/** * SHA-512 routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2011-2012 International Business Machines Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Kent Yoder */ #include #include #include #include #include "nx_csbcpb.h" #include "nx.h" static int nx_sha512_init(struct shash_desc *desc) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_sg *out_sg; nx_ctx_init(nx_ctx, HCOP_FC_SHA); memset(sctx, 0, sizeof *sctx); nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512]; NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512); out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, SHA512_DIGEST_SIZE, nx_ctx->ap->sglen); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); return 0; } static int nx_sha512_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *in_sg; u64 to_process, leftover, total, spbc_bits; u32 max_sg_len; int rc = 0; /* 2 cases for total data len: * 1: < SHA512_BLOCK_SIZE: copy into state, return 0 * 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover */ total = sctx->count[0] + len; if (total < SHA512_BLOCK_SIZE) { memcpy(sctx->buf + sctx->count[0], data, len); sctx->count[0] += len; goto out; } in_sg = nx_ctx->in_sg; max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), nx_ctx->ap->sglen); do { /* * to_process: the SHA512_BLOCK_SIZE data chunk to process in * this update. This value is also restricted by the sg list * limits. */ to_process = min_t(u64, total, nx_ctx->ap->databytelen); to_process = min_t(u64, to_process, NX_PAGE_SIZE * (max_sg_len - 1)); to_process = to_process & ~(SHA512_BLOCK_SIZE - 1); leftover = total - to_process; if (sctx->count[0]) { in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf, sctx->count[0], max_sg_len); } in_sg = nx_build_sg_list(in_sg, (u8 *) data, to_process - sctx->count[0], max_sg_len); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { /* * we've hit the nx chip previously and we're updating * again, so copy over the partial digest. */ memcpy(csbcpb->cpb.sha512.input_partial_digest, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); } NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha512_ops)); spbc_bits = csbcpb->cpb.sha512.spbc * 8; csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits; if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits) csbcpb->cpb.sha512.message_bit_length_hi++; /* everything after the first update is continuation */ NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; total -= to_process; data += to_process; sctx->count[0] = 0; in_sg = nx_ctx->in_sg; } while (leftover >= SHA512_BLOCK_SIZE); /* copy the leftover back into the state struct */ if (leftover) memcpy(sctx->buf, data, leftover); sctx->count[0] = leftover; out: return rc; } static int nx_sha512_final(struct shash_desc *desc, u8 *out) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *in_sg, *out_sg; u32 max_sg_len; u64 count0; int rc; max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ memcpy(csbcpb->cpb.sha512.input_partial_digest, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); } /* final is represented by continuing the operation and indicating that * this is not an intermediate operation */ NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; count0 = sctx->count[0] * 8; csbcpb->cpb.sha512.message_bit_length_lo += count0; if (csbcpb->cpb.sha512.message_bit_length_lo < count0) csbcpb->cpb.sha512.message_bit_length_hi++; in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, sctx->count[0], max_sg_len); out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA512_DIGEST_SIZE, max_sg_len); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); if (!nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha512_ops)); atomic64_add(csbcpb->cpb.sha512.message_bit_length_lo / 8, &(nx_ctx->stats->sha512_bytes)); memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); out: return rc; } static int nx_sha512_export(struct shash_desc *desc, void *out) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct sha512_state *octx = out; /* move message_bit_length (128 bits) into count and convert its value * to bytes */ octx->count[0] = csbcpb->cpb.sha512.message_bit_length_lo >> 3 | ((csbcpb->cpb.sha512.message_bit_length_hi & 7) << 61); octx->count[1] = csbcpb->cpb.sha512.message_bit_length_hi >> 3; octx->count[0] += sctx->count[0]; if (octx->count[0] < sctx->count[0]) octx->count[1]++; memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); /* if no data has been processed yet, we need to export SHA512's * initial data, in case this context gets imported into a software * context */ if (csbcpb->cpb.sha512.message_bit_length_hi || csbcpb->cpb.sha512.message_bit_length_lo) memcpy(octx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); else { octx->state[0] = SHA512_H0; octx->state[1] = SHA512_H1; octx->state[2] = SHA512_H2; octx->state[3] = SHA512_H3; octx->state[4] = SHA512_H4; octx->state[5] = SHA512_H5; octx->state[6] = SHA512_H6; octx->state[7] = SHA512_H7; } return 0; } static int nx_sha512_import(struct shash_desc *desc, const void *in) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; const struct sha512_state *ictx = in; memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); sctx->count[0] = ictx->count[0] & 0x3f; csbcpb->cpb.sha512.message_bit_length_lo = (ictx->count[0] & ~0x3f) << 3; csbcpb->cpb.sha512.message_bit_length_hi = ictx->count[1] << 3 | ictx->count[0] >> 61; if (csbcpb->cpb.sha512.message_bit_length_hi || csbcpb->cpb.sha512.message_bit_length_lo) { memcpy(csbcpb->cpb.sha512.message_digest, ictx->state, SHA512_DIGEST_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; } return 0; } struct shash_alg nx_shash_sha512_alg = { .digestsize = SHA512_DIGEST_SIZE, .init = nx_sha512_init, .update = nx_sha512_update, .final = nx_sha512_final, .export = nx_sha512_export, .import = nx_sha512_import, .descsize = sizeof(struct sha512_state), .statesize = sizeof(struct sha512_state), .base = { .cra_name = "sha512", .cra_driver_name = "sha512-nx", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_init = nx_crypto_ctx_sha_init, .cra_exit = nx_crypto_ctx_exit, } };