 16 #define HGC_INVLD_DQE_INFO_TYPE_MSK (0x1 << HGC_INVLD_DQE_INFO_TYPE_OFF) #define HGC_INVLD_DQE_INFO_FORCE_OFF 17 #define HGC_INVLD_DQE_INFO_FORCE_MSK (0x1 << HGC_INVLD_DQE_INFO_FORCE_OFF) #define HGC_INVLD_DQE_INFO_PHY_OFF 18 #define HGC_INVLD_DQE_INFO_PHY_MSK (0x1 << HGC_INVLD_DQE_INFO_PHY_OFF) #define HGC_INVLD_DQE_INFO_ABORT_OFF 19 #define HGC_INVLD_DQE_INFO_ABORT_MSK (0x1 << HGC_INVLD_DQE_INFO_ABORT_OFF) #define HGC_INVLD_DQE_INFO_IPTT_OF_OFF 20 #define HGC_INVLD_DQE_INFO_IPTT_OF_MSK (0x1 << HGC_INVLD_DQE_INFO_IPTT_OF_OFF) #define HGC_INVLD_DQE_INFO_SSP_ERR_OFF 21 #define HGC_INVLD_DQE_INFO_SSP_ERR_MSK (0x1 << HGC_INVLD_DQE_INFO_SSP_ERR_OFF) #define HGC_INVLD_DQE_INFO_OFL_OFF 22 #define HGC_INVLD_DQE_INFO_OFL_MSK (0x1 << HGC_INVLD_DQE_INFO_OFL_OFF) #define HGC_ITCT_ECC_ADDR 0x150 #define HGC_ITCT_ECC_ADDR_BAD_OFF 16 #define HGC_ITCT_ECC_ADDR_BAD_MSK (0x3ff << HGC_ITCT_ECC_ADDR_BAD_OFF) #define HGC_AXI_FIFO_ERR_INFO 0x154 #define INT_COAL_EN 0x1bc #define OQ_INT_COAL_TIME 0x1c0 #define OQ_INT_COAL_CNT 0x1c4 #define ENT_INT_COAL_TIME 0x1c8 #define ENT_INT_COAL_CNT 0x1cc #define OQ_INT_SRC 0x1d0 #define OQ_INT_SRC_MSK 0x1d4 #define ENT_INT_SRC1 0x1d8 #define ENT_INT_SRC2 0x1dc #define ENT_INT_SRC2_DQ_CFG_ERR_OFF 25 #define ENT_INT_SRC2_DQ_CFG_ERR_MSK (0x1 << ENT_INT_SRC2_DQ_CFG_ERR_OFF) #define ENT_INT_SRC2_CQ_CFG_ERR_OFF 27 #define ENT_INT_SRC2_CQ_CFG_ERR_MSK (0x1 << ENT_INT_SRC2_CQ_CFG_ERR_OFF) #define ENT_INT_SRC2_AXI_WRONG_INT_OFF 28 #define ENT_INT_SRC2_AXI_WRONG_INT_MSK (0x1 << ENT_INT_SRC2_AXI_WRONG_INT_OFF) #define ENT_INT_SRC2_AXI_OVERLF_INT_OFF 29 #define ENT_INT_SRC2_AXI_OVERLF_INT_MSK (0x1 << ENT_INT_SRC2_AXI_OVERLF_INT_OFF) #define ENT_INT_SRC_MSK1 0x1e0 #define ENT_INT_SRC_MSK2 0x1e4 #define SAS_ECC_INTR 0x1e8 #define SAS_ECC_INTR_DQ_ECC1B_OFF 0 #define SAS_ECC_INTR_DQ_ECC1B_MSK (0x1 << SAS_ECC_INTR_DQ_ECC1B_OFF) #define SAS_ECC_INTR_DQ_ECCBAD_OFF 1 #define SAS_ECC_INTR_DQ_ECCBAD_MSK (0x1 << SAS_ECC_INTR_DQ_ECCBAD_OFF) #define SAS_ECC_INTR_IOST_ECC1B_OFF 2 #define SAS_ECC_INTR_IOST_ECC1B_MSK (0x1 << SAS_ECC_INTR_IOST_ECC1B_OFF) #define SAS_ECC_INTR_IOST_ECCBAD_OFF 3 #define SAS_ECC_INTR_IOST_ECCBAD_MSK (0x1 << SAS_ECC_INTR_IOST_ECCBAD_OFF) #define SAS_ECC_INTR_ITCT_ECC1B_OFF 4 #define SAS_ECC_INTR_ITCT_ECC1B_MSK (0x1 << SAS_ECC_INTR_ITCT_ECC1B_OFF) #define SAS_ECC_INTR_ITCT_ECCBAD_OFF 5 #define SAS_ECC_INTR_ITCT_ECCBAD_MSK (0x1 << SAS_ECC_INTR_ITCT_ECCBAD_OFF) #define SAS_ECC_INTR_MSK 0x1ec #define HGC_ERR_STAT_EN 0x238 #define DLVRY_Q_0_BASE_ADDR_LO 0x260 #define DLVRY_Q_0_BASE_ADDR_HI 0x264 #define DLVRY_Q_0_DEPTH 0x268 #define DLVRY_Q_0_WR_PTR 0x26c #define DLVRY_Q_0_RD_PTR 0x270 #define COMPL_Q_0_BASE_ADDR_LO 0x4e0 #define COMPL_Q_0_BASE_ADDR_HI 0x4e4 #define COMPL_Q_0_DEPTH 0x4e8 #define COMPL_Q_0_WR_PTR 0x4ec #define COMPL_Q_0_RD_PTR 0x4f0 #define HGC_ECC_ERR 0x7d0 /* phy registers need init */ #define PORT_BASE (0x800) #define PHY_CFG (PORT_BASE + 0x0) #define PHY_CFG_ENA_OFF 0 #define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF) #define PHY_CFG_DC_OPT_OFF 2 #define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF) #define PROG_PHY_LINK_RATE (PORT_BASE + 0xc) #define PROG_PHY_LINK_RATE_MAX_OFF 0 #define PROG_PHY_LINK_RATE_MAX_MSK (0xf << PROG_PHY_LINK_RATE_MAX_OFF) #define PROG_PHY_LINK_RATE_MIN_OFF 4 #define PROG_PHY_LINK_RATE_MIN_MSK (0xf << PROG_PHY_LINK_RATE_MIN_OFF) #define PROG_PHY_LINK_RATE_OOB_OFF 8 #define PROG_PHY_LINK_RATE_OOB_MSK (0xf << PROG_PHY_LINK_RATE_OOB_OFF) #define PHY_CTRL (PORT_BASE + 0x14) #define PHY_CTRL_RESET_OFF 0 #define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF) #define PHY_RATE_NEGO (PORT_BASE + 0x30) #define PHY_PCN (PORT_BASE + 0x44) #define SL_TOUT_CFG (PORT_BASE + 0x8c) #define SL_CONTROL (PORT_BASE + 0x94) #define SL_CONTROL_NOTIFY_EN_OFF 0 #define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF) #define TX_ID_DWORD0 (PORT_BASE + 0x9c) #define TX_ID_DWORD1 (PORT_BASE + 0xa0) #define TX_ID_DWORD2 (PORT_BASE + 0xa4) #define TX_ID_DWORD3 (PORT_BASE + 0xa8) #define TX_ID_DWORD4 (PORT_BASE + 0xaC) #define TX_ID_DWORD5 (PORT_BASE + 0xb0) #define TX_ID_DWORD6 (PORT_BASE + 0xb4) #define RX_IDAF_DWORD0 (PORT_BASE + 0xc4) #define RX_IDAF_DWORD1 (PORT_BASE + 0xc8) #define RX_IDAF_DWORD2 (PORT_BASE + 0xcc) #define RX_IDAF_DWORD3 (PORT_BASE + 0xd0) #define RX_IDAF_DWORD4 (PORT_BASE + 0xd4) #define RX_IDAF_DWORD5 (PORT_BASE + 0xd8) #define RX_IDAF_DWORD6 (PORT_BASE + 0xdc) #define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc) #define DONE_RECEIVED_TIME (PORT_BASE + 0x12c) #define CON_CFG_DRIVER (PORT_BASE + 0x130) #define PHY_CONFIG2 (PORT_BASE + 0x1a8) #define PHY_CONFIG2_FORCE_TXDEEMPH_OFF 3 #define PHY_CONFIG2_FORCE_TXDEEMPH_MSK (0x1 << PHY_CONFIG2_FORCE_TXDEEMPH_OFF) #define PHY_CONFIG2_TX_TRAIN_COMP_OFF 24 #define PHY_CONFIG2_TX_TRAIN_COMP_MSK (0x1 << PHY_CONFIG2_TX_TRAIN_COMP_OFF) #define CHL_INT0 (PORT_BASE + 0x1b0) #define CHL_INT0_PHYCTRL_NOTRDY_OFF 0 #define CHL_INT0_PHYCTRL_NOTRDY_MSK (0x1 << CHL_INT0_PHYCTRL_NOTRDY_OFF) #define CHL_INT0_SN_FAIL_NGR_OFF 2 #define CHL_INT0_SN_FAIL_NGR_MSK (0x1 << CHL_INT0_SN_FAIL_NGR_OFF) #define CHL_INT0_DWS_LOST_OFF 4 #define CHL_INT0_DWS_LOST_MSK (0x1 << CHL_INT0_DWS_LOST_OFF) #define CHL_INT0_SL_IDAF_FAIL_OFF 10 #define CHL_INT0_SL_IDAF_FAIL_MSK (0x1 << CHL_INT0_SL_IDAF_FAIL_OFF) #define CHL_INT0_ID_TIMEOUT_OFF 11 #define CHL_INT0_ID_TIMEOUT_MSK (0x1 << CHL_INT0_ID_TIMEOUT_OFF) #define CHL_INT0_SL_OPAF_FAIL_OFF 12 #define CHL_INT0_SL_OPAF_FAIL_MSK (0x1 << CHL_INT0_SL_OPAF_FAIL_OFF) #define CHL_INT0_SL_PS_FAIL_OFF 21 #define CHL_INT0_SL_PS_FAIL_MSK (0x1 << CHL_INT0_SL_PS_FAIL_OFF) #define CHL_INT1 (PORT_BASE + 0x1b4) #define CHL_INT2 (PORT_BASE + 0x1b8) #define CHL_INT2_SL_RX_BC_ACK_OFF 2 #define CHL_INT2_SL_RX_BC_ACK_MSK (0x1 << CHL_INT2_SL_RX_BC_ACK_OFF) #define CHL_INT2_SL_PHY_ENA_OFF 6 #define CHL_INT2_SL_PHY_ENA_MSK (0x1 << CHL_INT2_SL_PHY_ENA_OFF) #define CHL_INT0_MSK (PORT_BASE + 0x1bc) #define CHL_INT0_MSK_PHYCTRL_NOTRDY_OFF 0 #define CHL_INT0_MSK_PHYCTRL_NOTRDY_MSK (0x1 << CHL_INT0_MSK_PHYCTRL_NOTRDY_OFF) #define