/* * Copyright © 2008-2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Zou Nan hai * Xiang Hai hao * */ #include #include #include "gem/i915_gem_context.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm_irq.h" #include "intel_reset.h" #include "intel_workarounds.h" /* Rough estimate of the typical request size, performing a flush, * set-context and then emitting the batch. */ #define LEGACY_REQUEST_SIZE 200 unsigned int intel_ring_update_space(struct intel_ring *ring) { unsigned int space; space = __intel_ring_space(ring->head, ring->emit, ring->size); ring->space = space; return space; } static int gen2_render_ring_flush(struct i915_request *rq, u32 mode) { unsigned int num_store_dw; u32 cmd, *cs; cmd = MI_FLUSH; num_store_dw = 0; if (mode & EMIT_INVALIDATE) cmd |= MI_READ_FLUSH; if (mode & EMIT_FLUSH) num_store_dw = 4; cs = intel_ring_begin(rq, 2 + 3 * num_store_dw); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = cmd; while (num_store_dw--) { *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); *cs++ = 0; } *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH; intel_ring_advance(rq, cs); return 0; } static int gen4_render_ring_flush(struct i915_request *rq, u32 mode) { u32 cmd, *cs; int i; /* * read/write caches: * * I915_GEM_DOMAIN_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * I915_GEM_DOMAIN_COMMAND may not exist? * * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * I915_GEM_DOMAIN_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER * are flushed at any MI_FLUSH. */ cmd = MI_FLUSH; if (mode & EMIT_INVALIDATE) { cmd |= MI_EXE_FLUSH; if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5)) cmd |= MI_INVALIDATE_ISP; } i = 2; if (mode & EMIT_INVALIDATE) i += 20; cs = intel_ring_begin(rq, i); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = cmd; /* * A random delay to let the CS invalidate take effect? Without this * delay, the GPU relocation path fails as the CS does not see * the updated contents. Just as important, if we apply the flushes * to the EMIT_FLUSH branch (i.e. immediately after the relocation * write and before the invalidate on the next batch), the relocations * still fail. This implies that is a delay following invalidation * that is required to reset the caches as opposed to a delay to * ensure the memory is written. */ if (mode & EMIT_INVALIDATE) { *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE; *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT) | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; *cs++ = 0; for (i = 0; i < 12; i++) *cs++ = MI_FLUSH; *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE; *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT) | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; *cs++ = 0; } *cs++ = cmd; intel_ring_advance(rq, cs); return 0; } /* * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int gen6_emit_post_sync_nonzero_flush(struct i915_request *rq) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; /* low dword */ *cs++ = 0; /* high dword */ *cs++ = MI_NOOP; intel_ring_advance(rq, cs); cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_QW_WRITE; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; *cs++ = 0; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int gen6_render_ring_flush(struct i915_request *rq, u32 mode) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs, flags = 0; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ ret = gen6_emit_post_sync_nonzero_flush(rq); if (ret) return ret; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* * Ensure that any following seqno writes only happen * when the render cache is indeed flushed. */ flags |= PIPE_CONTROL_CS_STALL; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; } cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = flags; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) { /* First we do the gen6_emit_post_sync_nonzero_flush w/a */ *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = 0; *cs++ = 0; *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_QW_WRITE; *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT) | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; /* Finally we can flush and with it emit the breadcrumb */ *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL); *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } static int gen7_render_ring_cs_stall_wa(struct i915_request *rq) { u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = 0; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } static int gen7_render_ring_flush(struct i915_request *rq, u32 mode) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs, flags = 0; /* * Ensure that any following seqno writes only happen when the render * cache is indeed flushed. * * Workaround: 4th PIPE_CONTROL command (except the ones with only * read-cache invalidate bits set) must have the CS_STALL bit set. We * don't try to be clever and just set it unconditionally. */ flags |= PIPE_CONTROL_CS_STALL; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD; /* Workaround: we must issue a pipe_control with CS-stall bit * set before a pipe_control command that has the state cache * invalidate bit set. */ gen7_render_ring_cs_stall_wa(rq); } cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = flags; *cs++ = scratch_addr; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) { *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL); *cs++ = rq->timeline->hwsp_offset; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) { GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #define GEN7_XCS_WA 32 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) { int i; GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = rq->fence.seqno; for (i = 0; i < GEN7_XCS_WA; i++) { *cs++ = MI_STORE_DWORD_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR; *cs++ = rq->fence.seqno; } *cs++ = MI_FLUSH_DW; *cs++ = 0; *cs++ = 0; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #undef GEN7_XCS_WA static void set_hwstam(struct intel_engine_cs *engine, u32 mask) { /* * Keep the render interrupt unmasked as this papers over * lost interrupts following a reset. */ if (engine->class == RENDER_CLASS) { if (INTEL_GEN(engine->i915) >= 6) mask &= ~BIT(0); else mask &= ~I915_USER_INTERRUPT; } intel_engine_set_hwsp_writemask(engine, mask); } static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys) { struct drm_i915_private *dev_priv = engine->i915; u32 addr; addr = lower_32_bits(phys); if (INTEL_GEN(dev_priv) >= 4) addr |= (phys >> 28) & 0xf0; I915_WRITE(HWS_PGA, addr); } static struct page *status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj = engine->status_page.vma->obj; GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); return sg_page(obj->mm.pages->sgl); } static void ring_setup_phys_status_page(struct intel_engine_cs *engine) { set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine)))); set_hwstam(engine, ~0u); } static void set_hwsp(struct intel_engine_cs *engine, u32 offset) { struct drm_i915_private *dev_priv = engine->i915; i915_reg_t hwsp; /* * The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (IS_GEN(dev_priv, 7)) { switch (engine->id) { /* * No more rings exist on Gen7. Default case is only to shut up * gcc switch check warning. */ default: GEM_BUG_ON(engine->id); /* fallthrough */ case RCS0: hwsp = RENDER_HWS_PGA_GEN7; break; case BCS0: hwsp = BLT_HWS_PGA_GEN7; break; case VCS0: hwsp = BSD_HWS_PGA_GEN7; break; case VECS0: hwsp = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN(dev_priv, 6)) { hwsp = RING_HWS_PGA_GEN6(engine->mmio_base); } else { hwsp = RING_HWS_PGA(engine->mmio_base); } I915_WRITE(hwsp, offset); POSTING_READ(hwsp); } static void flush_cs_tlb(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (!IS_GEN_RANGE(dev_priv, 6, 7)) return; /* ring should be idle before issuing a sync flush*/ WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0); ENGINE_WRITE(engine, RING_INSTPM, _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | INSTPM_SYNC_FLUSH)); if (intel_wait_for_register(engine->uncore, RING_INSTPM(engine->mmio_base), INSTPM_SYNC_FLUSH, 0, 1000)) DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n", engine->name); } static void ring_setup_status_page(struct intel_engine_cs *engine) { set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma)); set_hwstam(engine, ~0u); flush_cs_tlb(engine); } static bool stop_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (INTEL_GEN(dev_priv) > 2) { ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING)); if (intel_wait_for_register(engine->uncore, RING_MI_MODE(engine->mmio_base), MODE_IDLE, MODE_IDLE, 1000)) { DRM_ERROR("%s : timed out trying to stop ring\n", engine->name); /* * Sometimes we observe that the idle flag is not * set even though the ring is empty. So double * check before giving up. */ if (ENGINE_READ(engine, RING_HEAD) != ENGINE_READ(engine, RING_TAIL)) return false; } } ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL)); ENGINE_WRITE(engine, RING_HEAD, 0); ENGINE_WRITE(engine, RING_TAIL, 0); /* The ring must be empty before it is disabled */ ENGINE_WRITE(engine, RING_CTL, 0); return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0; } static int xcs_resume(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; struct intel_ring *ring = engine->legacy.ring; int ret = 0; GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n", engine->name, ring->head, ring->tail); intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); /* WaClearRingBufHeadRegAtInit:ctg,elk */ if (!stop_ring(engine)) { /* G45 ring initialization often fails to reset head to zero */ DRM_DEBUG_DRIVER("%s head not reset to zero " "ctl %08x head %08x tail %08x start %08x\n", engine->name, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_HEAD), ENGINE_READ(engine, RING_TAIL), ENGINE_READ(engine, RING_START)); if (!stop_ring(engine)) { DRM_ERROR("failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", engine->name, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_HEAD), ENGINE_READ(engine, RING_TAIL), ENGINE_READ(engine, RING_START)); ret = -EIO; goto out; } } if (HWS_NEEDS_PHYSICAL(dev_priv)) ring_setup_phys_status_page(engine); else ring_setup_status_page(engine); intel_engine_reset_breadcrumbs(engine); /* Enforce ordering by reading HEAD register back */ ENGINE_POSTING_READ(engine, RING_HEAD); /* * Initialize the ring. This must happen _after_ we've cleared the ring * registers with the above sequence (the readback of the HEAD registers * also enforces ordering), otherwise the hw might lose the new ring * register values. */ ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma)); /* Check that the ring offsets point within the ring! */ GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); intel_ring_update_space(ring); /* First wake the ring up to an empty/idle ring */ ENGINE_WRITE(engine, RING_HEAD, ring->head); ENGINE_WRITE(engine, RING_TAIL, ring->head); ENGINE_POSTING_READ(engine, RING_TAIL); ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (intel_wait_for_register(engine->uncore, RING_CTL(engine->mmio_base), RING_VALID, RING_VALID, 50)) { DRM_ERROR("%s initialization failed " "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n", engine->name, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_CTL) & RING_VALID, ENGINE_READ(engine, RING_HEAD), ring->head, ENGINE_READ(engine, RING_TAIL), ring->tail, ENGINE_READ(engine, RING_START), i915_ggtt_offset(ring->vma)); ret = -EIO; goto out; } if (INTEL_GEN(dev_priv) > 2) ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); /* Now awake, let it get started */ if (ring->tail != ring->head) { ENGINE_WRITE(engine, RING_TAIL, ring->tail); ENGINE_POSTING_READ(engine, RING_TAIL); } /* Papering over lost _interrupts_ immediately following the restart */ intel_engine_queue_breadcrumbs(engine); out: intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); return ret; } static void reset_prepare(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; const u32 base = engine->mmio_base; /* * We stop engines, otherwise we might get failed reset and a * dead gpu (on elk). Also as modern gpu as kbl can suffer * from system hang if batchbuffer is progressing when * the reset is issued, regardless of READY_TO_RESET ack. * Thus assume it is best to stop engines on all gens * where we have a gpu reset. * * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) * * WaMediaResetMainRingCleanup:ctg,elk (presumably) * * FIXME: Wa for more modern gens needs to be validated */ GEM_TRACE("%s\n", engine->name); if (intel_engine_stop_cs(engine)) GEM_TRACE("%s: timed out on STOP_RING\n", engine->name); intel_uncore_write_fw(uncore, RING_HEAD(base), intel_uncore_read_fw(uncore, RING_TAIL(base))); intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */ intel_uncore_write_fw(uncore, RING_HEAD(base), 0); intel_uncore_write_fw(uncore, RING_TAIL(base), 0); intel_uncore_posting_read_fw(uncore, RING_TAIL(base)); /* The ring must be empty before it is disabled */ intel_uncore_write_fw(uncore, RING_CTL(base), 0); /* Check acts as a post */ if (intel_uncore_read_fw(uncore, RING_HEAD(base))) GEM_TRACE("%s: ring head [%x] not parked\n", engine->name, intel_uncore_read_fw(uncore, RING_HEAD(base))); } static void reset_ring(struct intel_engine_cs *engine, bool stalled) { struct i915_request *pos, *rq; unsigned long flags; u32 head; rq = NULL; spin_lock_irqsave(&engine->active.lock, flags); list_for_each_entry(pos, &engine->active.requests, sched.link) { if (!i915_request_completed(pos)) { rq = pos; break; } } /* * The guilty request will get skipped on a hung engine. * * Users of client default contexts do not rely on logical * state preserved between batches so it is safe to execute * queued requests following the hang. Non default contexts * rely on preserved state, so skipping a batch loses the * evolution of the state and it needs to be considered corrupted. * Executing more queued batches on top of corrupted state is * risky. But we take the risk by trying to advance through * the queued requests in order to make the client behaviour * more predictable around resets, by not throwing away random * amount of batches it has prepared for execution. Sophisticated * clients can use gem_reset_stats_ioctl and dma fence status * (exported via sync_file info ioctl on explicit fences) to observe * when it loses the context state and should rebuild accordingly. * * The context ban, and ultimately the client ban, mechanism are safety * valves if client submission ends up resulting in nothing more than * subsequent hangs. */ if (rq) { /* * Try to restore the logical GPU state to match the * continuation of the request queue. If we skip the * context/PD restore, then the next request may try to execute * assuming that its context is valid and loaded on the GPU and * so may try to access invalid memory, prompting repeated GPU * hangs. * * If the request was guilty, we still restore the logical * state in case the next request requires it (e.g. the * aliasing ppgtt), but skip over the hung batch. * * If the request was innocent, we try to replay the request * with the restored context. */ __i915_request_reset(rq, stalled); GEM_BUG_ON(rq->ring != engine->legacy.ring); head = rq->head; } else { head = engine->legacy.ring->tail; } engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head); spin_unlock_irqrestore(&engine->active.lock, flags); } static void reset_finish(struct intel_engine_cs *engine) { } static int rcs_resume(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; /* * Disable CONSTANT_BUFFER before it is loaded from the context * image. For as it is loaded, it is executed and the stored * address may no longer be valid, leading to a GPU hang. * * This imposes the requirement that userspace reload their * CONSTANT_BUFFER on every batch, fortunately a requirement * they are already accustomed to from before contexts were * enabled. */ if (IS_GEN(dev_priv, 4)) I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE)); /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ if (IS_GEN_RANGE(dev_priv, 4, 6)) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv */ if (IS_GEN_RANGE(dev_priv, 6, 7)) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); /* Required for the hardware to program scanline values for waiting */ /* WaEnableFlushTlbInvalidationMode:snb */ if (IS_GEN(dev_priv, 6)) I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT)); /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ if (IS_GEN(dev_priv, 7)) I915_WRITE(GFX_MODE_GEN7, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) | _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); if (IS_GEN(dev_priv, 6)) { /* From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); } if (IS_GEN_RANGE(dev_priv, 6, 7)) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); return xcs_resume(engine); } static void cancel_requests(struct intel_engine_cs *engine) { struct i915_request *request; unsigned long flags; spin_lock_irqsave(&engine->active.lock, flags); /* Mark all submitted requests as skipped. */ list_for_each_entry(request, &engine->active.requests, sched.link) { if (!i915_request_signaled(request)) dma_fence_set_error(&request->fence, -EIO); i915_request_mark_complete(request); } /* Remaining _unready_ requests will be nop'ed when submitted */ spin_unlock_irqrestore(&engine->active.lock, flags); } static void i9xx_submit_request(struct i915_request *request) { i915_request_submit(request); ENGINE_WRITE(request->engine, RING_TAIL, intel_ring_set_tail(request->ring, request->tail)); } static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs) { GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH; *cs++ = MI_STORE_DWORD_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #define GEN5_WA_STORES 8 /* must be at least 1! */ static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs) { int i; GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH; BUILD_BUG_ON(GEN5_WA_STORES < 1); for (i = 0; i < GEN5_WA_STORES; i++) { *cs++ = MI_STORE_DWORD_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR; *cs++ = rq->fence.seqno; } *cs++ = MI_USER_INTERRUPT; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #undef GEN5_WA_STORES static void gen5_irq_enable(struct intel_engine_cs *engine) { gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask); } static void gen5_irq_disable(struct intel_engine_cs *engine) { gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask); } static void i9xx_irq_enable(struct intel_engine_cs *engine) { engine->i915->irq_mask &= ~engine->irq_enable_mask; intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask); intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR); } static void i9xx_irq_disable(struct intel_engine_cs *engine) { engine->i915->irq_mask |= engine->irq_enable_mask; intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask); } static void i8xx_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; i915->irq_mask &= ~engine->irq_enable_mask; intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask); ENGINE_POSTING_READ16(engine, RING_IMR); } static void i8xx_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; i915->irq_mask |= engine->irq_enable_mask; intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask); } static int bsd_ring_flush(struct i915_request *rq, u32 mode) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_FLUSH; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static void gen6_irq_enable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~(engine->irq_enable_mask | engine->irq_keep_mask)); /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ ENGINE_POSTING_READ(engine, RING_IMR); gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask); } static void gen6_irq_disable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask); } static void hsw_vebox_irq_enable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask); /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ ENGINE_POSTING_READ(engine, RING_IMR); gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask); } static void hsw_vebox_irq_disable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~0); gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask); } static int i965_emit_bb_start(struct i915_request *rq, u64 offset, u32 length, unsigned int dispatch_flags) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965); *cs++ = offset; intel_ring_advance(rq, cs); return 0; } /* Just userspace ABI convention to limit the wa batch bo to a resonable size */ #define I830_BATCH_LIMIT SZ_256K #define I830_TLB_ENTRIES (2) #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT) static int i830_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 *cs, cs_offset = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE); cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); /* Evict the invalid PTE TLBs */ *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA; *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096; *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */ *cs++ = cs_offset; *cs++ = 0xdeadbeef; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) { if (len > I830_BATCH_LIMIT) return -ENOSPC; cs = intel_ring_begin(rq, 6 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* Blit the batch (which has now all relocs applied) to the * stable batch scratch bo area (so that the CS never * stumbles over its tlb invalidation bug) ... */ *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096; *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096; *cs++ = cs_offset; *cs++ = 4096; *cs++ = offset; *cs++ = MI_FLUSH; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); /* ... and execute it. */ offset = cs_offset; } cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE); intel_ring_advance(rq, cs); return 0; } static int i915_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE); intel_ring_advance(rq, cs); return 0; } int intel_ring_pin(struct intel_ring *ring) { struct i915_vma *vma = ring->vma; unsigned int flags; void *addr; int ret; if (atomic_fetch_inc(&ring->pin_count)) return 0; flags = PIN_GLOBAL; /* Ring wraparound at offset 0 sometimes hangs. No idea why. */ flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); if (vma->obj->stolen) flags |= PIN_MAPPABLE; else flags |= PIN_HIGH; ret = i915_vma_pin(vma, 0, 0, flags); if (unlikely(ret)) goto err_unpin; if (i915_vma_is_map_and_fenceable(vma)) addr = (void __force *)i915_vma_pin_iomap(vma); else addr = i915_gem_object_pin_map(vma->obj, i915_coherent_map_type(vma->vm->i915)); if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto err_ring; } i915_vma_make_unshrinkable(vma); GEM_BUG_ON(ring->vaddr); ring->vaddr = addr; return 0; err_ring: i915_vma_unpin(vma); err_unpin: atomic_dec(&ring->pin_count); return ret; } void intel_ring_reset(struct intel_ring *ring, u32 tail) { GEM_BUG_ON(!intel_ring_offset_valid(ring, tail)); ring->tail = tail; ring->head = tail; ring->emit = tail; intel_ring_update_space(ring); } void intel_ring_unpin(struct intel_ring *ring) { struct i915_vma *vma = ring->vma; if (!atomic_dec_and_test(&ring->pin_count)) return; /* Discard any unused bytes beyond that submitted to hw. */ intel_ring_reset(ring, ring->tail); i915_vma_unset_ggtt_write(vma); if (i915_vma_is_map_and_fenceable(vma)) i915_vma_unpin_iomap(vma); else i915_gem_object_unpin_map(vma->obj); GEM_BUG_ON(!ring->vaddr); ring->vaddr = NULL; i915_vma_unpin(vma); i915_vma_make_purgeable(vma); } static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size) { struct i915_address_space *vm = &ggtt->vm; struct