/* * dvb_frontend.c: DVB frontend tuning interface/thread * * * Copyright (C) 1999-2001 Ralph Metzler * Marcus Metzler * Holger Waechtler * for convergence integrated media GmbH * * Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dvbdev.h" static int dvb_frontend_debug; static int dvb_shutdown_timeout; static int dvb_force_auto_inversion; static int dvb_override_tune_delay; static int dvb_powerdown_on_sleep = 1; module_param_named(frontend_debug, dvb_frontend_debug, int, 0644); MODULE_PARM_DESC(frontend_debug, "Turn on/off frontend core debugging (default:off)."); module_param(dvb_shutdown_timeout, int, 0644); MODULE_PARM_DESC(dvb_shutdown_timeout, "wait seconds after close() before suspending hardware"); module_param(dvb_force_auto_inversion, int, 0644); MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always"); module_param(dvb_override_tune_delay, int, 0644); MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt"); module_param(dvb_powerdown_on_sleep, int, 0644); MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB voltage off on sleep (default)"); #define dprintk if (dvb_frontend_debug) printk #define FESTATE_IDLE 1 #define FESTATE_RETUNE 2 #define FESTATE_TUNING_FAST 4 #define FESTATE_TUNING_SLOW 8 #define FESTATE_TUNED 16 #define FESTATE_ZIGZAG_FAST 32 #define FESTATE_ZIGZAG_SLOW 64 #define FESTATE_DISEQC 128 #define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC) #define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST) #define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW) #define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW) #define FE_ALGO_HW 1 /* * FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling. * FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune. * FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress. * FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower. * FESTATE_TUNED. The frontend has successfully locked on. * FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it. * FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower. * FESTATE_DISEQC. A DISEQC command has just been issued. * FESTATE_WAITFORLOCK. When we're waiting for a lock. * FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan. * FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan. * FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again. */ static DEFINE_MUTEX(frontend_mutex); struct dvb_frontend_private { /* thread/frontend values */ struct dvb_device *dvbdev; struct dvb_frontend_parameters parameters; struct dvb_fe_events events; struct semaphore sem; struct list_head list_head; wait_queue_head_t wait_queue; struct task_struct *thread; unsigned long release_jiffies; unsigned int exit; unsigned int wakeup; fe_status_t status; unsigned long tune_mode_flags; unsigned int delay; unsigned int reinitialise; int tone; int voltage; /* swzigzag values */ unsigned int state; unsigned int bending; int lnb_drift; unsigned int inversion; unsigned int auto_step; unsigned int auto_sub_step; unsigned int started_auto_step; unsigned int min_delay; unsigned int max_drift; unsigned int step_size; int quality; unsigned int check_wrapped; }; static void dvb_frontend_wakeup(struct dvb_frontend *fe); static void dvb_frontend_add_event(struct dvb_frontend *fe, fe_status_t status) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; struct dvb_frontend_event *e; int wp; dprintk ("%s\n", __func__); if (mutex_lock_interruptible (&events->mtx)) return; wp = (events->eventw + 1) % MAX_EVENT; if (wp == events->eventr) { events->overflow = 1; events->eventr = (events->eventr + 1) % MAX_EVENT; } e = &events->events[events->eventw]; memcpy (&e->parameters, &fepriv->parameters, sizeof (struct dvb_frontend_parameters)); if (status & FE_HAS_LOCK) if (fe->ops.get_frontend) fe->ops.get_frontend(fe, &e->parameters); events->eventw = wp; mutex_unlock(&events->mtx); e->status = status; wake_up_interruptible (&events->wait_queue); } static int dvb_frontend_get_event(struct dvb_frontend *fe, struct dvb_frontend_event *event, int flags) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; dprintk ("%s\n", __func__); if (events->overflow) { events->overflow = 0; return -EOVERFLOW; } if (events->eventw == events->eventr) { int ret; if (flags & O_NONBLOCK) return -EWOULDBLOCK; up(&fepriv->sem); ret = wait_event_interruptible (events->wait_queue, events->eventw != events->eventr); if (down_interruptible (&fepriv->sem)) return -ERESTARTSYS; if (ret < 0) return ret; } if (mutex_lock_interruptible (&events->mtx)) return -ERESTARTSYS; memcpy (event, &events->events[events->eventr], sizeof(struct dvb_frontend_event)); events->eventr = (events->eventr + 1) % MAX_EVENT; mutex_unlock(&events->mtx); return 0; } static void dvb_frontend_init(struct dvb_frontend *fe) { dprintk ("DVB: initialising frontend %i (%s)...