CHL_INT1_MSK (PORT_BASE + 0x1c0) #define CHL_INT2_MSK (PORT_BASE + 0x1c4) #define CHL_INT_COAL_EN (PORT_BASE + 0x1d0) #define DMA_TX_STATUS (PORT_BASE + 0x2d0) #define DMA_TX_STATUS_BUSY_OFF 0 #define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF) #define DMA_RX_STATUS (PORT_BASE + 0x2e8) #define DMA_RX_STATUS_BUSY_OFF 0 #define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF) #define AXI_CFG 0x5100 #define RESET_VALUE 0x7ffff /* HW dma structures */ /* Delivery queue header */ /* dw0 */ #define CMD_HDR_RESP_REPORT_OFF 5 #define CMD_HDR_RESP_REPORT_MSK 0x20 #define CMD_HDR_TLR_CTRL_OFF 6 #define CMD_HDR_TLR_CTRL_MSK 0xc0 #define CMD_HDR_PORT_OFF 17 #define CMD_HDR_PORT_MSK 0xe0000 #define CMD_HDR_PRIORITY_OFF 27 #define CMD_HDR_PRIORITY_MSK 0x8000000 #define CMD_HDR_MODE_OFF 28 #define CMD_HDR_MODE_MSK 0x10000000 #define CMD_HDR_CMD_OFF 29 #define CMD_HDR_CMD_MSK 0xe0000000 /* dw1 */ #define CMD_HDR_VERIFY_DTL_OFF 10 #define CMD_HDR_VERIFY_DTL_MSK 0x400 #define CMD_HDR_SSP_FRAME_TYPE_OFF 13 #define CMD_HDR_SSP_FRAME_TYPE_MSK 0xe000 #define CMD_HDR_DEVICE_ID_OFF 16 #define CMD_HDR_DEVICE_ID_MSK 0xffff0000 /* dw2 */ #define CMD_HDR_CFL_OFF 0 #define CMD_HDR_CFL_MSK 0x1ff #define CMD_HDR_MRFL_OFF 15 #define CMD_HDR_MRFL_MSK 0xff8000 #define CMD_HDR_FIRST_BURST_OFF 25 #define CMD_HDR_FIRST_BURST_MSK 0x2000000 /* dw3 */ #define CMD_HDR_IPTT_OFF 0 #define CMD_HDR_IPTT_MSK 0xffff /* dw6 */ #define CMD_HDR_DATA_SGL_LEN_OFF 16 #define CMD_HDR_DATA_SGL_LEN_MSK 0xffff0000 /* Completion header */ #define CMPLT_HDR_IPTT_OFF 0 #define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF) #define CMPLT_HDR_CMD_CMPLT_OFF 17 #define CMPLT_HDR_CMD_CMPLT_MSK (0x1 << CMPLT_HDR_CMD_CMPLT_OFF) #define CMPLT_HDR_ERR_RCRD_XFRD_OFF 18 #define CMPLT_HDR_ERR_RCRD_XFRD_MSK (0x1 << CMPLT_HDR_ERR_RCRD_XFRD_OFF) #define CMPLT_HDR_RSPNS_XFRD_OFF 19 #define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF) #define CMPLT_HDR_IO_CFG_ERR_OFF 27 #define CMPLT_HDR_IO_CFG_ERR_MSK (0x1 << CMPLT_HDR_IO_CFG_ERR_OFF) /* ITCT header */ /* qw0 */ #define ITCT_HDR_DEV_TYPE_OFF 0 #define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF) #define ITCT_HDR_VALID_OFF 2 #define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF) #define ITCT_HDR_BREAK_REPLY_ENA_OFF 3 #define ITCT_HDR_BREAK_REPLY_ENA_MSK (0x1 << ITCT_HDR_BREAK_REPLY_ENA_OFF) #define ITCT_HDR_AWT_CONTROL_OFF 4 #define ITCT_HDR_AWT_CONTROL_MSK (0x1 << ITCT_HDR_AWT_CONTROL_OFF) #define ITCT_HDR_MAX_CONN_RATE_OFF 5 #define ITCT_HDR_MAX_CONN_RATE_MSK (0xf << ITCT_HDR_MAX_CONN_RATE_OFF) #define ITCT_HDR_VALID_LINK_NUM_OFF 9 #define ITCT_HDR_VALID_LINK_NUM_MSK (0xf << ITCT_HDR_VALID_LINK_NUM_OFF) #define ITCT_HDR_PORT_ID_OFF 13 #define ITCT_HDR_PORT_ID_MSK (0x7 << ITCT_HDR_PORT_ID_OFF) #define ITCT_HDR_SMP_TIMEOUT_OFF 16 #define ITCT_HDR_SMP_TIMEOUT_MSK (0xffff << ITCT_HDR_SMP_TIMEOUT_OFF) #define ITCT_HDR_MAX_BURST_BYTES_OFF 16 #define ITCT_HDR_MAX_BURST_BYTES_MSK (0xffffffff << \ ITCT_MAX_BURST_BYTES_OFF) /* qw1 */ #define ITCT_HDR_MAX_SAS_ADDR_OFF 0 #define ITCT_HDR_MAX_SAS_ADDR_MSK (0xffffffffffffffff << \ ITCT_HDR_MAX_SAS_ADDR_OFF) /* qw2 */ #define ITCT_HDR_IT_NEXUS_LOSS_TL_OFF 0 #define ITCT_HDR_IT_NEXUS_LOSS_TL_MSK (0xffff << \ ITCT_HDR_IT_NEXUS_LOSS_TL_OFF) #define ITCT_HDR_BUS_INACTIVE_TL_OFF 16 #define ITCT_HDR_BUS_INACTIVE_TL_MSK (0xffff << \ ITCT_HDR_BUS_INACTIVE_TL_OFF) #define ITCT_HDR_MAX_CONN_TL_OFF 32 #define ITCT_HDR_MAX_CONN_TL_MSK (0xffff << \ ITCT_HDR_MAX_CONN_TL_OFF) #define ITCT_HDR_REJ_OPEN_TL_OFF 48 #define ITCT_HDR_REJ_OPEN_TL_MSK (0xffff << \ ITCT_REJ_OPEN_TL_OFF) /* Err record header */ #define ERR_HDR_DMA_TX_ERR_TYPE_OFF 0 #define ERR_HDR_DMA_TX_ERR_TYPE_MSK (0xffff << ERR_HDR_DMA_TX_ERR_TYPE_OFF) #define ERR_HDR_DMA_RX_ERR_TYPE_OFF 16 #define ERR_HDR_DMA_RX_ERR_TYPE_MSK (0xffff << ERR_HDR_DMA_RX_ERR_TYPE_OFF) struct hisi_sas_complete_v1_hdr { __le32 data; }; enum { HISI_SAS_PHY_BCAST_ACK = 0, HISI_SAS_PHY_SL_PHY_ENABLED, HISI_SAS_PHY_INT_ABNORMAL, HISI_SAS_PHY_INT_NR }; enum { DMA_TX_ERR_BASE = 0x0, DMA_RX_ERR_BASE = 0x100, TRANS_TX_FAIL_BASE = 0x200, TRANS_RX_FAIL_BASE = 0x300, /* dma tx */ DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x0 */ DMA_TX_DIF_APP_ERR, /* 0x1 */ DMA_TX_DIF_RPP_ERR, /* 0x2 */ DMA_TX_AXI_BUS_ERR, /* 0x3 */ DMA_TX_DATA_SGL_OVERFLOW_ERR, /* 0x4 */ DMA_TX_DIF_SGL_OVERFLOW_ERR, /* 0x5 */ DMA_TX_UNEXP_XFER_RDY_ERR, /* 0x6 */ DMA_TX_XFER_RDY_OFFSET_ERR, /* 0x7 */ DMA_TX_DATA_UNDERFLOW_ERR, /* 0x8 */ DMA_TX_XFER_RDY_LENGTH_OVERFLOW_ERR, /* 0x9 */ /* dma rx */ DMA_RX_BUFFER_ECC_ERR = DMA_RX_ERR_BASE, /* 0x100 */ DMA_RX_DIF_CRC_ERR, /* 0x101 */ DMA_RX_DIF_APP_ERR, /* 0x102 */ DMA_RX_DIF_RPP_ERR, /* 0x103 */ DMA_RX_RESP_BUFFER_OVERFLOW_ERR, /* 0x104 */ DMA_RX_AXI_BUS_ERR, /* 0x105 */ DMA_RX_DATA_SGL_OVERFLOW_ERR, /* 0x106 */ DMA_RX_DIF_SGL_OVERFLOW_ERR, /* 0x107 */ DMA_RX_DATA_OFFSET_ERR, /* 0x108 */ DMA_RX_UNEXP_RX_DATA_ERR, /* 0x109 */ DMA_RX_DATA_OVERFLOW_ERR, /* 0x10a */ DMA_RX_DATA_UNDERFLOW_ERR, /* 0x10b */ DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x10c */ /* trans tx */ TRANS_TX_RSVD0_ERR = TRANS_TX_FAIL_BASE, /* 0x200 */ TRANS_TX_PHY_NOT_ENABLE_ERR, /* 0x201 */ TRANS_TX_OPEN_REJCT_WRONG_DEST_ERR, /* 0x202 */ TRANS_TX_OPEN_REJCT_ZONE_VIOLATION_ERR, /* 0x203 */ TRANS_TX_OPEN_REJCT_BY_OTHER_ERR, /* 0x204 */ TRANS_TX_RSVD1_ERR, /* 0x205 */ TRANS_TX_OPEN_REJCT_AIP_TIMEOUT_ERR, /* 0x206 */ TRANS_TX_OPEN_REJCT_STP_BUSY_ERR, /* 0x207 */ TRANS_TX_OPEN_REJCT_PROTOCOL_NOT_SUPPORT_ERR, /* 0x208 */ TRANS_TX_OPEN_REJCT_RATE_NOT_SUPPORT_ERR, /* 0x209 */ TRANS_TX_OPEN_REJCT_BAD_DEST_ERR, /* 0x20a */ TRANS_TX_OPEN_BREAK_RECEIVE_ERR, /* 0x20b */ TRANS_TX_LOW_PHY_POWER_ERR, /* 0x20c */ TRANS_TX_OPEN_REJCT_PATHWAY_BLOCKED_ERR, /* 0x20d */ TRANS_TX_OPEN_TIMEOUT_ERR, /* 0x20e */ TRANS_TX_OPEN_REJCT_NO_DEST_ERR, /* 0x20f */ TRANS_TX_OPEN_RETRY_ERR, /* 0x210 */ TRANS_TX_RSVD2_ERR, /* 0x211 */ TRANS_TX_BREAK_TIMEOUT_ERR, /* 0x212 */ TRANS_TX_BREAK_REQUEST_ERR, /* 0x213 */ TRANS_TX_BREAK_RECEIVE_ERR, /* 0x214 */ TRANS_TX_CLOSE_TIMEOUT_ERR, /* 0x215 */ TRANS_TX_CLOSE_NORMAL_ERR, /* 