/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" static const u32 hpd_ibx[] = { [HPD_CRT] = SDE_CRT_HOTPLUG, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, [HPD_PORT_B] = SDE_PORTB_HOTPLUG, [HPD_PORT_C] = SDE_PORTC_HOTPLUG, [HPD_PORT_D] = SDE_PORTD_HOTPLUG }; static const u32 hpd_cpt[] = { [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT }; static const u32 hpd_mask_i915[] = { [HPD_CRT] = CRT_HOTPLUG_INT_EN, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN }; static const u32 hpd_status_gen4[] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */ [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; /* For display hotplug interrupt */ static void ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if ((dev_priv->irq_mask & mask) != 0) { dev_priv->irq_mask &= ~mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } static void ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if ((dev_priv->irq_mask & mask) != mask) { dev_priv->irq_mask |= mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } static bool ivb_can_enable_err_int(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; enum pipe pipe; assert_spin_locked(&dev_priv->irq_lock); for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); if (crtc->cpu_fifo_underrun_disabled) return false; } return true; } static bool cpt_can_enable_serr_int(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; assert_spin_locked(&dev_priv->irq_lock); for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); if (crtc->pch_fifo_underrun_disabled) return false; } return true; } static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN : DE_PIPEB_FIFO_UNDERRUN; if (enable) ironlake_enable_display_irq(dev_priv, bit); else ironlake_disable_display_irq(dev_priv, bit); } static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; if (enable) { I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe)); if (!ivb_can_enable_err_int(dev)) return; ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB); } else { bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB); /* Change the state _after_ we've read out the current one. */ ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB); if (!was_enabled && (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) { DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n", pipe_name(pipe)); } } } /** * ibx_display_interrupt_update - update SDEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t sdeimr = I915_READ(SDEIMR); sdeimr &= ~interrupt_mask; sdeimr |= (~enabled_irq_mask & interrupt_mask); assert_spin_locked(&dev_priv->irq_lock); I915_WRITE(SDEIMR, sdeimr); POSTING_READ(SDEIMR); } #define ibx_enable_display_interrupt(dev_priv, bits) \ ibx_display_interrupt_update((dev_priv), (bits), (bits)) #define ibx_disable_display_interrupt(dev_priv, bits) \ ibx_display_interrupt_update((dev_priv), (bits), 0) static void ibx_set_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit = (pch_transcoder == TRANSCODER_A) ? SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER; if (enable) ibx_enable_display_interrupt(dev_priv, bit); else ibx_disable_display_interrupt(dev_priv, bit); } static void cpt_set_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; if (enable) { I915_WRITE(SERR_INT, SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)); if (!cpt_can_enable_serr_int(dev)) return; ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT); } else { uint32_t tmp = I915_READ(SERR_INT); bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT); /* Change the state _after_ we've read out the current one. */ ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT); if (!was_enabled && (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) { DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n", transcoder_name(pch_transcoder)); } } } /** * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages * @dev: drm device * @pipe: pipe * @enable: true if we want to report FIFO underrun errors, false otherwise * * This function makes us disable or enable CPU fifo underruns for a specific * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun * reporting for one pipe may also disable all the other CPU error interruts for * the other pipes, due to the fact that there's just one interrupt mask/enable * bit for all the pipes. * * Returns the previous state of underrun reporting. */ bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long flags; bool ret; spin_lock_irqsave(&dev_priv->irq_lock, flags); ret = !intel_crtc->cpu_fifo_underrun_disabled; if (enable == ret) goto done; intel_crtc->cpu_fifo_underrun_disabled = !enable; if (IS_GEN5(dev) || IS_GEN6(dev)) ironlake_set_fifo_underrun_reporting(dev, pipe, enable); else if (IS_GEN7(dev)) ivybridge_set_fifo_underrun_reporting(dev, pipe, enable); done: spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return ret; } /** * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages * @dev: drm device * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older) * @enable: true if we want to report FIFO underrun errors, false otherwise * * This function makes us disable or enable PCH fifo underruns for a specific * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO * underrun reporting for one transcoder may also disable all the other PCH * error interruts for the other transcoders, due to the fact that there's just * one interrupt mask/enable bit for all the transcoders. * * Returns the previous state of underrun reporting. */ bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long flags; bool ret; /* * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT * has only one pch transcoder A that all pipes can use. To avoid racy * pch transcoder -> pipe lookups from interrupt code simply store the * underrun statistics in crtc A. Since we never expose this anywhere * nor use it outside of the fifo underrun code here using the "wrong" * crtc on LPT won't cause issues. */ spin_lock_irqsave(&dev_priv->irq_lock, flags); ret = !intel_crtc->pch_fifo_underrun_disabled; if (enable == ret) goto done; intel_crtc->pch_fifo_underrun_disabled = !enable; if (HAS_PCH_IBX(dev)) ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable); else cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable); done: spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return ret; } void i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & 0x7fff0000; assert_spin_locked(&dev_priv->irq_lock); if ((pipestat & mask) == mask) return; /* Enable the interrupt, clear any pending status */ pipestat |= mask | (mask >> 16); I915_WRITE(reg, pipestat); POSTING_READ(reg); } void i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & 0x7fff0000; assert_spin_locked(&dev_priv->irq_lock); if ((pipestat & mask) == 0) return; pipestat &= ~mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } /** * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion */ static void i915_enable_asle_pipestat(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; unsigned long irqflags; if (!dev_priv->opregion.asle || !IS_MOBILE(dev)) return; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } /** * i915_pipe_enabled - check if a pipe is enabled * @dev: DRM device * @pipe: pipe to check * * Reading certain registers when the pipe is disabled can hang the chip. * Use this routine to make sure the PLL is running and the pipe is active * before reading such registers if unsure. */ static int i915_pipe_enabled(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (drm_core_check_feature(dev, DRIVER_MODESET)) { /* Locking is horribly broken here, but whatever. */ struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->active; } else { return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE; } } /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long high_frame; unsigned long low_frame; u32 high1, high2, low; if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK; high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); high1 >>= PIPE_FRAME_HIGH_SHIFT; low >>= PIPE_FRAME_LOW_SHIFT; return (high1 << 8) | low; } static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int reg = PIPE_FRMCOUNT_GM45(pipe); if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } return I915_READ(reg); } static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe, int *vpos, int *hpos) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 vbl = 0, position = 0; int vbl_start, vbl_end, htotal, vtotal; bool in_vbl = true; int ret = 0; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } /* Get vtotal. */ vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff); if (INTEL_INFO(dev)->gen >= 4) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ position = I915_READ(PIPEDSL(pipe)); /* Decode into vertical scanout position. Don't have * horizontal scanout position. */ *vpos = position & 0x1fff; *hpos = 0; } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff); *vpos = position / htotal; *hpos = position - (*vpos * htotal); } /* Query vblank area. */ vbl = I915_READ(VBLANK(cpu_transcoder)); /* Test position against vblank region. */ vbl_start = vbl & 0x1fff; vbl_end = (vbl >> 16) & 0x1fff; if ((*vpos < vbl_start) || (*vpos > vbl_end)) in_vbl = false; /* Inside "upper part" of vblank area? Apply corrective offset: */ if (in_vbl && (*vpos >= vbl_start)) *vpos = *vpos - vtotal; /* Readouts valid? */ if (vbl > 0) ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_INVBL; return ret; } static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct drm_crtc *crtc; if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } /* Get drm_crtc to timestamp: */ crtc = intel_get_crtc_for_pipe(dev, pipe); if (crtc == NULL) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } if (!crtc->enabled) { DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); return -EBUSY; } /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, crtc); } static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector) { enum drm_connector_status old_status; WARN_ON(!mutex_is_locked(&dev->mode_config.mutex)); old_status = connector->status; connector->status = connector->funcs->detect(connector, false); DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n", connector->base.id, drm_get_connector_name(connector), old_status, connector->status); return (old_status != connector->status); } /* * Handle hotplug events outside the interrupt handler proper. */ #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000) static void i915_hotplug_work_func(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, hotplug_work); struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_connector *intel_connector; struct intel_encoder *intel_encoder; struct drm_connector *connector; unsigned long irqflags; bool hpd_disabled = false; bool changed = false; u32 hpd_event_bits; /* HPD irq before everything is fully set up. */ if (!dev_priv->enable_hotplug_processing) return; mutex_lock(&mode_config->mutex); DRM_DEBUG_KMS("running encoder hotplug functions\n"); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); hpd_event_bits = dev_priv->hpd_event_bits; dev_priv->hpd_event_bits = 0; list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); intel_encoder = intel_connector->encoder; if (intel_encoder->hpd_pin > HPD_NONE && dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED && connector->polled == DRM_CONNECTOR_POLL_HPD) { DRM_INFO("HPD interrupt storm detected on connector %s: " "switching from hotplug detection to polling\n", drm_get_connector_name(connector)); dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED; connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; hpd_disabled = true; } if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n", drm_get_connector_name(connector), intel_encoder->hpd_pin); } } /* if there were no outputs to poll, poll was disabled, * therefore make sure it's enabled when disabling HPD on * some connectors */ if (hpd_disabled) { drm_kms_helper_poll_enable(dev); mod_timer(&dev_priv->hotplug_reenable_timer, jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY)); } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); intel_encoder = intel_connector->encoder; if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { if (intel_encoder->hot_plug) intel_encoder->hot_plug(intel_encoder); if (intel_hpd_irq_event(dev, connector)) changed = true; } } mutex_unlock(&mode_config->mutex); if (changed) drm_kms_helper_hotplug_event(dev); } static void ironlake_rps_change_irq_handler(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay; spin_lock(&mchdev_lock); I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); new_delay = dev_priv->ips.cur_delay; I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = I915_READ(RCPREVBSYTUPAVG); busy_down = I915_READ(RCPREVBSYTDNAVG); max_avg = I915_READ(RCBMAXAVG); min_avg = I915_READ(RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) new_delay = dev_priv->ips.cur_delay - 1; if (new_delay < dev_priv->ips.max_delay) new_delay = dev_priv->ips.max_delay; } else if (busy_down < min_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) new_delay = dev_priv->ips.cur_delay + 1; if (new_delay > dev_priv->ips.min_delay) new_delay = dev_priv->ips.min_delay; } if (ironlake_set_drps(dev, new_delay)) dev_priv->ips.cur_delay = new_delay; spin_unlock(&mchdev_lock); return; } static void notify_ring(struct drm_device *dev, struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = dev->dev_private; if (ring->obj == NULL) return; trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false)); wake_up_all(&ring->irq_queue); if (i915_enable_hangcheck) { mod_timer(&dev_priv->gpu_error.hangcheck_timer, round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); } } static void gen6_pm_rps_work(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, rps.work); u32 pm_iir, pm_imr; u8 new_delay; spin_lock_irq(&dev_priv->irq_lock); pm_iir = dev_priv->rps.pm_iir; dev_priv->rps.pm_iir = 0; pm_imr = I915_READ(GEN6_PMIMR); /* Make sure not to corrupt PMIMR state used by ringbuffer code */ I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS); spin_unlock_irq(&dev_priv->irq_lock); if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0) return; mutex_lock(&dev_priv->rps.hw_lock); if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { new_delay = dev_priv->rps.cur_delay + 1; /* * For better performance, jump