drm_i915_private *i915 = vm->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_stolen(i915, size); if (!obj) obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Mark ring buffers as read-only from GPU side (so no stray overwrites) * if supported by the platform's GGTT. */ if (vm->has_read_only) i915_gem_object_set_readonly(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) goto err; return vma; err: i915_gem_object_put(obj); return vma; } struct intel_ring * intel_engine_create_ring(struct intel_engine_cs *engine, int size) { struct drm_i915_private *i915 = engine->i915; struct intel_ring *ring; struct i915_vma *vma; GEM_BUG_ON(!is_power_of_2(size)); GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES); ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) return ERR_PTR(-ENOMEM); kref_init(&ring->ref); INIT_LIST_HEAD(&ring->request_list); ring->size = size; /* Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = size; if (IS_I830(i915) || IS_I845G(i915)) ring->effective_size -= 2 * CACHELINE_BYTES; intel_ring_update_space(ring); vma = create_ring_vma(engine->gt->ggtt, size); if (IS_ERR(vma)) { kfree(ring); return ERR_CAST(vma); } ring->vma = vma; return ring; } void intel_ring_free(struct kref *ref) { struct intel_ring *ring = container_of(ref, typeof(*ring), ref); i915_vma_close(ring->vma); i915_vma_put(ring->vma); kfree(ring); } static void __ring_context_fini(struct intel_context *ce) { i915_gem_object_put(ce->state->obj); } static void ring_context_destroy(struct kref *ref) { struct intel_context *ce = container_of(ref, typeof(*ce), ref); GEM_BUG_ON(intel_context_is_pinned(ce)); if (ce->state) __ring_context_fini(ce); intel_context_fini(ce); intel_context_free(ce); } static struct i915_address_space *vm_alias(struct intel_context *ce) { struct i915_address_space *vm; vm = ce->vm; if (i915_is_ggtt(vm)) vm = &i915_vm_to_ggtt(vm)->alias->vm; return vm; } static int __context_pin_ppgtt(struct intel_context *ce) { struct i915_address_space *vm; int err = 0; vm = vm_alias(ce); if (vm) err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm))); return err; } static void __context_unpin_ppgtt(struct intel_context *ce) { struct i915_address_space *vm; vm = vm_alias(ce); if (vm) gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm)); } static void ring_context_unpin(struct intel_context *ce) { __context_unpin_ppgtt(ce); } static struct i915_vma * alloc_context_vma(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_shmem(i915, engine->context_size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Try to make the context utilize L3 as well as LLC. * * On VLV we don't have L3 controls in the PTEs so we * shouldn't touch the cache level, especially as that * would make the object snooped which might have a * negative performance impact. * * Snooping is required on non-llc platforms in execlist * mode, but since all GGTT accesses use PAT entry 0 we * get snooping anyway regardless of cache_level. * * This is only applicable for Ivy Bridge devices since * later platforms don't have L3 control bits in the PTE. */ if (IS_IVYBRIDGE(i915)) i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC); if (engine->default_state) { void *defaults, *vaddr; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_obj; } defaults = i915_gem_object_pin_map(engine->default_state, I915_MAP_WB); if (IS_ERR(defaults)) { err = PTR_ERR(defaults); goto err_map; } memcpy(vaddr, defaults, engine->context_size); i915_gem_object_unpin_map(engine->default_state); i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); } vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } return vma; err_map: i915_gem_object_unpin_map(obj); err_obj: i915_gem_object_put(obj); return ERR_PTR(err); } static int ring_context_alloc(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; /* One ringbuffer to rule them all */ GEM_BUG_ON(!engine->legacy.ring); ce->ring = engine->legacy.ring; ce->timeline = intel_timeline_get(engine->legacy.timeline); GEM_BUG_ON(ce->state); if (engine->context_size) { struct i915_vma *vma; vma = alloc_context_vma(engine); if (IS_ERR(vma)) return PTR_ERR(vma); ce->state = vma; } return 0; } static int ring_context_pin(struct intel_context *ce) { int err; err = intel_context_active_acquire(ce); if (err) return err; err = __context_pin_ppgtt(ce); if (err) goto err_active; return 0; err_active: intel_context_active_release(ce); return err; } static void ring_context_reset(struct intel_context *ce) { intel_ring_reset(ce->ring, 0); } static const struct intel_context_ops ring_context_ops = { .alloc = ring_context_alloc, .pin = ring_context_pin, .unpin = ring_context_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = ring_context_reset, .destroy = ring_context_destroy, }; static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt) { const struct intel_engine_cs * const engine = rq->engine; u32 *cs; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base)); *cs++ = PP_DIR_DCLV_2G; *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); *cs++ = px_base(ppgtt->pd)->ggtt_offset << 10; intel_ring_advance(rq, cs); return 0; } static int flush_pd_dir(struct i915_request *rq) { const struct intel_engine_cs * const engine = rq->engine; u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); /* Stall until the page table load is complete */ *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static inline int mi_set_context(struct i915_request *rq, u32 flags) { struct drm_i915_private *i915 = rq->i915; struct intel_engine_cs *engine = rq->engine; enum intel_engine_id id; const int num_engines = IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0; bool force_restore = false; int len; u32 *cs; flags |= MI_MM_SPACE_GTT; if (IS_HASWELL(i915)) /* These flags are for resource streamer on HSW+ */ flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN; else /* We need to save the extended state for powersaving modes */ flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN; len = 4; if (IS_GEN(i915, 7)) len += 2 + (num_engines ? 