0x216 */ TRANS_TX_CLOSE_PHYRESET_ERR, /* 0x217 */ TRANS_TX_WITH_CLOSE_DWS_TIMEOUT_ERR, /* 0x218 */ TRANS_TX_WITH_CLOSE_COMINIT_ERR, /* 0x219 */ TRANS_TX_NAK_RECEIVE_ERR, /* 0x21a */ TRANS_TX_ACK_NAK_TIMEOUT_ERR, /* 0x21b */ TRANS_TX_CREDIT_TIMEOUT_ERR, /* 0x21c */ TRANS_TX_IPTT_CONFLICT_ERR, /* 0x21d */ TRANS_TX_TXFRM_TYPE_ERR, /* 0x21e */ TRANS_TX_TXSMP_LENGTH_ERR, /* 0x21f */ /* trans rx */ TRANS_RX_FRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x300 */ TRANS_RX_FRAME_DONE_ERR, /* 0x301 */ TRANS_RX_FRAME_ERRPRM_ERR, /* 0x302 */ TRANS_RX_FRAME_NO_CREDIT_ERR, /* 0x303 */ TRANS_RX_RSVD0_ERR, /* 0x304 */ TRANS_RX_FRAME_OVERRUN_ERR, /* 0x305 */ TRANS_RX_FRAME_NO_EOF_ERR, /* 0x306 */ TRANS_RX_LINK_BUF_OVERRUN_ERR, /* 0x307 */ TRANS_RX_BREAK_TIMEOUT_ERR, /* 0x308 */ TRANS_RX_BREAK_REQUEST_ERR, /* 0x309 */ TRANS_RX_BREAK_RECEIVE_ERR, /* 0x30a */ TRANS_RX_CLOSE_TIMEOUT_ERR, /* 0x30b */ TRANS_RX_CLOSE_NORMAL_ERR, /* 0x30c */ TRANS_RX_CLOSE_PHYRESET_ERR, /* 0x30d */ TRANS_RX_WITH_CLOSE_DWS_TIMEOUT_ERR, /* 0x30e */ TRANS_RX_WITH_CLOSE_COMINIT_ERR, /* 0x30f */ TRANS_RX_DATA_LENGTH0_ERR, /* 0x310 */ TRANS_RX_BAD_HASH_ERR, /* 0x311 */ TRANS_RX_XRDY_ZERO_ERR, /* 0x312 */ TRANS_RX_SSP_FRAME_LEN_ERR, /* 0x313 */ TRANS_RX_TRANS_RX_RSVD1_ERR, /* 0x314 */ TRANS_RX_NO_BALANCE_ERR, /* 0x315 */ TRANS_RX_TRANS_RX_RSVD2_ERR, /* 0x316 */ TRANS_RX_TRANS_RX_RSVD3_ERR, /* 0x317 */ TRANS_RX_BAD_FRAME_TYPE_ERR, /* 0x318 */ TRANS_RX_SMP_FRAME_LEN_ERR, /* 0x319 */ TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x31a */ }; #define HISI_SAS_PHY_MAX_INT_NR (HISI_SAS_PHY_INT_NR * HISI_SAS_MAX_PHYS) #define HISI_SAS_CQ_MAX_INT_NR (HISI_SAS_MAX_QUEUES) #define HISI_SAS_FATAL_INT_NR (2) #define HISI_SAS_MAX_INT_NR \ (HISI_SAS_PHY_MAX_INT_NR + HISI_SAS_CQ_MAX_INT_NR +\ HISI_SAS_FATAL_INT_NR) static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl(regs); } static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl_relaxed(regs); } static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + off; writel(val, regs); } static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; writel(val, regs); } static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba, int phy_no, u32 off) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; return readl(regs); } static void config_phy_opt_mode_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_DC_OPT_MSK; cfg |= 1 << PHY_CFG_DC_OPT_OFF; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void config_tx_tfe_autoneg_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CONFIG2); cfg &= ~PHY_CONFIG2_FORCE_TXDEEMPH_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CONFIG2, cfg); } static void config_id_frame_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { struct sas_identify_frame identify_frame; u32 *identify_buffer; memset(&identify_frame, 0, sizeof(identify_frame)); identify_frame.dev_type = SAS_END_DEVICE; identify_frame.frame_type = 0; identify_frame._un1 = 1; identify_frame.initiator_bits = SAS_PROTOCOL_ALL; identify_frame.target_bits = SAS_PROTOCOL_NONE; memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); identify_frame.phy_id = phy_no; identify_buffer = (u32 *)(&identify_frame); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0, __swab32(identify_buffer[0])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1, identify_buffer[2]); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2, identify_buffer[1]); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3, identify_buffer[4]); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4, identify_buffer[3]); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5, __swab32(identify_buffer[5])); } static void init_id_frame_v1_hw(struct hisi_hba *hisi_hba) { int i; for (i = 0; i < hisi_hba->n_phy; i++) config_id_frame_v1_hw(hisi_hba, i); } static void setup_itct_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { struct domain_device *device = sas_dev->sas_device; struct device *dev = &hisi_hba->pdev->dev; u64 qw0, device_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[device_id]; memset(itct, 0, sizeof(*itct)); /* qw0 */ qw0 = 0; switch (sas_dev->dev_type) { case SAS_END_DEVICE: case SAS_EDGE_EXPANDER_DEVICE: case SAS_FANOUT_EXPANDER_DEVICE: qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF; break; default: dev_warn(dev, "setup itct: unsupported dev type (%d)\n", sas_dev->dev_type); } qw0 |= ((1 << ITCT_HDR_VALID_OFF) | (1 << ITCT_HDR_AWT_CONTROL_OFF) | (device->max_linkrate << ITCT_HDR_MAX_CONN_RATE_OFF) | (1 << ITCT_HDR_VALID_LINK_NUM_OFF) | (device->port->id << ITCT_HDR_PORT_ID_OFF)); itct->qw0 = cpu_to_le64(qw0); /* qw1 */ memcpy(&itct->sas_addr, device->sas_addr, SAS_ADDR_SIZE); itct->sas_addr = __swab64(itct->sas_addr); /* qw2 */ itct->qw2 = cpu_to_le64((500 < ITCT_HDR_IT_NEXUS_LOSS_TL_OFF) | (0xff00 < ITCT_HDR_BUS_INACTIVE_TL_OFF) | (0xff00 < ITCT_HDR_MAX_CONN_TL_OFF) | (0xff00 < ITCT_HDR_REJ_OPEN_TL_OFF)); } static void free_device_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { u64 dev_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id]; u32 qw0, reg_val = hisi_sas_read32(hisi_hba, CFG_AGING_TIME); reg_val |= CFG_AGING_TIME_ITCT_REL_MSK; hisi_sas_write32(hisi_hba, CFG_AGING_TIME, reg_val); /* free itct */ udelay(1); reg_val = hisi_sas_read32(hisi_hba, CFG_AGING_TIME); reg_val &= ~CFG_AGING_TIME_ITCT_REL_MSK; hisi_sas_write32(hisi_hba, CFG_AGING_TIME, reg_val); qw0 = cpu_to_le64(itct->qw0); qw0 &= ~ITCT_HDR_VALID_MSK; itct->qw0 = cpu_to_le64(qw0); } static int reset_hw_v1_hw(struct hisi_hba *hisi_hba) { int i; unsigned long end_time; u32 val; struct device *dev = &hisi_hba->pdev->dev; for (i = 0; i < hisi_hba->n_phy; i++) { u32 phy_ctrl = hisi_sas_phy_read32(hisi_hba, i, PHY_CTRL); phy_ctrl |= PHY_CTRL_RESET_MSK; hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, phy_ctrl); } msleep(1); /* It is safe to wait for 50us */ /* Ensure DMA tx & rx idle */ for (i = 0; i < hisi_hba->n_phy; i++) { u32 dma_tx_status, dma_rx_status; end_time = jiffies + msecs_to_jiffies(1000); while (1) { dma_tx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_TX_STATUS); dma_rx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_RX_STATUS); if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) && !