directly * to RPe if we're below it. */ if (IS_VALLEYVIEW(dev_priv->dev) && dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay) new_delay = dev_priv->rps.rpe_delay; } else new_delay = dev_priv->rps.cur_delay - 1; /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ if (new_delay >= dev_priv->rps.min_delay && new_delay <= dev_priv->rps.max_delay) { if (IS_VALLEYVIEW(dev_priv->dev)) valleyview_set_rps(dev_priv->dev, new_delay); else gen6_set_rps(dev_priv->dev, new_delay); } if (IS_VALLEYVIEW(dev_priv->dev)) { /* * On VLV, when we enter RC6 we may not be at the minimum * voltage level, so arm a timer to check. It should only * fire when there's activity or once after we've entered * RC6, and then won't be re-armed until the next RPS interrupt. */ mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work, msecs_to_jiffies(100)); } mutex_unlock(&dev_priv->rps.hw_lock); } /** * ivybridge_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivybridge_parity_work(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, l3_parity.error_work); u32 error_status, row, bank, subbank; char *parity_event[5]; uint32_t misccpctl; unsigned long flags; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->dev->struct_mutex); misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); POSTING_READ(GEN7_MISCCPCTL); error_status = I915_READ(GEN7_L3CDERRST1); row = GEN7_PARITY_ERROR_ROW(error_status); bank = GEN7_PARITY_ERROR_BANK(error_status); subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); POSTING_READ(GEN7_L3CDERRST1); I915_WRITE(GEN7_MISCCPCTL, misccpctl); spin_lock_irqsave(&dev_priv->irq_lock, flags); dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT; I915_WRITE(GTIMR, dev_priv->gt_irq_mask); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); mutex_unlock(&dev_priv->dev->struct_mutex); parity_event[0] = "L3_PARITY_ERROR=1"; parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); parity_event[4] = NULL; kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj, KOBJ_CHANGE, parity_event); DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n", row, bank, subbank); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } static void ivybridge_parity_error_irq_handler(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!HAS_L3_GPU_CACHE(dev)) return; spin_lock(&dev_priv->irq_lock); dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; I915_WRITE(GTIMR, dev_priv->gt_irq_mask); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); } static void snb_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & GT_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[BCS]); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) { DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir); i915_handle_error(dev, false); } if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) ivybridge_parity_error_irq_handler(dev); } /* Legacy way of handling PM interrupts */ static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { /* * IIR bits should never already be set because IMR should * prevent an interrupt from being shown in IIR. The warning * displays a case where we've unsafely cleared * dev_priv->rps.pm_iir. Although missing an interrupt of the same * type is not a problem, it displays a problem in the logic. * * The mask bit in IMR is cleared by dev_priv->rps.work. */ spin_lock(&dev_priv->irq_lock); dev_priv->rps.pm_iir |= pm_iir; I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir); POSTING_READ(GEN6_PMIMR); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->rps.work); } #define HPD_STORM_DETECT_PERIOD 1000 #define HPD_STORM_THRESHOLD 5 static inline void intel_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger, const u32 *hpd) { drm_i915_private_t *dev_priv = dev->dev_private; int i; bool storm_detected = false; if (!hotplug_trigger) return; spin_lock(&dev_priv->irq_lock); for (i = 1; i < HPD_NUM_PINS; i++) { if (!(hpd[i] & hotplug_trigger) || dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED) continue; dev_priv->hpd_event_bits |= (1 << i); if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) { dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies; dev_priv->hpd_stats[i].hpd_cnt = 0; } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) { dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED; dev_priv->hpd_event_bits &= ~(1 << i); DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i); storm_detected = true; } else { dev_priv->hpd_stats[i].hpd_cnt++; } } if (storm_detected) dev_priv->display.hpd_irq_setup(dev); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->hotplug_work); } static void gmbus_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } static void dp_aux_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } /* Unlike gen6_rps_irq_handler() from which this function is originally derived, * we must be able to deal with other PM interrupts. This is complicated because * of the way in which we use the masks to defer the RPS work (which for * posterity is necessary because of forcewake). */ static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { if (pm_iir & GEN6_PM_RPS_EVENTS) { spin_lock(&dev_priv->irq_lock); dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS; I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir); /* never want to mask useful interrupts. (also posting read) */ WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->rps.work); } if (pm_iir & PM_VEBOX_USER_INTERRUPT) notify_ring(dev_priv->dev, &dev_priv->ring[VECS]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) { DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir); i915_handle_error(dev_priv->dev, false); } } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, gt_iir, pm_iir; irqreturn_t ret = IRQ_NONE; unsigned long irqflags; int pipe; u32 pipe_stats[I915_MAX_PIPES]; atomic_inc(&dev_priv->irq_received); while (true) { iir = I915_READ(VLV_IIR); gt_iir = I915_READ(GTIIR); pm_iir = I915_READ(GEN6_PMIIR); if (gt_iir == 0 && pm_iir == 0 && iir == 0) goto out; ret = IRQ_HANDLED; snb_gt_irq_handler(dev, dev_priv, gt_iir); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); for_each_pipe(pipe) { if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(dev, pipe); if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip(dev, pipe); } } /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); I915_READ(PORT_HOTPLUG_STAT); } if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); if (pm_iir & GEN6_PM_RPS_EVENTS) gen6_rps_irq_handler(dev_priv, pm_iir); I915_WRITE(GTIIR, gt_iir); I915_WRITE(GEN6_PMIIR, pm_iir); I915_WRITE(VLV_IIR, iir); } out: return ret; } static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx); if (pch_iir & SDE_AUDIO_POWER_MASK) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false)) DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n"); if (pch_iir & SDE_TRANSB_FIFO_UNDER) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, false)) DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n"); } static void ivb_err_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 err_int = I915_READ(GEN7_ERR_INT); if (err_int & ERR_INT_POISON) DRM_ERROR("Poison interrupt\n"); if (err_int & ERR_INT_FIFO_UNDERRUN_A) if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false)) DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n"); if (err_int & ERR_INT_FIFO_UNDERRUN_B) if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false)) DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n"); if (err_int & ERR_INT_FIFO_UNDERRUN_C) if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false)) DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n"); I915_WRITE(GEN7_ERR_INT, err_int); } static void cpt_serr_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 serr_int = I915_READ(SERR_INT); if (serr_int & SERR_INT_POISON) DRM_ERROR("PCH poison interrupt\n"); if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false)) DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n"); if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, false)) DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n"); if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C, false)) DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n"); I915_WRITE(SERR_INT, serr_int); } static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt); if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> SDE_AUDIO_POWER_SHIFT_CPT); DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK_CPT) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_CP_REQ_CPT) DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); if (pch_iir & SDE_AUDIO_CP_CHG_CPT) DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); if (pch_iir & SDE_FDI_MASK_CPT) for_each_pipe(pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & SDE_ERROR_CPT) cpt_serr_int_handler(dev); } static irqreturn_t ivybridge_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0; irqreturn_t ret = IRQ_NONE; int i; atomic_inc(&dev_priv->irq_received); /* We get interrupts on unclaimed registers, so check for this before we * do any I915_{READ,WRITE}. */ if (IS_HASWELL(dev) && (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) { DRM_ERROR("Unclaimed register before interrupt\n"); I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM); } /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(dev)) { sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); POSTING_READ(SDEIER); } /* On Haswell, also mask ERR_INT because we don't want to risk * generating "unclaimed register" interrupts from inside the interrupt * handler. */ if (IS_HASWELL(dev)) { spin_lock(&dev_priv->irq_lock); ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB); spin_unlock(&dev_priv->irq_lock); } gt_iir = I915_READ(GTIIR); if (gt_iir) { snb_gt_irq_handler(dev, dev_priv, gt_iir); I915_WRITE(GTIIR, gt_iir); ret = IRQ_HANDLED; } de_iir = I915_READ(DEIIR); if (de_iir) { if (de_iir & DE_ERR_INT_IVB) ivb_err_int_handler(dev); if (de_iir & DE_AUX_CHANNEL_A_IVB) dp_aux_irq_handler(dev); if (de_iir & DE_GSE_IVB) intel_opregion_asle_intr(dev); for (i = 0; i < 3; i++) { if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i))) drm_handle_vblank(dev, i); if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) { intel_prepare_page_flip(dev, i); intel_finish_page_flip_plane(dev, i); } } /* check event from PCH */ if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) { u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev, pch_iir); /* clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } I915_WRITE(DEIIR, de_iir); ret = IRQ_HANDLED; } pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) { if (IS_HASWELL(dev)) hsw_pm_irq_handler(dev_priv, pm_iir); else if (pm_iir & GEN6_PM_RPS_EVENTS) gen6_rps_irq_handler(dev_priv, pm_iir); I915_WRITE(GEN6_PMIIR, pm_iir); ret = IRQ_HANDLED; } if (IS_HASWELL(dev)) { spin_lock(&dev_priv->irq_lock); if (ivb_can_enable_err_int(dev)) ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB); spin_unlock(&dev_priv->irq_lock); } I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); if (!HAS_PCH_NOP(dev)) { I915_WRITE(SDEIER, sde_ier); POSTING_READ(SDEIER); } return ret; } static void ilk_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & ILK_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); } static irqreturn_t ironlake_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int ret = IRQ_NONE; u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier; atomic_inc(&dev_priv->irq_received); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); POSTING_READ(SDEIER); de_iir = I915_READ(DEIIR); gt_iir = I915_READ(GTIIR); pm_iir = I915_READ(GEN6_PMIIR); if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0)) goto done; ret = IRQ_HANDLED; if (IS_GEN5(dev)) ilk_gt_irq_handler(dev, dev_priv, gt_iir); else snb_gt_irq_handler(dev, dev_priv, gt_iir); if (de_iir & DE_AUX_CHANNEL_A) dp_aux_irq_handler(dev); if (de_iir & DE_GSE) intel_opregion_asle_intr(dev); if (de_iir & DE_PIPEA_VBLANK) drm_handle_vblank(dev, 0); if (de_iir & DE_PIPEB_VBLANK) drm_handle_vblank(dev, 1); if (de_iir & DE_POISON) DRM_ERROR("Poison interrupt\n"); if (de_iir & DE_PIPEA_FIFO_UNDERRUN) if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false)) DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n"); if (de_iir & DE_PIPEB_FIFO_UNDERRUN) if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false)) DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n"); if (de_iir & DE_PLANEA_FLIP_DONE) { intel_prepare_page_flip(dev, 0); intel_finish_page_flip_plane(dev, 0); } if (de_iir & DE_PLANEB_FLIP_DONE) { intel_prepare_page_flip(dev, 1); intel_finish_page_flip_plane(dev, 1); } /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { u32 pch_iir = I915_READ(SDEIIR); if (HAS_PCH_CPT(dev)) cpt_irq_handler(dev, pch_iir); else ibx_irq_handler(dev, pch_iir); /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT) ironlake_rps_change_irq_handler(dev); if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS) gen6_rps_irq_handler(dev_priv, pm_iir); I915_WRITE(GTIIR, gt_iir); I915_WRITE(DEIIR, de_iir); I915_WRITE(GEN6_PMIIR, pm_iir); done: I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); I915_WRITE(SDEIER, sde_ier); POSTING_READ(SDEIER); return ret; } /** * i915_error_work_func - do process context error handling work * @work: work struct * * Fire an error uevent so userspace can see that a hang or error * was detected. */ static void i915_error_work_func(struct work_struct *work) { struct i915_gpu_error *error = container_of(work, struct i915_gpu_error, work); drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t, gpu_error); struct drm_device *dev = dev_priv->dev; struct intel_ring_buffer *ring; char *error_event[] = { "ERROR=1", NULL }; char *reset_event[] = { "RESET=1", NULL }; char *reset_done_event[] = { "ERROR=0", NULL }; int i, ret; kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event); /* * Note that there's only one work item which does gpu resets, so we * need not worry about concurrent gpu resets potentially incrementing * error->reset_counter twice. We only need to take care of another * racing irq/hangcheck declaring the gpu dead for a second time. A * quick check for that is good enough: schedule_work ensures the * correct ordering between hang detection and this work item, and since * the reset in-progress bit is only ever set