4 * num_engines + 6 : 0); else if (IS_GEN(i915, 5)) len += 2; if (flags & MI_FORCE_RESTORE) { GEM_BUG_ON(flags & MI_RESTORE_INHIBIT); flags &= ~MI_FORCE_RESTORE; force_restore = true; len += 2; } cs = intel_ring_begin(rq, len); if (IS_ERR(cs)) return PTR_ERR(cs); /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */ if (IS_GEN(i915, 7)) { *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; if (num_engines) { struct intel_engine_cs *signaller; *cs++ = MI_LOAD_REGISTER_IMM(num_engines); for_each_engine(signaller, i915, id) { if (signaller == engine) continue; *cs++ = i915_mmio_reg_offset( RING_PSMI_CTL(signaller->mmio_base)); *cs++ = _MASKED_BIT_ENABLE( GEN6_PSMI_SLEEP_MSG_DISABLE); } } } else if (IS_GEN(i915, 5)) { /* * This w/a is only listed for pre-production ilk a/b steppings, * but is also mentioned for programming the powerctx. To be * safe, just apply the workaround; we do not use SyncFlush so * this should never take effect and so be a no-op! */ *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN; } if (force_restore) { /* * The HW doesn't handle being told to restore the current * context very well. Quite often it likes goes to go off and * sulk, especially when it is meant to be reloading PP_DIR. * A very simple fix to force the reload is to simply switch * away from the current context and back again. * * Note that the kernel_context will contain random state * following the INHIBIT_RESTORE. We accept this since we * never use the kernel_context state; it is merely a * placeholder we use to flush other contexts. */ *cs++ = MI_SET_CONTEXT; *cs++ = i915_ggtt_offset(engine->kernel_context->state) | MI_MM_SPACE_GTT | MI_RESTORE_INHIBIT; } *cs++ = MI_NOOP; *cs++ = MI_SET_CONTEXT; *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags; /* * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP * WaMiSetContext_Hang:snb,ivb,vlv */ *cs++ = MI_NOOP; if (IS_GEN(i915, 7)) { if (num_engines) { struct intel_engine_cs *signaller; i915_reg_t last_reg = {}; /* keep gcc quiet */ *cs++ = MI_LOAD_REGISTER_IMM(num_engines); for_each_engine(signaller, i915, id) { if (signaller == engine) continue; last_reg = RING_PSMI_CTL(signaller->mmio_base); *cs++ = i915_mmio_reg_offset(last_reg); *cs++ = _MASKED_BIT_DISABLE( GEN6_PSMI_SLEEP_MSG_DISABLE); } /* Insert a delay before the next switch! */ *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; *cs++ = i915_mmio_reg_offset(last_reg); *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); *cs++ = MI_NOOP; } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; } else if (IS_GEN(i915, 5)) { *cs++ = MI_SUSPEND_FLUSH; } intel_ring_advance(rq, cs); return 0; } static int remap_l3_slice(struct i915_request *rq, int slice) { u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice]; int i; if (!remap_info) return 0; cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* * Note: We do not worry about the concurrent register cacheline hang * here because no other code should access these registers other than * at initialization time. */ *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4); for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) { *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i)); *cs++ = remap_info[i]; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int remap_l3(struct i915_request *rq) { struct i915_gem_context *ctx = rq->gem_context; int i, err; if (!ctx->remap_slice) return 0; for (i = 0; i < MAX_L3_SLICES; i++) { if (!(ctx->remap_slice & BIT(i))) continue; err = remap_l3_slice(rq, i); if (err) return err; } ctx->remap_slice = 0; return 0; } static int switch_context(struct i915_request *rq) { struct intel_engine_cs *engine = rq->engine; struct i915_address_space *vm = vm_alias(rq->hw_context); unsigned int unwind_mm = 0; u32 hw_flags = 0; int ret; GEM_BUG_ON(HAS_EXECLISTS(rq->i915)); if (vm) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); int loops; /* * Baytail takes a little more convincing that it really needs * to reload the PD between contexts. It is not just a little * longer, as adding more stalls after the load_pd_dir (i.e. * adding a long loop around flush_pd_dir) is not as effective * as reloading the PD umpteen times. 32 is derived from * experimentation (gem_exec_parallel/fds) and has no good * explanation. */ loops = 1; if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915)) loops = 32; do { ret = load_pd_dir(rq, ppgtt); if (ret) goto err; } while (--loops); if (ppgtt->pd_dirty_engines & engine->mask) { unwind_mm = engine->mask; ppgtt->pd_dirty_engines &= ~unwind_mm; hw_flags = MI_FORCE_RESTORE; } } if (rq->hw_context->state) { GEM_BUG_ON(engine->id != RCS0); /* * The kernel context(s) is treated as pure scratch and is not * expected to retain any state (as we sacrifice it during * suspend and on resume it may be corrupted). This is ok, * as nothing actually executes using the kernel context; it * is purely used for flushing user contexts. */ if (i915_gem_context_is_kernel(rq->gem_context)) hw_flags = MI_RESTORE_INHIBIT; ret = mi_set_context(rq, hw_flags); if (ret) goto err_mm; } if (vm) { ret = engine->emit_flush(rq, EMIT_INVALIDATE); if (ret) goto err_mm; ret = flush_pd_dir(rq); if (ret) goto err_mm; /* * Not only do we need a full barrier (post-sync write) after * invalidating the TLBs, but we need to wait a little bit * longer. Whether this is merely delaying us, or the * subsequent flush is a key part of serialising with the * post-sync op, this extra pass appears vital before a * mm switch! */ ret = engine->emit_flush(rq, EMIT_INVALIDATE); if (ret) goto err_mm; ret = engine->emit_flush(rq, EMIT_FLUSH); if (ret) goto err_mm; } ret = remap_l3(rq); if (ret) goto err_mm; return 0; err_mm: if (unwind_mm) i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm; err: return ret; } static