(dma_rx_status & DMA_RX_STATUS_BUSY_MSK)) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } } /* Ensure axi bus idle */ end_time = jiffies + msecs_to_jiffies(1000); while (1) { u32 axi_status = hisi_sas_read32(hisi_hba, AXI_CFG); if (axi_status == 0) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } /* Apply reset and disable clock */ /* clk disable reg is offset by +4 bytes from clk enable reg */ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg, RESET_VALUE); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4, RESET_VALUE); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (RESET_VALUE != (val & RESET_VALUE)) { dev_err(dev, "Reset failed\n"); return -EIO; } /* De-reset and enable clock */ /* deassert rst reg is offset by +4 bytes from assert reg */ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4, RESET_VALUE); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg, RESET_VALUE); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (val & RESET_VALUE) { dev_err(dev, "De-reset failed\n"); return -EIO; } return 0; } static void init_reg_v1_hw(struct hisi_hba *hisi_hba) { int i; /* Global registers init*/ hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, (u32)((1ULL << hisi_hba->queue_count) - 1)); hisi_sas_write32(hisi_hba, HGC_TRANS_TASK_CNT_LIMIT, 0x11); hisi_sas_write32(hisi_hba, DEVICE_MSG_WORK_MODE, 0x1); hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x1ff); hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x401); hisi_sas_write32(hisi_hba, CFG_1US_TIMER_TRSH, 0x64); hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1); hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x64); hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x2710); hisi_sas_write32(hisi_hba, REJECT_TO_OPEN_LIMIT_TIME, 0x1); hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x7a12); hisi_sas_write32(hisi_hba, HGC_DFX_CFG2, 0x9c40); hisi_sas_write32(hisi_hba, FIS_LIST_BADDR_L, 0x2); hisi_sas_write32(hisi_hba, INT_COAL_EN, 0xc); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x186a0); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 1); hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0xffffffff); hisi_sas_write32(hisi_hba, OQ_INT_SRC_MSK, 0); hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0); hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0); hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 0x2); hisi_sas_write32(hisi_hba, CFG_SAS_CONFIG, 0x22000000); for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, 0x88a); hisi_sas_phy_write32(hisi_hba, i, PHY_CONFIG2, 0x7c080); hisi_sas_phy_write32(hisi_hba, i, PHY_RATE_NEGO, 0x415ee00); hisi_sas_phy_write32(hisi_hba, i, PHY_PCN, 0x80a80000); hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d); hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x0); hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000); hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0); hisi_sas_phy_write32(hisi_hba, i, CON_CFG_DRIVER, 0x13f0a); hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 3); hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 8); } for (i = 0; i < hisi_hba->queue_count; i++) { /* Delivery queue */ hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); /* Completion queue */ hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); } /* itct */ hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO, lower_32_bits(hisi_hba->itct_dma)); hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI, upper_32_bits(hisi_hba->itct_dma)); /* iost */ hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO, lower_32_bits(hisi_hba->iost_dma)); hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI, upper_32_bits(hisi_hba->iost_dma)); /* breakpoint */ hisi_sas_write32(hisi_hba, BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->breakpoint_dma)); hisi_sas_write32(hisi_hba, BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->breakpoint_dma)); } static int hw_init_v1_hw(struct hisi_hba *hisi_hba) { struct device *dev = &hisi_hba->pdev->dev; int rc; rc = reset_hw_v1_hw(hisi_hba); if (rc) { dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc); return rc; } msleep(100); init_reg_v1_hw(hisi_hba); init_id_frame_v1_hw(hisi_hba); return 0; } static void enable_phy_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg |= PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void disable_phy_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void start_phy_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { config_id_frame_v1_hw(hisi_hba, phy_no); config_phy_opt_mode_v1_hw(hisi_hba, phy_no); config_tx_tfe_autoneg_v1_hw(hisi_hba, phy_no); enable_phy_v1_hw(hisi_hba, phy_no); } static void stop_phy_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { disable_phy_v1_hw(hisi_hba, phy_no); } static void phy_hard_reset_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { stop_phy_v1_hw(hisi_hba, phy_no); msleep(100); start_phy_v1_hw(hisi_hba, phy_no); } static void start_phys_v1_hw(unsigned long data) { struct hisi_hba *hisi_hba = (struct hisi_hba *)data; int i; for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x12a); start_phy_v1_hw(hisi_hba, i); } } static void phys_init_v1_hw(struct hisi_hba *hisi_hba) { int i; struct timer_list *timer = &hisi_hba->timer; for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x6a); hisi_sas_phy_read32(hisi_hba, i, CHL_INT2_MSK); } setup_timer(timer, start_phys_v1_hw, (unsigned long)hisi_hba); mod_timer(timer, jiffies + HZ); } static void sl_notify_v1_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 sl_control; sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control |= SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); msleep(1); sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); } static int get_wideport_bitmap_v1_hw(struct hisi_hba *hisi_hba, int port_id) { int i, bitmap = 0; u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); for (i = 0; i < hisi_hba->n_phy; i++) if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id) bitmap |= 1 << i; return bitmap; } /** * This function allocates across all queues to load balance. * Slots are allocated from queues in a round-robin fashion. * * The callpath to this function and upto writing the write * queue pointer should be safe from interruption. */ static int get_free_slot_v1_hw(struct hisi_hba *hisi_hba, int *q, int *s) { struct device *dev = &hisi_hba->pdev->dev; u32 r, w; int queue = hisi_hba->queue; while (1) { w = hisi_sas_read32_relaxed(hisi_hba, DLVRY_Q_0_WR_PTR + (queue * 0x14)); r = hisi_sas_read32_relaxed(hisi_hba, DLVRY_Q_0_RD_PTR + (queue * 0x14)); if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) { queue = (queue + 1) % hisi_hba->queue_count; if (queue == hisi_hba->queue) { dev_warn(dev, "could not find free slot\n"); return -EAGAIN; } continue; } break; } hisi_hba->queue = (queue + 1) % hisi_hba->queue_count; *q = queue; *s = w; return 0; } static void start_delivery_v1_hw(struct hisi_hba *hisi_hba) { int dlvry_queue = hisi_hba->slot_prep->dlvry_queue; int dlvry_queue_slot = hisi_hba->slot_prep->dlvry_queue_slot; hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), ++dlvry_queue_slot % HISI_SAS_QUEUE_SLOTS); } static int prep_prd_sge_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, struct hisi_sas_cmd_hdr *hdr, struct scatterlist *scatter, int n_elem) { struct device *dev = &hisi_hba->pdev->dev; struct scatterlist *sg; int i; if (n_elem > HISI_SAS_SGE_PAGE_CNT) { dev_err(dev, "prd err: n_elem(%d) > HISI_SAS_SGE_PAGE_CNT", n_elem); return -EINVAL; } slot->sge_page = dma_pool_alloc(hisi_hba->sge_page_pool, GFP_ATOMIC, &slot->sge_page_dma); if (!slot->sge_page) return -ENOMEM; for_each_sg(scatter, sg, n_elem, i) { struct hisi_sas_sge *entry = &slot->sge_page->sge[i]; entry->addr = cpu_to_le64(sg_dma_address(sg)); entry->page_ctrl_0 = entry->page_ctrl_1 = 0; entry->data_len = cpu_to_le32(sg_dma_len(sg)); entry->data_off = 0; } hdr->prd_table_addr = cpu_to_le64(slot->sge_page_dma); hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF); return 0; } static int prep_smp_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct device *dev = &hisi_hba->pdev->dev; struct hisi_sas_port *port = slot->port; struct scatterlist *sg_req, *sg_resp; struct hisi_sas_device *sas_dev = device->lldd_dev; dma_addr_t req_dma_addr; unsigned int req_len, resp_len; int elem, rc; /* * DMA-map SMP request, response buffers */ /* req */ sg_req = &task->smp_task.smp_req; elem = dma_map_sg(dev, sg_req, 1, DMA_TO_DEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); req_dma_addr = sg_dma_address(sg_req); /* resp */ sg_resp = &task->smp_task.smp_resp; elem = dma_map_sg(dev, sg_resp, 1, DMA_FROM_DEVICE); if (!elem) { rc = -ENOMEM; goto err_out_req; } resp_len = sg_dma_len(sg_resp); if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_resp; } /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) | (1 << CMD_HDR_PRIORITY_OFF) | /* high pri */ (1 << CMD_HDR_MODE_OFF) | /* ini mode */ (2 << CMD_HDR_CMD_OFF)); /* smp */ /* map itct entry */ hdr->dw1 = cpu_to_le32(sas_dev->device_id << CMD_HDR_DEVICE_ID_OFF); /* dw2 */ hdr->dw2 = cpu_to_le32((((req_len-4)/4) << CMD_HDR_CFL_OFF) | (HISI_SAS_MAX_SMP_RESP_SZ/4 << CMD_HDR_MRFL_OFF)); hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); hdr->cmd_table_addr = cpu_to_le64(req_dma_addr); hdr->sts_buffer_addr = cpu_to_le64(slot->status_buffer_dma); return 0; err_out_resp: dma_unmap_sg(dev, &slot->task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); err_out_req: dma_unmap_sg(dev, &slot->task->smp_task.smp_req, 1, DMA_TO_DEVICE); return rc; } static int prep_ssp_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int is_tmf, struct hisi_sas_tmf_task *tmf) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_port *port = slot->port; struct sas_ssp_task *ssp_task = &task->ssp_task; struct scsi_cmnd *scsi_cmnd = ssp_task->cmd; int has_data = 0, rc, priority = is_tmf; u8 *buf_cmd, fburst = 0; u32 dw1, dw2; /* create header */ hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) | (0x2 << CMD_HDR_TLR_CTRL_OFF) | (port->id << CMD_HDR_PORT_OFF) | (priority << CMD_HDR_PRIORITY_OFF) | (1 << CMD_HDR_MODE_OFF) | /* ini mode */ (1 << CMD_HDR_CMD_OFF)); /* ssp */ dw1 = 1 << CMD_HDR_VERIFY_DTL_OFF; if (is_tmf) { dw1 |= 3 << CMD_HDR_SSP_FRAME_TYPE_OFF; } else { switch (scsi_cmnd->sc_data_direction) { case DMA_TO_DEVICE: dw1 |= 2 << CMD_HDR_SSP_FRAME_TYPE_OFF; has_data = 1; break; case DMA_FROM_DEVICE: dw1 |= 1 << CMD_HDR_SSP_FRAME_TYPE_OFF; has_data = 1; break; default: dw1 |= 0 << CMD_HDR_SSP_FRAME_TYPE_OFF; } } /* map itct entry */ dw1 |= sas_dev->device_id << CMD_HDR_DEVICE_ID_OFF; hdr->dw1 = cpu_to_le32(dw1); if (is_tmf) { dw2 = ((sizeof(struct ssp_tmf_iu) + sizeof(struct ssp_frame_hdr)+3)/4) << CMD_HDR_CFL_OFF; } else { dw2 = ((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)+3)/4) << CMD_HDR_CFL_OFF; } dw2 |= (HISI_SAS_MAX_SSP_RESP_SZ/4) << CMD_HDR_MRFL_OFF; hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); if (has_data) { rc = prep_prd_sge_v1_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); if (rc) return rc; } hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(slot->command_table_dma); hdr->sts_buffer_addr = cpu_to_le64(slot->status_buffer_dma); buf_cmd = slot->command_table + sizeof(struct ssp_frame_hdr); if (task->ssp_task.enable_first_burst) { fburst = (1 << 7); dw2 |= 1 << CMD_HDR_FIRST_BURST_OFF; } hdr->dw2 = cpu_to_le32(dw2); memcpy(buf_cmd, &task->ssp_task.LUN, 8); if (!is_tmf) { buf_cmd[9] = fburst | task->ssp_task.task_attr | (task->ssp_task.task_prio << 3); memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd, task->ssp_task.cmd->cmd_len); } else { buf_cmd[10] = tmf->tmf; switch (tmf->tmf) { case TMF_ABORT_TASK: case TMF_QUERY_TASK: buf_cmd[12] = (tmf->tag_of_task_to_be_managed >> 8) & 0xff; buf_cmd[13] = tmf->tag_of_task_to_be_managed & 0xff; break; default: break; } } return 0; } /* by default, task resp is complete */ static void