/* Montage Technology TS2020 - Silicon Tuner driver Copyright (C) 2009-2012 Konstantin Dimitrov Copyright (C) 2009-2012 TurboSight.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "dvb_frontend.h" #include "ts2020.h" #define TS2020_XTAL_FREQ 27000 /* in kHz */ #define FREQ_OFFSET_LOW_SYM_RATE 3000 struct ts2020_priv { struct dvb_frontend *fe; /* i2c details */ int i2c_address; struct i2c_adapter *i2c; u8 clk_out:2; u8 clk_out_div:5; u32 frequency; u32 frequency_div; #define TS2020_M88TS2020 0 #define TS2020_M88TS2022 1 u8 tuner; u8 loop_through:1; }; struct ts2020_reg_val { u8 reg; u8 val; }; static int ts2020_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data) { struct ts2020_priv *priv = fe->tuner_priv; u8 buf[] = { reg, data }; struct i2c_msg msg[] = { { .addr = priv->i2c_address, .flags = 0, .buf = buf, .len = 2 } }; int err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); err = i2c_transfer(priv->i2c, msg, 1); if (err != 1) { printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; } static int ts2020_readreg(struct dvb_frontend *fe, u8 reg) { struct ts2020_priv *priv = fe->tuner_priv; int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = priv->i2c_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = priv->i2c_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(priv->i2c, msg, 2); if (ret != 2) { printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); return ret; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return b1[0]; } static int ts2020_sleep(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; int ret; u8 buf[] = { 10, 0 }; struct i2c_msg msg = { .addr = priv->i2c_address, .flags = 0, .buf = buf, .len = 2 }; if (priv->tuner == TS2020_M88TS2022) buf[0] = 0x00; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(priv->i2c, &msg, 1); if (ret != 1) printk(KERN_ERR "%s: i2c error\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return (ret == 1) ? 0 : ret; } static int ts2020_init(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; int i; u8 u8tmp; if (priv->tuner == TS2020_M88TS2020) { ts2020_writereg(fe, 0x42, 0x73); ts2020_writereg(fe, 0x05, priv->clk_out_div); ts2020_writereg(fe, 0x20, 0x27); ts2020_writereg(fe, 0x07, 0x02); ts2020_writereg(fe, 0x11, 0xff); ts2020_writereg(fe, 0x60, 0xf9); ts2020_writereg(fe, 0x08, 0x01); ts2020_writereg(fe, 0x00, 0x41); } else { static const struct ts2020_reg_val reg_vals[] = { {0x7d, 0x9d}, {0x7c, 0x9a}, {0x7a, 0x76}, {0x3b, 0x01}, {0x63, 0x88}, {0x61, 0x85}, {0x22, 0x30}, {0x30, 0x40}, {0x20, 0x23}, {0x24, 0x02}, {0x12, 0xa0}, }; ts2020_writereg(fe, 0x00, 0x01); ts2020_writereg(fe, 0x00, 0x03); switch (priv->clk_out) { case TS2020_CLK_OUT_DISABLED: u8tmp = 0x60; break; case TS2020_CLK_OUT_ENABLED: u8tmp = 0x70; ts2020_writereg(fe, 0x05, priv->clk_out_div); break; case TS2020_CLK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: u8tmp = 0x60; break; } ts2020_writereg(fe, 0x42, u8tmp); if (priv->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; ts2020_writereg(fe, 0x62, u8tmp); for (i = 0; i < ARRAY_SIZE(reg_vals); i++) ts2020_writereg(fe, reg_vals[i].reg, reg_vals[i].val); } return 0; } static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset) { int ret; ret = ts2020_writereg(fe, 0x51, 0x1f - offset); ret |= ts2020_writereg(fe, 0x51, 0x1f); ret |= ts2020_writereg(fe, 0x50, offset); ret |= ts2020_writereg(fe, 0x50, 0x00); msleep(20); return ret; } static int ts2020_set_tuner_rf(struct dvb_frontend *fe) { int reg; reg = ts2020_readreg(fe, 0x3d); reg &= 0x7f; if (reg < 0x16) reg = 0xa1; else if (reg == 0x16) reg = 0x99; else reg = 0xf9; ts2020_writereg(fe, 0x60, reg); reg = ts2020_tuner_gate_ctrl(fe, 0x08); return reg; } static int ts2020_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct ts2020_priv *priv = fe->tuner_priv; int ret; u32 frequency = c->frequency; s32 offset_khz; u32 symbol_rate = (c->symbol_rate / 1000); u32 f3db, gdiv28; u16 value, ndiv, lpf_coeff; u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf; u8 lo = 0x01, div4 = 0x0; /* Calculate frequency divider */ if (frequency < priv->frequency_div) { lo |= 0x10; div4 = 0x1; ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ; } else ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ; ndiv = ndiv + ndiv % 2; ndiv = ndiv - 1024; if (priv->tuner == TS2020_M88TS2020) { lpf_coeff = 2766; ret = ts2020_writereg(fe, 0x10, 0x80 | lo); } else { lpf_coeff = 3200; ret = ts2020_writereg(fe, 0x10, 0x0b); ret |= ts2020_writereg(fe, 0x11, 0x40); } /* Set frequency divider */ ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf); ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff); ret |= ts2020_writereg(fe, 0x03, 0x06); ret |= ts2020_tuner_gate_ctrl(fe, 0x10); if (ret < 0) return -ENODEV; /* Tuner Frequency Range */ ret = ts2020_writereg(fe, 0x10, lo); ret |= ts2020_tuner_gate_ctrl(fe, 0x08); /* Tuner RF */ if (priv->tuner == TS2020_M88TS2020) ret |= ts2020_set_tuner_rf(fe); gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000; ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); if (ret < 0) return -ENODEV; if (priv->tuner == TS2020_M88TS2022) { ret = ts2020_writereg(fe, 0x25, 0x00); ret |= ts2020_writereg(fe, 0x27, 0x70); ret |= ts2020_writereg(fe, 0x41, 0x09); ret |= ts2020_writereg(fe, 0x08, 0x0b); if (ret < 0) return -ENODEV; } value = ts2020_readreg(fe, 0x26); f3db = (symbol_rate * 135) / 200 + 2000; f3db += FREQ_OFFSET_LOW_SYM_RATE; if (f3db < 7000) f3db = 7000; if (f3db > 40000) f3db = 40000; gdiv28 = gdiv28 * 207 / (value * 2 + 151); mlpf_max = gdiv28 * 135 / 100; mlpf_min = gdiv28 * 78 / 100; if (mlpf_max > 63) mlpf_max = 63; nlpf = (f3db * gdiv28 * 2 / lpf_coeff / (TS2020_XTAL_FREQ / 1000) + 1) / 2; if (nlpf > 23) nlpf = 23; if (nlpf < 1) nlpf = 1; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; if (lpf_mxdiv < mlpf_min) { nlpf++; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; } if (lpf_mxdiv > mlpf_max) lpf_mxdiv = mlpf_max; ret = ts2020_writereg(fe, 0x04, lpf_mxdiv); ret |= ts2020_writereg(fe, 0x06, nlpf); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); ret |= ts2020_tuner_gate_ctrl(fe, 0x01); msleep(80); /* calculate offset assuming 96000kHz*/ offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ / (6 + 8) / (div4 + 1) / 2; priv->frequency = offset_khz; return (ret < 0) ? -EINVAL : 0; } static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct ts2020_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { *frequency = 0; /* Zero-IF */ return 0; } /* read TS2020 signal strength */ static int ts2020_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { u16 sig_reading, sig_strength; u8 rfgain, bbgain; rfgain = ts2020_readreg(fe, 0x3d) & 0x1f; bbgain = ts2020_readreg(fe, 0x21) & 0x1f; if (rfgain > 15) rfgain = 15; if (bbgain > 13) bbgain = 13; sig_reading = rfgain * 2 + bbgain * 3; sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; /* cook the value to be suitable for szap-s2 human readable output */ *signal_strength = sig_strength * 1000; return 0; } static struct dvb_tuner_ops ts2020_tuner_ops = { .info = { .name = "TS2020", .frequency_min = 950000, .frequency_max = 2150000 }, .init = ts2020_init, .release = ts2020_release, .sleep = ts2020_sleep, .set_params = ts2020_set_params, .get_frequency = ts2020_get_frequency, .get_if_frequency = ts2020_get_if_frequency, .get_rf_strength = ts2020_read_signal_strength, }; struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, const struct ts2020_config *config, struct i2c_adapter *i2c) { struct ts2020_priv *priv = NULL; u8 buf; priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_address = config->tuner_address; priv->i2c = i2c; priv->clk_out = config->clk_out; priv->clk_out_div = config->clk_out_div; priv->frequency_div = config->frequency_div; priv->fe = fe; fe->tuner_priv = priv; if (!priv->frequency_div) priv->frequency_div = 1060000; /* Wake Up the tuner */ if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) { ts2020_writereg(fe, 0x00, 0x01); msleep(2); } ts2020_writereg(fe, 0x00, 0x03); msleep(2); /* Check the tuner version */ buf = ts2020_readreg(fe, 0x00); if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81)) { printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__); priv->tuner = TS2020_M88TS2020; } else if ((buf == 0x83) || (buf == 0xc3)) { printk(KERN_INFO "%s: Find tuner TS2022!\n", __func__); priv->tuner = TS2020_M88TS2022; } else { printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf); kfree(priv); return NULL; } memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, sizeof(struct dvb_tuner_ops)); return fe; } EXPORT_SYMBOL(ts2020_attach); static int ts2020_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct ts2020_config *pdata = client->dev.platform_data; struct dvb_frontend *fe = pdata->fe; struct ts2020_priv *dev; int ret; u8 u8tmp; unsigned int utmp; char *chip_str; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } dev->i2c = client->adapter; dev->i2c_address = client->addr; dev->clk_out = pdata->clk_out; dev->clk_out_div = pdata->clk_out_div; dev->frequency_div = pdata->frequency_div; dev->fe = fe; fe->tuner_priv = dev; /* check if the tuner is there */ ret = ts2020_readreg(fe, 0x00); if (ret < 0) goto err; utmp = ret; if ((utmp & 0x03) == 0x00) { ret = ts2020_writereg(fe, 0x00, 0x01); if (ret) goto err; usleep_range(2000, 50000); } ret = ts2020_writereg(fe, 0x00, 0x03); if (ret) goto err; usleep_range(2000, 50000); ret = ts2020_readreg(fe, 0x00); if (ret < 0) goto err; utmp = ret; dev_dbg(&client->dev, "chip_id=%02x\n", utmp); switch (utmp) { case 0x01: case 0x41: case 0x81: dev->tuner = TS2020_M88TS2020; chip_str = "TS2020"; if (!dev->frequency_div) dev->frequency_div = 1060000; break; case 0xc3: case 0x83: dev->tuner = TS2020_M88TS2022; chip_str = "TS2022"; if (!dev->frequency_div) dev->frequency_div = 1103000; break; default: ret = -ENODEV; goto err; } if (dev->tuner == TS2020_M88TS2022) { switch (dev->clk_out) { case TS2020_CLK_OUT_DISABLED: u8tmp = 0x60; break; case TS2020_CLK_OUT_ENABLED: u8tmp = 0x70; ret = ts2020_writereg(fe, 0x05, dev->clk_out_div); if (ret) goto err; break; case TS2020_CLK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: ret = -EINVAL; goto err; } ret = ts2020_writereg(fe, 0x42, u8tmp); if (ret) goto err; if (dev->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; ret = ts2020_writereg(fe, 0x62, u8tmp); if (ret) goto err; } /* sleep */ ret = ts2020_writereg(fe, 0x00, 0x00); if (ret) goto err; dev_info(&client->dev, "Montage Technology %s successfully identified\n", chip_str); memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->ops.tuner_ops.release = NULL; i2c_set_clientdata(client, dev); return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); kfree(dev); return ret; } static int ts2020_remove(struct i2c_client *client) { struct ts2020_priv *dev = i2c_get_clientdata(client); struct dvb_frontend *fe = dev->fe; dev_dbg(&client->dev, "\n"); memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = NULL; kfree(dev); return 0; } static const struct i2c_device_id ts2020_id_table[] = { {"ts2020", 0}, {"ts2022", 0}, {} }; MODULE_DEVICE_TABLE(i2c, ts2020_id_table); static struct i2c_driver ts2020_driver = { .driver = { .owner = THIS_MODULE, .name = "ts2020", }, .probe = ts2020_probe, .remove = ts2020_remove, .id_table = ts2020_id_table, }; module_i2c_driver(ts2020_driver); MODULE_AUTHOR("Konstantin Dimitrov "); MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); MODULE_LICENSE("GPL");