int ring_request_alloc(struct i915_request *request) { int ret; GEM_BUG_ON(!intel_context_is_pinned(request->hw_context)); GEM_BUG_ON(request->timeline->has_initial_breadcrumb); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += LEGACY_REQUEST_SIZE; /* Unconditionally invalidate GPU caches and TLBs. */ ret = request->engine->emit_flush(request, EMIT_INVALIDATE); if (ret) return ret; ret = switch_context(request); if (ret) return ret; request->reserved_space -= LEGACY_REQUEST_SIZE; return 0; } static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes) { struct i915_request *target; long timeout; if (intel_ring_update_space(ring) >= bytes) return 0; GEM_BUG_ON(list_empty(&ring->request_list)); list_for_each_entry(target, &ring->request_list, ring_link) { /* Would completion of this request free enough space? */ if (bytes <= __intel_ring_space(target->postfix, ring->emit, ring->size)) break; } if (WARN_ON(&target->ring_link == &ring->request_list)) return -ENOSPC; timeout = i915_request_wait(target, I915_WAIT_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) return timeout; i915_request_retire_upto(target); intel_ring_update_space(ring); GEM_BUG_ON(ring->space < bytes); return 0; } u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords) { struct intel_ring *ring = rq->ring; const unsigned int remain_usable = ring->effective_size - ring->emit; const unsigned int bytes = num_dwords * sizeof(u32); unsigned int need_wrap = 0; unsigned int total_bytes; u32 *cs; /* Packets must be qword aligned. */ GEM_BUG_ON(num_dwords & 1); total_bytes = bytes + rq->reserved_space; GEM_BUG_ON(total_bytes > ring->effective_size); if (unlikely(total_bytes > remain_usable)) { const int remain_actual = ring->size - ring->emit; if (bytes > remain_usable) { /* * Not enough space for the basic request. So need to * flush out the remainder and then wait for * base + reserved. */ total_bytes += remain_actual; need_wrap = remain_actual | 1; } else { /* * The base request will fit but the reserved space * falls off the end. So we don't need an immediate * wrap and only need to effectively wait for the * reserved size from the start of ringbuffer. */ total_bytes = rq->reserved_space + remain_actual; } } if (unlikely(total_bytes > ring->space)) { int ret; /* * Space is reserved in the ringbuffer for finalising the * request, as that cannot be allowed to fail. During request * finalisation, reserved_space is set to 0 to stop the * overallocation and the assumption is that then we never need * to wait (which has the risk of failing with EINTR). * * See also i915_request_alloc() and i915_request_add(). */ GEM_BUG_ON(!rq->reserved_space); ret = wait_for_space(ring, total_bytes); if (unlikely(ret)) return ERR_PTR(ret); } if (unlikely(need_wrap)) { need_wrap &= ~1; GEM_BUG_ON(need_wrap > ring->space); GEM_BUG_ON(ring->emit + need_wrap > ring->size); GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64))); /* Fill the tail with MI_NOOP */ memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64)); ring->space -= need_wrap; ring->emit = 0; } GEM_BUG_ON(ring->emit > ring->size - bytes); GEM_BUG_ON(ring->space < bytes); cs = ring->vaddr + ring->emit; GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs))); ring->emit += bytes; ring->space -= bytes; return cs; } /* Align the ring tail to a cacheline boundary */ int intel_ring_cacheline_align(struct i915_request *rq) { int num_dwords; void *cs; num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32); if (num_dwords == 0) return 0; num_dwords = CACHELINE_DWORDS - num_dwords; GEM_BUG_ON(num_dwords & 1); cs = intel_ring_begin(rq, num_dwords); if (IS_ERR(cs)) return PTR_ERR(cs); memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2); intel_ring_advance(rq, cs); GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1)); return 0; } static void gen6_bsd_submit_request(struct i915_request *request) { struct intel_uncore *uncore = request->engine->uncore; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); /* Every tail move must follow the sequence below */ /* Disable notification that the ring is IDLE. The GT * will then assume that it is busy and bring it out of rc6. */ intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); /* Clear the context id. Here be magic! */ intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0); /* Wait for the ring not to be idle, i.e. for it to wake up. */ if (__intel_wait_for_register_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL, GEN6_BSD_SLEEP_INDICATOR, 0, 1000, 0, NULL)) DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); /* Now that the ring is fully powered up, update the tail */ i9xx_submit_request(request); /* Let the ring send IDLE messages to the GT again, * and so let it sleep to conserve power when idle. */ intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); } static int mi_flush_dw(struct i915_request *rq, u32 flags) { u32 cmd, *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); cmd = MI_FLUSH_DW; /* * We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; /* * Bspec vol 1c.3 - blitter engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ cmd |= flags; *cs++ = cmd; *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = 0; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags) { return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0); } static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode) { return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD); } static int hsw_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW); /* bit0-7 is the length on GEN6+ */ *cs++ = offset; intel_ring_advance(rq, cs); return 0; } static int gen6_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965); /* bit0-7 is the length on GEN6+ */ *cs++ = offset; intel_ring_advance(rq, cs); return 0; } /* Blitter support (SandyBridge+) */ static int gen6_ring_flush(struct i915_request *rq, u32 