slot_err_v1_hw(struct hisi_hba *hisi_hba, struct sas_task *task, struct hisi_sas_slot *slot) { struct task_status_struct *ts = &task->task_status; struct hisi_sas_err_record *err_record = slot->status_buffer; struct device *dev = &hisi_hba->pdev->dev; switch (task->task_proto) { case SAS_PROTOCOL_SSP: { int error = -1; u32 dma_err_type = cpu_to_le32(err_record->dma_err_type); u32 dma_tx_err_type = ((dma_err_type & ERR_HDR_DMA_TX_ERR_TYPE_MSK)) >> ERR_HDR_DMA_TX_ERR_TYPE_OFF; u32 dma_rx_err_type = ((dma_err_type & ERR_HDR_DMA_RX_ERR_TYPE_MSK)) >> ERR_HDR_DMA_RX_ERR_TYPE_OFF; u32 trans_tx_fail_type = cpu_to_le32(err_record->trans_tx_fail_type); u32 trans_rx_fail_type = cpu_to_le32(err_record->trans_rx_fail_type); if (dma_tx_err_type) { /* dma tx err */ error = ffs(dma_tx_err_type) - 1 + DMA_TX_ERR_BASE; } else if (dma_rx_err_type) { /* dma rx err */ error = ffs(dma_rx_err_type) - 1 + DMA_RX_ERR_BASE; } else if (trans_tx_fail_type) { /* trans tx err */ error = ffs(trans_tx_fail_type) - 1 + TRANS_TX_FAIL_BASE; } else if (trans_rx_fail_type) { /* trans rx err */ error = ffs(trans_rx_fail_type) - 1 + TRANS_RX_FAIL_BASE; } switch (error) { case DMA_TX_DATA_UNDERFLOW_ERR: case DMA_RX_DATA_UNDERFLOW_ERR: { ts->residual = 0; ts->stat = SAS_DATA_UNDERRUN; break; } case DMA_TX_DATA_SGL_OVERFLOW_ERR: case DMA_TX_DIF_SGL_OVERFLOW_ERR: case DMA_TX_XFER_RDY_LENGTH_OVERFLOW_ERR: case DMA_RX_DATA_OVERFLOW_ERR: case TRANS_RX_FRAME_OVERRUN_ERR: case TRANS_RX_LINK_BUF_OVERRUN_ERR: { ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; } case TRANS_TX_PHY_NOT_ENABLE_ERR: { ts->stat = SAS_PHY_DOWN; break; } case TRANS_TX_OPEN_REJCT_WRONG_DEST_ERR: case TRANS_TX_OPEN_REJCT_ZONE_VIOLATION_ERR: case TRANS_TX_OPEN_REJCT_BY_OTHER_ERR: case TRANS_TX_OPEN_REJCT_AIP_TIMEOUT_ERR: case TRANS_TX_OPEN_REJCT_STP_BUSY_ERR: case TRANS_TX_OPEN_REJCT_PROTOCOL_NOT_SUPPORT_ERR: case TRANS_TX_OPEN_REJCT_RATE_NOT_SUPPORT_ERR: case TRANS_TX_OPEN_REJCT_BAD_DEST_ERR: case TRANS_TX_OPEN_BREAK_RECEIVE_ERR: case TRANS_TX_OPEN_REJCT_PATHWAY_BLOCKED_ERR: case TRANS_TX_OPEN_REJCT_NO_DEST_ERR: case TRANS_TX_OPEN_RETRY_ERR: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; } case TRANS_TX_OPEN_TIMEOUT_ERR: { ts->stat = SAS_OPEN_TO; break; } case TRANS_TX_NAK_RECEIVE_ERR: case TRANS_TX_ACK_NAK_TIMEOUT_ERR: { ts->stat = SAS_NAK_R_ERR; break; } default: { ts->stat = SAM_STAT_CHECK_CONDITION; break; } } } break; case SAS_PROTOCOL_SMP: ts->stat = SAM_STAT_CHECK_CONDITION; break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { dev_err(dev, "slot err: SATA/STP not supported"); } break; default: break; } } static int slot_complete_v1_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int abort) { struct sas_task *task = slot->task; struct hisi_sas_device *sas_dev; struct device *dev = &hisi_hba->pdev->dev; struct task_status_struct *ts; struct domain_device *device; enum exec_status sts; struct hisi_sas_complete_v1_hdr *complete_queue = (struct hisi_sas_complete_v1_hdr *) hisi_hba->complete_hdr[slot->cmplt_queue]; struct hisi_sas_complete_v1_hdr *complete_hdr; u32 cmplt_hdr_data; complete_hdr = &complete_queue[slot->cmplt_queue_slot]; cmplt_hdr_data = le32_to_cpu(complete_hdr->data); if (unlikely(!task || !task->lldd_task || !task->dev)) return -EINVAL; ts = &task->task_status; device = task->dev; sas_dev = device->lldd_dev; task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); task->task_state_flags |= SAS_TASK_STATE_DONE; memset(ts, 0, sizeof(*ts)); ts->resp = SAS_TASK_COMPLETE; if (unlikely(!sas_dev || abort)) { if (!sas_dev) dev_dbg(dev, "slot complete: port has not device\n"); ts->stat = SAS_PHY_DOWN; goto out; } if (cmplt_hdr_data & CMPLT_HDR_IO_CFG_ERR_MSK) { u32 info_reg = hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO); if (info_reg & HGC_INVLD_DQE_INFO_DQ_MSK) dev_err(dev, "slot complete: [%d:%d] has dq IPTT err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_TYPE_MSK) dev_err(dev, "slot complete: [%d:%d] has dq type err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_FORCE_MSK) dev_err(dev, "slot complete: [%d:%d] has dq force phy err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_PHY_MSK) dev_err(dev, "slot complete: [%d:%d] has dq phy id err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_ABORT_MSK) dev_err(dev, "slot complete: [%d:%d] has dq abort flag err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_IPTT_OF_MSK) dev_err(dev, "slot complete: [%d:%d] has dq IPTT or ICT err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_SSP_ERR_MSK) dev_err(dev, "slot complete: [%d:%d] has dq SSP frame type err", slot->cmplt_queue, slot->cmplt_queue_slot); if (info_reg & HGC_INVLD_DQE_INFO_OFL_MSK) dev_err(dev, "slot complete: [%d:%d] has dq order frame len err", slot->cmplt_queue, slot->cmplt_queue_slot); ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; goto out; } if (cmplt_hdr_data & CMPLT_HDR_ERR_RCRD_XFRD_MSK) { if (!(cmplt_hdr_data & CMPLT_HDR_CMD_CMPLT_MSK) || !(cmplt_hdr_data & CMPLT_HDR_RSPNS_XFRD_MSK)) ts->stat = SAS_DATA_OVERRUN; else slot_err_v1_hw(hisi_hba, task, slot); goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { struct ssp_response_iu *iu = slot->status_buffer + sizeof(struct hisi_sas_err_record); sas_ssp_task_response(dev, task, iu); break; } case SAS_PROTOCOL_SMP: { void *to; struct scatterlist *sg_resp = &task->smp_task.smp_resp; ts->stat = SAM_STAT_GOOD; to = kmap_atomic(sg_page(sg_resp)); dma_unmap_sg(dev, &task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); dma_unmap_sg(dev, &task->smp_task.smp_req, 1, DMA_TO_DEVICE); memcpy(to + sg_resp->offset, slot->status_buffer + sizeof(struct hisi_sas_err_record), sg_dma_len(sg_resp)); kunmap_atomic(to); break; } case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: dev_err(dev, "slot complete: SATA/STP not supported"); break; default: ts->stat = SAM_STAT_CHECK_CONDITION; break; } if (!slot->port->port_attached) { dev_err(dev, "slot complete: port %d has removed\n", slot->port->sas_port.id); ts->stat = SAS_PHY_DOWN; } out: if (sas_dev && sas_dev->running_req) sas_dev->running_req--; hisi_sas_slot_task_free(hisi_hba, task, slot); sts = ts->stat; if (task->task_done) task->task_done(task); return sts; } /* Interrupts */ static irqreturn_t int_phyup_v1_hw(int irq_no, void *p) { struct hisi_sas_phy *phy = p; struct hisi_hba *hisi_hba = phy->hisi_hba; struct device *dev = &hisi_hba->pdev->dev; struct asd_sas_phy *sas_phy = &phy->sas_phy; int i, phy_no = sas_phy->id; u32 irq_value, context, port_id, link_rate; u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd; struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd; irqreturn_t res = IRQ_HANDLED; irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2); if (!