by code outside of this * work we don't need to worry about any other races. */ if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) { DRM_DEBUG_DRIVER("resetting chip\n"); kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event); ret = i915_reset(dev); if (ret == 0) { /* * After all the gem state is reset, increment the reset * counter and wake up everyone waiting for the reset to * complete. * * Since unlock operations are a one-sided barrier only, * we need to insert a barrier here to order any seqno * updates before * the counter increment. */ smp_mb__before_atomic_inc(); atomic_inc(&dev_priv->gpu_error.reset_counter); kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event); } else { atomic_set(&error->reset_counter, I915_WEDGED); } for_each_ring(ring, dev_priv, i) wake_up_all(&ring->irq_queue); intel_display_handle_reset(dev); wake_up_all(&dev_priv->gpu_error.reset_queue); } } static void i915_report_and_clear_eir(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t instdone[I915_NUM_INSTDONE_REG]; u32 eir = I915_READ(EIR); int pipe, i; if (!eir) return; pr_err("render error detected, EIR: 0x%08x\n", eir); i915_get_extra_instdone(dev, instdone); if (IS_G4X(dev)) { if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } if (eir & GM45_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (!IS_GEN2(dev)) { if (eir & I915_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (eir & I915_ERROR_MEMORY_REFRESH) { pr_err("memory refresh error:\n"); for_each_pipe(pipe) pr_err("pipe %c stat: 0x%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); /* pipestat has already been acked */ } if (eir & I915_ERROR_INSTRUCTION) { pr_err("instruction error\n"); pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); if (INTEL_INFO(dev)->gen < 4) { u32 ipeir = I915_READ(IPEIR); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD)); I915_WRITE(IPEIR, ipeir); POSTING_READ(IPEIR); } else { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } } I915_WRITE(EIR, eir); POSTING_READ(EIR); eir = I915_READ(EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir); I915_WRITE(EMR, I915_READ(EMR) | eir); I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); } } /** * i915_handle_error - handle an error interrupt * @dev: drm device * * Do some basic checking of regsiter state at error interrupt time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void i915_handle_error(struct drm_device *dev, bool wedged) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; i915_capture_error_state(dev); i915_report_and_clear_eir(dev); if (wedged) { atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG, &dev_priv->gpu_error.reset_counter); /* * Wakeup waiting processes so that the reset work item * doesn't deadlock trying to grab various locks. */ for_each_ring(ring, dev_priv, i) wake_up_all(&ring->irq_queue); } queue_work(dev_priv->wq, &dev_priv->gpu_error.work); } static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj; struct intel_unpin_work *work; unsigned long flags; bool stall_detected; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; if (work == NULL || atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE || !work->enable_stall_check) { /* Either the pending flip IRQ arrived, or we're too early. Don't check */ spin_unlock_irqrestore(&dev->event_lock, flags); return; } /* Potential stall - if we see that the flip has happened, assume a missed interrupt */ obj = work->pending_flip_obj; if (INTEL_INFO(dev)->gen >= 4) { int dspsurf = DSPSURF(intel_crtc->plane); stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) == i915_gem_obj_ggtt_offset(obj); } else { int dspaddr = DSPADDR(intel_crtc->plane); stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) + crtc->y * crtc->fb->pitches[0] + crtc->x * crtc->fb->bits_per_pixel/8); } spin_unlock_irqrestore(&dev->event_lock, flags); if (stall_detected) { DRM_DEBUG_DRIVER("Pageflip stall detected\n"); intel_prepare_page_flip(dev, intel_crtc->plane); } } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static int i915_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); else i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE); /* maintain vblank delivery even in deep C-states */ if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int ironlake_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK : DE_PIPEB_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int ivybridge_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, DE_PIPEA_VBLANK_IVB << (5 * pipe)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int valleyview_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; u32 imr; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); imr = I915_READ(VLV_IMR); if (pipe == 0) imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT; else imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(VLV_IMR, imr); i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static void i915_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS)); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE | PIPE_START_VBLANK_INTERRUPT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void ironlake_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_disable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK : DE_PIPEB_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void ivybridge_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_disable_display_irq(dev_priv, DE_PIPEA_VBLANK_IVB << (pipe * 5)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void valleyview_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; u32 imr; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); imr = I915_READ(VLV_IMR); if (pipe == 0) imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT; else imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(VLV_IMR, imr); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static u32 ring_last_seqno(struct intel_ring_buffer *ring) { return list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno; } static bool ring_idle(struct intel_ring_buffer *ring, u32 seqno) { return (list_empty(&ring->request_list) || i915_seqno_passed(seqno, ring_last_seqno(ring))); } static struct intel_ring_buffer * semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; u32 cmd, ipehr, acthd, acthd_min; ipehr = I915_READ(RING_IPEHR(ring->mmio_base)); if ((ipehr & ~(0x3 << 16)) != (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER)) return NULL; /* ACTHD is likely pointing to the dword after the actual command, * so scan backwards until we find the MBOX. */ acthd = intel_ring_get_active_head(ring) & HEAD_ADDR; acthd_min = max((int)acthd - 3 * 4, 0); do { cmd = ioread32(ring->virtual_start + acthd); if (cmd == ipehr) break; acthd -= 4; if (acthd < acthd_min) return NULL; } while (1); *seqno = ioread32(ring->virtual_start+acthd+4)+1; return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3]; } static int semaphore_passed(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; struct intel_ring_buffer *signaller; u32 seqno, ctl; ring->hangcheck.deadlock = true; signaller = semaphore_waits_for(ring, &seqno); if (signaller == NULL || signaller->hangcheck.deadlock) return -1; /* cursory