mode) { return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB); } static void i9xx_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = i9xx_submit_request; engine->cancel_requests = cancel_requests; engine->park = NULL; engine->unpark = NULL; } static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine) { i9xx_set_default_submission(engine); engine->submit_request = gen6_bsd_submit_request; } static void ring_destroy(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; WARN_ON(INTEL_GEN(dev_priv) > 2 && (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0); intel_engine_cleanup_common(engine); intel_ring_unpin(engine->legacy.ring); intel_ring_put(engine->legacy.ring); intel_timeline_unpin(engine->legacy.timeline); intel_timeline_put(engine->legacy.timeline); kfree(engine); } static void setup_irq(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (INTEL_GEN(i915) >= 6) { engine->irq_enable = gen6_irq_enable; engine->irq_disable = gen6_irq_disable; } else if (INTEL_GEN(i915) >= 5) { engine->irq_enable = gen5_irq_enable; engine->irq_disable = gen5_irq_disable; } else if (INTEL_GEN(i915) >= 3) { engine->irq_enable = i9xx_irq_enable; engine->irq_disable = i9xx_irq_disable; } else { engine->irq_enable = i8xx_irq_enable; engine->irq_disable = i8xx_irq_disable; } } static void setup_common(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; /* gen8+ are only supported with execlists */ GEM_BUG_ON(INTEL_GEN(i915) >= 8); setup_irq(engine); engine->destroy = ring_destroy; engine->resume = xcs_resume; engine->reset.prepare = reset_prepare; engine->reset.reset = reset_ring; engine->reset.finish = reset_finish; engine->cops = &ring_context_ops; engine->request_alloc = ring_request_alloc; /* * Using a global execution timeline; the previous final breadcrumb is * equivalent to our next initial bread so we can elide * engine->emit_init_breadcrumb(). */ engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb; if (IS_GEN(i915, 5)) engine->emit_fini_breadcrumb = gen5_emit_breadcrumb; engine->set_default_submission = i9xx_set_default_submission; if (INTEL_GEN(i915) >= 6) engine->emit_bb_start = gen6_emit_bb_start; else if (INTEL_GEN(i915) >= 4) engine->emit_bb_start = i965_emit_bb_start; else if (IS_I830(i915) || IS_I845G(i915)) engine->emit_bb_start = i830_emit_bb_start; else engine->emit_bb_start = i915_emit_bb_start; } static void setup_rcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (HAS_L3_DPF(i915)) engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT; engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT; if (INTEL_GEN(i915) >= 7) { engine->emit_flush = gen7_render_ring_flush; engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb; } else if (IS_GEN(i915, 6)) { engine->emit_flush = gen6_render_ring_flush; engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb; } else if (IS_GEN(i915, 5)) { engine->emit_flush = gen4_render_ring_flush; } else { if (INTEL_GEN(i915) < 4) engine->emit_flush = gen2_render_ring_flush; else engine->emit_flush = gen4_render_ring_flush; engine->irq_enable_mask = I915_USER_INTERRUPT; } if (IS_HASWELL(i915)) engine->emit_bb_start = hsw_emit_bb_start; engine->resume = rcs_resume; } static void setup_vcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (INTEL_GEN(i915) >= 6) { /* gen6 bsd needs a special wa for tail updates */ if (IS_GEN(i915, 6)) engine->set_default_submission = gen6_bsd_set_default_submission; engine->emit_flush = gen6_bsd_ring_flush; engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; if (IS_GEN(i915, 6)) engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; else engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; } else { engine->emit_flush = bsd_ring_flush; if (IS_GEN(i915, 5)) engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; else engine->irq_enable_mask = I915_BSD_USER_INTERRUPT; } } static void setup_bcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; engine->emit_flush = gen6_ring_flush; engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; if (IS_GEN(i915, 6)) engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; else engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; } static void setup_vecs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; GEM_BUG_ON(INTEL_GEN(i915) < 7); engine->emit_flush = gen6_ring_flush; engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; engine->irq_enable = hsw_vebox_irq_enable; engine->irq_disable = hsw_vebox_irq_disable; engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; } int intel_ring_submission_setup(struct intel_engine_cs *engine) { setup_common(engine); switch (engine->class) { case RENDER_CLASS: setup_rcs(engine); break; case VIDEO_DECODE_CLASS: setup_vcs(engine); break; case COPY_ENGINE_CLASS: setup_bcs(engine); break; case VIDEO_ENHANCEMENT_CLASS: setup_vecs(engine); break; default: MISSING_CASE(engine->class); return -ENODEV; } return 0; } int intel_ring_submission_init(struct intel_engine_cs *engine) { struct intel_timeline *timeline; struct intel_ring *ring; int err; timeline = intel_timeline_create(engine->gt, engine->status_page.vma); if (IS_ERR(timeline)) { err = PTR_ERR(timeline); goto err; } GEM_BUG_ON(timeline->has_initial_breadcrumb); err = intel_timeline_pin(timeline); if (err) goto err_timeline; ring = intel_engine_create_ring(engine, SZ_16K); if (IS_ERR(ring)) { err = PTR_ERR(ring); goto err_timeline_unpin; } err = intel_ring_pin(ring); if (err) goto err_ring; GEM_BUG_ON(engine->legacy.ring); engine->legacy.ring = ring; engine->legacy.timeline = timeline; err = intel_engine_init_common(engine); if (err) goto err_ring_unpin; GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma); return 0; err_ring_unpin: intel_ring_unpin(ring); err_ring: intel_ring_put(ring); err_timeline_unpin: intel_timeline_unpin(timeline); err_timeline: intel_timeline_put(timeline); err: intel_engine_cleanup_common(engine); return err; }