(irq_value & CHL_INT2_SL_PHY_ENA_MSK)) { dev_dbg(dev, "phyup: irq_value = %x not set enable bit\n", irq_value); res = IRQ_NONE; goto end; } context = hisi_sas_read32(hisi_hba, PHY_CONTEXT); if (context & 1 << phy_no) { dev_err(dev, "phyup: phy%d SATA attached equipment\n", phy_no); goto end; } port_id = (hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA) >> (4 * phy_no)) & 0xf; if (port_id == 0xf) { dev_err(dev, "phyup: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } for (i = 0; i < 6; i++) { u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no, RX_IDAF_DWORD0 + (i * 4)); frame_rcvd[i] = __swab32(idaf); } /* Get the linkrate */ link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; sas_phy->linkrate = link_rate; sas_phy->oob_mode = SAS_OOB_MODE; memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE); dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate); phy->port_id = port_id; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); phy->phy_type |= PORT_TYPE_SAS; phy->phy_attached = 1; phy->identify.device_type = id->dev_type; phy->frame_rcvd_size = sizeof(struct sas_identify_frame); if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; queue_work(hisi_hba->wq, &phy->phyup_ws); end: hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, CHL_INT2_SL_PHY_ENA_MSK); if (irq_value & CHL_INT2_SL_PHY_ENA_MSK) { u32 chl_int0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); chl_int0 &= ~CHL_INT0_PHYCTRL_NOTRDY_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, chl_int0); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0_MSK, 0x3ce3ee); } return res; } static irqreturn_t int_bcast_v1_hw(int irq, void *p) { struct hisi_sas_phy *phy = p; struct hisi_hba *hisi_hba = phy->hisi_hba; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_ha_struct *sha = &hisi_hba->sha; struct device *dev = &hisi_hba->pdev->dev; int phy_no = sas_phy->id; u32 irq_value; irqreturn_t res = IRQ_HANDLED; irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2); if (!(irq_value & CHL_INT2_SL_RX_BC_ACK_MSK)) { dev_err(dev, "bcast: irq_value = %x not set enable bit", irq_value); res = IRQ_NONE; goto end; } sha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); end: hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, CHL_INT2_SL_RX_BC_ACK_MSK); return res; } static irqreturn_t int_abnormal_v1_hw(int irq, void *p) { struct hisi_sas_phy *phy = p; struct hisi_hba *hisi_hba = phy->hisi_hba; struct device *dev = &hisi_hba->pdev->dev; struct asd_sas_phy *sas_phy = &phy->sas_phy; u32 irq_value, irq_mask_old; int phy_no = sas_phy->id; /* mask_int0 */ irq_mask_old = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0_MSK, 0x3fffff); /* read int0 */ irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); if (irq_value & CHL_INT0_PHYCTRL_NOTRDY_MSK) { u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0); } if (irq_value & CHL_INT0_ID_TIMEOUT_MSK) dev_dbg(dev, "abnormal: ID_TIMEOUT phy%d identify timeout\n", phy_no); if (irq_value & CHL_INT0_DWS_LOST_MSK) dev_dbg(dev, "abnormal: DWS_LOST phy%d dws lost\n", phy_no); if (irq_value & CHL_INT0_SN_FAIL_NGR_MSK) dev_dbg(dev, "abnormal: SN_FAIL_NGR phy%d sn fail ngr\n", phy_no); if (irq_value & CHL_INT0_SL_IDAF_FAIL_MSK || irq_value & CHL_INT0_SL_OPAF_FAIL_MSK) dev_dbg(dev, "abnormal: SL_ID/OPAF_FAIL phy%d check adr frm err\n", phy_no); if (irq_value & CHL_INT0_SL_PS_FAIL_OFF) dev_dbg(dev, "abnormal: SL_PS_FAIL phy%d fail\n", phy_no); /* write to zero */ hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, irq_value); if (irq_value & CHL_INT0_PHYCTRL_NOTRDY_MSK) hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0_MSK, 0x3fffff & ~CHL_INT0_MSK_PHYCTRL_NOTRDY_MSK); else hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0_MSK, irq_mask_old); return IRQ_HANDLED; } static irqreturn_t cq_interrupt_v1_hw(int irq, void *p) { struct hisi_sas_cq *cq = p; struct hisi_hba *hisi_hba = cq->hisi_hba; struct hisi_sas_slot *slot; int queue = cq->id; struct hisi_sas_complete_v1_hdr *complete_queue = (struct hisi_sas_complete_v1_hdr *) hisi_hba->complete_hdr[queue]; u32 irq_value, rd_point, wr_point; irq_value = hisi_sas_read32(hisi_hba, OQ_INT_SRC); hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue); rd_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue)); wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR + (0x14 * queue)); while (rd_point != wr_point) { struct hisi_sas_complete_v1_hdr *complete_hdr; int idx; u32 cmplt_hdr_data; complete_hdr = &complete_queue[rd_point]; cmplt_hdr_data = cpu_to_le32(complete_hdr->data); idx = (cmplt_hdr_data & CMPLT_HDR_IPTT_MSK) >> CMPLT_HDR_IPTT_OFF; slot = &hisi_hba->slot_info[idx]; /* The completion queue and queue slot index are not * necessarily the same as the delivery queue and * queue slot index. */ slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v1_hw(hisi_hba, slot, 0); if (++rd_point >= HISI_SAS_QUEUE_SLOTS) rd_point = 0; } /* update rd_point */ hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point); return IRQ_HANDLED; } static irqreturn_t fatal_ecc_int_v1_hw(int irq, void *p) { struct hisi_hba *hisi_hba = p; struct device *dev = &hisi_hba->pdev->dev; u32 ecc_int = hisi_sas_read32(hisi_hba, SAS_ECC_INTR); if (ecc_int & SAS_ECC_INTR_DQ_ECC1B_MSK) { u32 ecc_err = hisi_sas_read32(hisi_hba, HGC_ECC_ERR); panic("%s: Fatal DQ 1b ECC interrupt (0x%x)\n", dev_name(dev), ecc_err); } if (ecc_int & SAS_ECC_INTR_DQ_ECCBAD_MSK) { u32 