check for an unkickable deadlock */ ctl = I915_READ_CTL(signaller); if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0) return -1; return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno); } static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv) { struct intel_ring_buffer *ring; int i; for_each_ring(ring, dev_priv, i) ring->hangcheck.deadlock = false; } static enum intel_ring_hangcheck_action ring_stuck(struct intel_ring_buffer *ring, u32 acthd) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp; if (ring->hangcheck.acthd != acthd) return active; if (IS_GEN2(dev)) return hung; /* Is the chip hanging on a WAIT_FOR_EVENT? * If so we can simply poke the RB_WAIT bit * and break the hang. This should work on * all but the second generation chipsets. */ tmp = I915_READ_CTL(ring); if (tmp & RING_WAIT) { DRM_ERROR("Kicking stuck wait on %s\n", ring->name); I915_WRITE_CTL(ring, tmp); return kick; } if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) { switch (semaphore_passed(ring)) { default: return hung; case 1: DRM_ERROR("Kicking stuck semaphore on %s\n", ring->name); I915_WRITE_CTL(ring, tmp); return kick; case 0: return wait; } } return hung; } /** * This is called when the chip hasn't reported back with completed * batchbuffers in a long time. We keep track per ring seqno progress and * if there are no progress, hangcheck score for that ring is increased. * Further, acthd is inspected to see if the ring is stuck. On stuck case * we kick the ring. If we see no progress on three subsequent calls * we assume chip is wedged and try to fix it by resetting the chip. */ void i915_hangcheck_elapsed(unsigned long data) { struct drm_device *dev = (struct drm_device *)data; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; int busy_count = 0, rings_hung = 0; bool stuck[I915_NUM_RINGS] = { 0 }; #define BUSY 1 #define KICK 5 #define HUNG 20 #define FIRE 30 if (!i915_enable_hangcheck) return; for_each_ring(ring, dev_priv, i) { u32 seqno, acthd; bool busy = true; semaphore_clear_deadlocks(dev_priv); seqno = ring->get_seqno(ring, false); acthd = intel_ring_get_active_head(ring); if (ring->hangcheck.seqno == seqno) { if (ring_idle(ring, seqno)) { if (waitqueue_active(&ring->irq_queue)) { /* Issue a wake-up to catch stuck h/w. */ DRM_ERROR("Hangcheck timer elapsed... %s idle\n", ring->name); wake_up_all(&ring->irq_queue); ring->hangcheck.score += HUNG; } else busy = false; } else { int score; /* We always increment the hangcheck score * if the ring is busy and still processing * the same request, so that no single request * can run indefinitely (such as a chain of * batches). The only time we do not increment * the hangcheck score on this ring, if this * ring is in a legitimate wait for another * ring. In that case the waiting ring is a * victim and we want to be sure we catch the * right culprit. Then every time we do kick * the ring, add a small increment to the * score so that we can catch a batch that is * being repeatedly kicked and so responsible * for stalling the machine. */ ring->hangcheck.action = ring_stuck(ring, acthd); switch (ring->hangcheck.action) { case wait: score = 0; break; case active: score = BUSY; break; case kick: score = KICK; break; case hung: score = HUNG; stuck[i] = true; break; } ring->hangcheck.score += score; } } else { /* Gradually reduce the count so that we catch DoS * attempts across multiple batches. */ if (ring->hangcheck.score > 0) ring->hangcheck.score--; } ring->hangcheck.seqno = seqno; ring->hangcheck.acthd = acthd; busy_count += busy; } for_each_ring(ring, dev_priv, i) { if (ring->hangcheck.score > FIRE) { DRM_ERROR("%s on %s\n", stuck[i] ? "stuck" : "no progress", ring->name); rings_hung++; } } if (rings_hung) return i915_handle_error(dev, true); if (busy_count) /* Reset timer case chip hangs without another request * being added */ mod_timer(&dev_priv->gpu_error.hangcheck_timer, round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); } static void ibx_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_PCH_NOP(dev)) return; /* south display irq */ I915_WRITE(SDEIMR, 0xffffffff); /* * SDEIER is also touched by the interrupt handler to work around missed * PCH interrupts. Hence we can't update it after the interrupt handler * is enabled - instead we unconditionally enable all PCH interrupt * sources here, but then only unmask them as needed with SDEIMR. */ I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); } static void gen5_gt_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* and GT */ I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); POSTING_READ(GTIER); if (INTEL_INFO(dev)->gen >= 6) { /* and PM */ I915_WRITE(GEN6_PMIMR, 0xffffffff); I915_WRITE(GEN6_PMIER, 0x0); POSTING_READ(GEN6_PMIER); } } /* drm_dma.h hooks */ static void ironlake_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(HWSTAM, 0xeffe); I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); POSTING_READ(DEIER); gen5_gt_irq_preinstall(dev); ibx_irq_preinstall(dev); } static void ivybridge_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(HWSTAM, 0xeffe); /* XXX hotplug from PCH */ I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); POSTING_READ(DEIER); gen5_gt_irq_preinstall(dev); ibx_irq_preinstall(dev); } static void valleyview_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); /* VLV magic */ I915_WRITE(VLV_IMR, 0); I915_WRITE(RING_IMR(RENDER_RING_BASE), 0); I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0); I915_WRITE(RING_IMR(BLT_RING_BASE), 0); /* and GT */ I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIIR, I915_READ(GTIIR)); gen5_gt_irq_preinstall(dev); I915_WRITE(DPINVGTT, 0xff); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IMR, 0xffffffff); I915_WRITE(VLV_IER, 0x0); POSTING_READ(VLV_IER); } static void ibx_hpd_irq_setup(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *intel_encoder; u32 hotplug_irqs, hotplug, enabled_irqs = 0; if (HAS_PCH_IBX(dev)) { hotplug_irqs = SDE_HOTPLUG_MASK; list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin]; } else { hotplug_irqs = SDE_HOTPLUG_MASK_CPT; list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin]; } ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * * This register is the same on all known PCH chips. */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void ibx_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 mask; if (HAS_PCH_NOP(dev)) return; if (HAS_PCH_IBX(dev)) { mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER | SDE_TRANSA_FIFO_UNDER | SDE_POISON; } else { mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT; I915_WRITE(SERR_INT, I915_READ(SERR_INT)); } I915_WRITE(SDEIIR, I915_READ(SDEIIR)); I915_WRITE(SDEIMR, ~mask); } static int ironlake_irq_postinstall(struct drm_device *dev) { unsigned long irqflags; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; /* enable kind of interrupts always enabled */ u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | DE_POISON; u32 gt_irqs; dev_priv->irq_mask = ~display_mask; /* should always can generate irq */ I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(DEIMR, dev_priv->irq_mask); I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT); POSTING_READ(DEIER); dev_priv->gt_irq_mask = ~0; I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); gt_irqs = GT_RENDER_USER_INTERRUPT; if (IS_GEN6(dev)) gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; else gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT | ILK_BSD_USER_INTERRUPT; I915_WRITE(GTIER, gt_irqs); POSTING_READ(GTIER); ibx_irq_postinstall(dev); if (IS_IRONLAKE_M(dev)) { /* Enable PCU event interrupts * * spinlocking not required here for correctness since interrupt * setup is guaranteed to run in single-threaded context. But we * need it to make the assert_spin_locked happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } return 0; } static int ivybridge_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; /* enable kind of interrupts always enabled */ u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | DE_PLANEB_FLIP_DONE_IVB | DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB | DE_ERR_INT_IVB; u32 pm_irqs = GEN6_PM_RPS_EVENTS; u32 gt_irqs; dev_priv->irq_mask = ~display_mask; /* should always can generate irq */ I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT)); I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(DEIMR, dev_priv->irq_mask); I915_WRITE(DEIER, display_mask | DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | DE_PIPEA_VBLANK_IVB); POSTING_READ(DEIER); dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT; I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT | GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT; I915_WRITE(GTIER, gt_irqs); POSTING_READ(GTIER); I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR)); if (HAS_VEBOX(dev)) pm_irqs |= PM_VEBOX_USER_INTERRUPT; /* Our enable/disable rps functions may touch these registers so * make sure to set a known state for only the non-RPS bits. * The RMW is extra paranoia since this should be called after being set * to a known state in preinstall. * */ I915_WRITE(GEN6_PMIMR, (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs); I915_WRITE(GEN6_PMIER, (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs); POSTING_READ(GEN6_PMIER); ibx_irq_postinstall(dev); return 0; } static int valleyview_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 gt_irqs; u32 enable_mask; u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV; unsigned long irqflags; enable_mask = I915_DISPLAY_PORT_INTERRUPT; enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; /* *Leave vblank interrupts masked initially. enable/disable will * toggle them based on usage. */ dev_priv->irq_mask = (~enable_mask) | I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT | I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); I915_WRITE(VLV_IMR, dev_priv->irq_mask); I915_WRITE(VLV_IER, enable_mask); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(PIPESTAT(0), 0xffff); I915_WRITE(PIPESTAT(1), 0xffff); POSTING_READ(VLV_IER); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, 0, pipestat_enable); i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE); i915_enable_pipestat(dev_priv, 1, pipestat_enable); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT | GT_BLT_USER_INTERRUPT; I915_WRITE(GTIER, gt_irqs); POSTING_READ(GTIER); /* ack & enable invalid PTE error interrupts */ #if 0 /* FIXME: add support to irq handler for checking these bits */ I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK); #endif I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); return 0; } static void valleyview_irq_uninstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(HWSTAM, 0xffffffff); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IMR, 0xffffffff); I915_WRITE(VLV_IER, 0x0); POSTING_READ(VLV_IER); } static void ironlake_irq_uninstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); I915_WRITE(HWSTAM, 0xffffffff); I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); I915_WRITE(DEIIR, I915_READ(DEIIR)); if (IS_GEN7(dev)) I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT)); I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); I915_WRITE(GTIIR, I915_READ(GTIIR)); if (HAS_PCH_NOP(dev)) return; I915_WRITE(SDEIMR, 0xffffffff); I915_WRITE(SDEIER, 0x0); I915_WRITE(SDEIIR, I915_READ(SDEIIR)); if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev)) I915_WRITE(SERR_INT, I915_READ(SERR_INT)); } static void i8xx_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); POSTING_READ16(IER); } static int i8xx_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); I915_WRITE16(IMR, dev_priv->irq_mask); I915_WRITE16(IER, I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT); POSTING_READ16(IER); return 0; } /* * Returns true when a page flip has completed. */ static bool i8xx_handle_vblank(struct drm_device *dev, int pipe, u16 iir) { drm_i915_private_t *dev_priv = dev->dev_private; u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe); if (!drm_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) return false; intel_prepare_page_flip(dev, pipe); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ16(ISR) & flip_pending) return false; intel_finish_page_flip(dev, pipe); return true; } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u16 iir, new_iir; u32 pipe_stats[2]; unsigned long irqflags; int irq_received; int pipe; u16 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; atomic_inc(&dev_priv->irq_received); iir = I915_READ16(IIR); if (iir == 0) return IRQ_NONE; while (iir & ~flip_mask) { /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = 1; } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); I915_WRITE16(IIR, iir & ~flip_mask); new_iir = I915_READ16(IIR); /* Flush posted writes */ i915_update_dri1_breadcrumb(dev); if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS && i8xx_handle_vblank(dev, 0, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0); if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS && i8xx_handle_vblank(dev, 1, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1); iir = new_iir; } return IRQ_HANDLED; } static void i8xx_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; for_each_pipe(pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); I915_WRITE16(IIR, I915_READ16(IIR)); } static void i915_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xeffe); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i915_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask; I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); i915_enable_asle_pipestat(dev); return 0; } /* * Returns true when a page flip has completed. */ static bool i915_handle_vblank(struct drm_device *dev, int plane, int pipe, u32 iir) { drm_i915_private_t *dev_priv = dev->dev_private; u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!drm_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) return false; intel_prepare_page_flip(dev, plane); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ(ISR) & flip_pending) return false; intel_finish_page_flip(dev, pipe); return true; } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; unsigned long irqflags; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; int pipe, ret = IRQ_NONE; atomic_inc(&dev_priv->irq_received); iir = I915_READ(IIR); do { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); if (!irq_received) break; /* Consume port. Then clear IIR or we'll miss events */ if ((I915_HAS_HOTPLUG(dev)) && (iir & I915_DISPLAY_PORT_INTERRUPT)) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); POSTING_READ(PORT_HOTPLUG_STAT); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); for_each_pipe(pipe) { int plane = pipe; if (IS_MOBILE(dev)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ ret = IRQ_HANDLED; iir = new_iir; } while (iir & ~flip_mask); i915_update_dri1_breadcrumb(dev); return ret; } static void i915_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; del_timer_sync(&dev_priv->hotplug_reenable_timer); if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xffff); for_each_pipe(pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); I915_WRITE(IIR, I915_READ(IIR)); } static void i965_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xeffe); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i965_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask; u32 error_mask; unsigned long irqflags; /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = ~dev_priv->irq_mask; enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); enable_mask |= I915_USER_INTERRUPT; if (IS_G4X(dev)) enable_mask |= I915_BSD_USER_INTERRUPT; /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); i915_enable_asle_pipestat(dev); return 0; } static void i915_hpd_irq_setup(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *intel_encoder; u32 hotplug_en; assert_spin_locked(&dev_priv->irq_lock); if (I915_HAS_HOTPLUG(dev)) { hotplug_en = I915_READ(PORT_HOTPLUG_EN); hotplug_en &= ~HOTPLUG_INT_EN_MASK; /* Note HDMI and DP share hotplug bits */ /* enable bits are the same for all generations */ list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin]; /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; /* Ignore TV since it's buggy */ I915_WRITE(PORT_HOTPLUG_EN, hotplug_en); } } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, new_iir; u32 pipe_stats[I915_MAX_PIPES]; unsigned long irqflags; int irq_received; int ret = IRQ_NONE, pipe; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; atomic_inc(&dev_priv->irq_received); iir = I915_READ(IIR); for (;;) { bool blc_event = false; irq_received = (iir & ~flip_mask) != 0; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = 1; } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); if (!irq_received) break; ret = IRQ_HANDLED; /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ? HOTPLUG_INT_STATUS_G4X : HOTPLUG_INT_STATUS_I915); DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); I915_READ(PORT_HOTPLUG_STAT); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); if (iir & I915_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); for_each_pipe(pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, pipe, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ iir = new_iir; } i915_update_dri1_breadcrumb(dev); return ret; } static void i965_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xffffffff); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)) & 0x8000ffff); I915_WRITE(IIR, I915_READ(IIR)); } static void i915_reenable_hotplug_timer_func(unsigned long data) { drm_i915_private_t *dev_priv = (drm_i915_private_t *)data; struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; unsigned long irqflags; int i; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) { struct drm_connector *connector; if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED) continue; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); if (intel_connector->encoder->hpd_pin == i) { if (connector->polled != intel_connector->polled) DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n", drm_get_connector_name(connector)); connector->polled = intel_connector->polled; if (!connector->polled) connector->polled = DRM_CONNECTOR_POLL_HPD; } } } if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } void intel_irq_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func); INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func); INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); setup_timer(&dev_priv->gpu_error.hangcheck_timer, i915_hangcheck_elapsed, (unsigned long) dev); setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func, (unsigned long) dev_priv); pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = gm45_get_vblank_counter; } if (drm_core_check_feature(dev, DRIVER_MODESET)) dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; else dev->driver->get_vblank_timestamp = NULL; dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; if (IS_VALLEYVIEW(dev)) { dev->driver->irq_handler = valleyview_irq_handler; dev->driver->irq_preinstall = valleyview_irq_preinstall; dev->driver->irq_postinstall = valleyview_irq_postinstall; dev->driver->irq_uninstall = valleyview_irq_uninstall; dev->driver->enable_vblank = valleyview_enable_vblank; dev->driver->disable_vblank = valleyview_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { /* Share uninstall handlers with ILK/SNB */ dev->driver->irq_handler = ivybridge_irq_handler; dev->driver->irq_preinstall = ivybridge_irq_preinstall; dev->driver->irq_postinstall = ivybridge_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ivybridge_enable_vblank; dev->driver->disable_vblank = ivybridge_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else if (HAS_PCH_SPLIT(dev)) { dev->driver->irq_handler = ironlake_irq_handler; dev->driver->irq_preinstall = ironlake_irq_preinstall; dev->driver->irq_postinstall = ironlake_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ironlake_enable_vblank; dev->driver->disable_vblank = ironlake_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else { if (INTEL_INFO(dev)->gen == 2) { dev->driver->irq_preinstall = i8xx_irq_preinstall; dev->driver->irq_postinstall = i8xx_irq_postinstall; dev->driver->irq_handler = i8xx_irq_handler; dev->driver->irq_uninstall = i8xx_irq_uninstall; } else if (INTEL_INFO(dev)->gen == 3) { dev->driver->irq_preinstall = i915_irq_preinstall; dev->driver->irq_postinstall = i915_irq_postinstall; dev->driver->irq_uninstall = i915_irq_uninstall; dev->driver->irq_handler = i915_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else { dev->driver->irq_preinstall = i965_irq_preinstall; dev->driver->irq_postinstall = i965_irq_postinstall; dev->driver->irq_uninstall = i965_irq_uninstall; dev->driver->irq_handler = i965_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } dev->driver->enable_vblank = i915_enable_vblank; dev->driver->disable_vblank = i915_disable_vblank; } } void intel_hpd_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; unsigned long irqflags; int i; for (i = 1; i < HPD_NUM_PINS; i++) { dev_priv->hpd_stats[i].hpd_cnt = 0; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; } list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); connector->polled = intel_connector->polled; if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE) connector->polled = DRM_CONNECTOR_POLL_HPD; } /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked checks happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); }