addr = (hisi_sas_read32(hisi_hba, HGC_DQ_ECC_ADDR) & HGC_DQ_ECC_ADDR_BAD_MSK) >> HGC_DQ_ECC_ADDR_BAD_OFF; panic("%s: Fatal DQ RAM ECC interrupt @ 0x%08x\n", dev_name(dev), addr); } if (ecc_int & SAS_ECC_INTR_IOST_ECC1B_MSK) { u32 ecc_err = hisi_sas_read32(hisi_hba, HGC_ECC_ERR); panic("%s: Fatal IOST 1b ECC interrupt (0x%x)\n", dev_name(dev), ecc_err); } if (ecc_int & SAS_ECC_INTR_IOST_ECCBAD_MSK) { u32 addr = (hisi_sas_read32(hisi_hba, HGC_IOST_ECC_ADDR) & HGC_IOST_ECC_ADDR_BAD_MSK) >> HGC_IOST_ECC_ADDR_BAD_OFF; panic("%s: Fatal IOST RAM ECC interrupt @ 0x%08x\n", dev_name(dev), addr); } if (ecc_int & SAS_ECC_INTR_ITCT_ECCBAD_MSK) { u32 addr = (hisi_sas_read32(hisi_hba, HGC_ITCT_ECC_ADDR) & HGC_ITCT_ECC_ADDR_BAD_MSK) >> HGC_ITCT_ECC_ADDR_BAD_OFF; panic("%s: Fatal TCT RAM ECC interrupt @ 0x%08x\n", dev_name(dev), addr); } if (ecc_int & SAS_ECC_INTR_ITCT_ECC1B_MSK) { u32 ecc_err = hisi_sas_read32(hisi_hba, HGC_ECC_ERR); panic("%s: Fatal ITCT 1b ECC interrupt (0x%x)\n", dev_name(dev), ecc_err); } hisi_sas_write32(hisi_hba, SAS_ECC_INTR, ecc_int | 0x3f); return IRQ_HANDLED; } static irqreturn_t fatal_axi_int_v1_hw(int irq, void *p) { struct hisi_hba *hisi_hba = p; struct device *dev = &hisi_hba->pdev->dev; u32 axi_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC2); u32 axi_info = hisi_sas_read32(hisi_hba, HGC_AXI_FIFO_ERR_INFO); if (axi_int & ENT_INT_SRC2_DQ_CFG_ERR_MSK) panic("%s: Fatal DQ_CFG_ERR interrupt (0x%x)\n", dev_name(dev), axi_info); if (axi_int & ENT_INT_SRC2_CQ_CFG_ERR_MSK) panic("%s: Fatal CQ_CFG_ERR interrupt (0x%x)\n", dev_name(dev), axi_info); if (axi_int & ENT_INT_SRC2_AXI_WRONG_INT_MSK) panic("%s: Fatal AXI_WRONG_INT interrupt (0x%x)\n", dev_name(dev), axi_info); if (axi_int & ENT_INT_SRC2_AXI_OVERLF_INT_MSK) panic("%s: Fatal AXI_OVERLF_INT incorrect interrupt (0x%x)\n", dev_name(dev), axi_info); hisi_sas_write32(hisi_hba, ENT_INT_SRC2, axi_int | 0x30000000); return IRQ_HANDLED; } static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = { int_bcast_v1_hw, int_phyup_v1_hw, int_abnormal_v1_hw }; static irq_handler_t fatal_interrupts[HISI_SAS_MAX_QUEUES] = { fatal_ecc_int_v1_hw, fatal_axi_int_v1_hw }; static int interrupt_init_v1_hw(struct hisi_hba *hisi_hba) { struct platform_device *pdev = hisi_hba->pdev; struct device *dev = &pdev->dev; int i, j, irq, rc, idx; for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; idx = i * HISI_SAS_PHY_INT_NR; for (j = 0; j < HISI_SAS_PHY_INT_NR; j++, idx++) { irq = platform_get_irq(pdev, idx); if (!irq) { dev_err(dev, "irq init: fail map phy interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, phy_interrupts[j], 0, DRV_NAME " phy", phy); if (rc) { dev_err(dev, "irq init: could not request " "phy interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } } idx = hisi_hba->n_phy * HISI_SAS_PHY_INT_NR; for (i = 0; i < hisi_hba->queue_count; i++, idx++) { irq = platform_get_irq(pdev, idx); if (!irq) { dev_err(dev, "irq init: could not map cq interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, cq_interrupt_v1_hw, 0, DRV_NAME " cq", &hisi_hba->cq[i]); if (rc) { dev_err(dev, "irq init: could not request cq interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } idx = (hisi_hba->n_phy * HISI_SAS_PHY_INT_NR) + hisi_hba->queue_count; for (i = 0; i < HISI_SAS_FATAL_INT_NR; i++, idx++) { irq = platform_get_irq(pdev, idx); if (!irq) { dev_err(dev, "irq init: could not map fatal interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, fatal_interrupts[i], 0, DRV_NAME " fatal", hisi_hba); if (rc) { dev_err(dev, "irq init: could not request fatal interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } return 0; } static int interrupt_openall_v1_hw(struct hisi_hba *hisi_hba) { int i; u32 val; for (i = 0; i < hisi_hba->n_phy; i++) { /* Clear interrupt status */ val = hisi_sas_phy_read32(hisi_hba, i, CHL_INT0); hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, val); val = hisi_sas_phy_read32(hisi_hba, i, CHL_INT1); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, val); val = hisi_sas_phy_read32(hisi_hba, i, CHL_INT2); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, val); /* Unmask interrupt */ hisi_sas_phy_write32(hisi_hba, i, CHL_INT0_MSK, 0x3ce3ee); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0x17fff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8000012a); /* bypass chip bug mask abnormal intr */ hisi_sas_phy_write32(hisi_hba, i, CHL_INT0_MSK, 0x3fffff & ~CHL_INT0_MSK_PHYCTRL_NOTRDY_MSK); } return 0; } static int hisi_sas_v1_init(struct hisi_hba *hisi_hba) { int rc; rc = hw_init_v1_hw(hisi_hba); if (rc) return rc; rc = interrupt_init_v1_hw(hisi_hba); if (rc) return rc; rc = interrupt_openall_v1_hw(hisi_hba); if (rc) return rc; phys_init_v1_hw(hisi_hba); return 0; } static const struct hisi_sas_hw hisi_sas_v1_hw = { .hw_init = hisi_sas_v1_init, .setup_itct = setup_itct_v1_hw, .sl_notify = sl_notify_v1_hw, .free_device = free_device_v1_hw, .prep_smp = prep_smp_v1_hw, .prep_ssp = prep_ssp_v1_hw, .get_free_slot = get_free_slot_v1_hw, .start_delivery = start_delivery_v1_hw, .slot_complete = slot_complete_v1_hw, .phy_enable = enable_phy_v1_hw, .phy_disable = disable_phy_v1_hw, .phy_hard_reset = phy_hard_reset_v1_hw, .get_wideport_bitmap = get_wideport_bitmap_v1_hw, .complete_hdr_size = sizeof(struct hisi_sas_complete_v1_hdr), }; static int hisi_sas_v1_probe(struct platform_device *pdev) { return hisi_sas_probe(pdev, &hisi_sas_v1_hw); } static int hisi_sas_v1_remove(struct platform_device *pdev) { return hisi_sas_remove(pdev); } static const struct of_device_id sas_v1_of_match[] = { { .compatible = "hisilicon,hip05-sas-v1",}, {}, }; MODULE_DEVICE_TABLE(of, sas_v1_of_match); static struct platform_driver hisi_sas_v1_driver = { .probe = hisi_sas_v1_probe, .remove = hisi_sas_v1_remove, .driver = { .name = DRV_NAME, .of_match_table = sas_v1_of_match, }, }; module_platform_driver(hisi_sas_v1_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Garry "); MODULE_DESCRIPTION("HISILICON SAS controller v1 hw driver"); MODULE_ALIAS("platform:" DRV_NAME);