\n", fe->dvb->num, fe->ops.info.name); if (fe->ops.init) fe->ops.init(fe); if (fe->ops.tuner_ops.init) { fe->ops.tuner_ops.init(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } } void dvb_frontend_reinitialise(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; fepriv->reinitialise = 1; dvb_frontend_wakeup(fe); } EXPORT_SYMBOL(dvb_frontend_reinitialise); static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv, int locked) { int q2; dprintk ("%s\n", __func__); if (locked) (fepriv->quality) = (fepriv->quality * 220 + 36*256) / 256; else (fepriv->quality) = (fepriv->quality * 220 + 0) / 256; q2 = fepriv->quality - 128; q2 *= q2; fepriv->delay = fepriv->min_delay + q2 * HZ / (128*128); } /** * Performs automatic twiddling of frontend parameters. * * @param fe The frontend concerned. * @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT * @returns Number of complete iterations that have been performed. */ static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe, int check_wrapped) { int autoinversion; int ready = 0; struct dvb_frontend_private *fepriv = fe->frontend_priv; int original_inversion = fepriv->parameters.inversion; u32 original_frequency = fepriv->parameters.frequency; /* are we using autoinversion? */ autoinversion = ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) && (fepriv->parameters.inversion == INVERSION_AUTO)); /* setup parameters correctly */ while(!ready) { /* calculate the lnb_drift */ fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size; /* wrap the auto_step if we've exceeded the maximum drift */ if (fepriv->lnb_drift > fepriv->max_drift) { fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->lnb_drift = 0; } /* perform inversion and +/- zigzag */ switch(fepriv->auto_sub_step) { case 0: /* try with the current inversion and current drift setting */ ready = 1; break; case 1: if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; ready = 1; break; case 2: if (fepriv->lnb_drift == 0) break; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; case 3: if (fepriv->lnb_drift == 0) break; if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; default: fepriv->auto_step++; fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */ break; } if (!ready) fepriv->auto_sub_step++; } /* if this attempt would hit where we started, indicate a complete * iteration has occurred */ if ((fepriv->auto_step == fepriv->started_auto_step) && (fepriv->auto_sub_step == 0) && check_wrapped) { return 1; } dprintk("%s: drift:%i inversion:%i auto_step:%i " "auto_sub_step:%i started_auto_step:%i\n", __func__, fepriv->lnb_drift, fepriv->inversion, fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step); /* set the frontend itself */ fepriv->parameters.frequency += fepriv->lnb_drift; if (autoinversion) fepriv->parameters.inversion = fepriv->inversion; if (fe->ops.set_frontend) fe->ops.set_frontend(fe, &fepriv->parameters); fepriv->parameters.frequency = original_frequency; fepriv->parameters.inversion = original_inversion; fepriv->auto_sub_step++; return 0; } static void dvb_frontend_swzigzag(struct dvb_frontend *fe) { fe_status_t s = 0; struct dvb_frontend_private *fepriv = fe->frontend_priv; /* if we've got no parameters, just keep idling */ if (fepriv->state & FESTATE_IDLE) { fepriv->delay = 3*HZ; fepriv->quality = 0; return; } /* in SCAN mode, we just set the frontend when asked and leave it alone */ if (fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT) { if (fepriv->state & FESTATE_RETUNE) { if (fe->ops.set_frontend) fe->ops.set_frontend(fe, &fepriv->parameters); fepriv->state = FESTATE_TUNED; } fepriv->delay = 3*HZ; fepriv->quality = 0; return; } /* get the frontend status */ if (fepriv->state & FESTATE_RETUNE) { s = 0; } else { if (fe->ops.read_status) fe->ops.read_status(fe, &s); if (s != fepriv->status) { dvb_frontend_add_event(fe, s); fepriv->status = s; } } /* if we're not tuned, and we have a lock, move to the TUNED state */ if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); fepriv->state = FESTATE_TUNED; /* if we're tuned, then we have determined the correct inversion */ if ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) && (fepriv->parameters.inversion == INVERSION_AUTO)) { fepriv->parameters.inversion = fepriv->inversion; } return; } /* if we are tuned already, check we're still locked */ if (fepriv->state & FESTATE_TUNED) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); /* we're tuned, and the lock is still good... */ if (s & FE_HAS_LOCK) { return; } else { /* if we _WERE_ tuned, but now don't have a lock */ fepriv->state = FESTATE_ZIGZAG_FAST; fepriv->started_auto_step = fepriv->auto_step; fepriv->check_wrapped = 0; } } /* don't actually do anything if we're in the LOSTLOCK state, * the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */ if ((fepriv->state & FESTATE_LOSTLOCK) && (fe->ops.info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); return; } /* don't do anything if we're in the DISEQC state, since this * might be someone with a motorized dish controlled by DISEQC. * If its actually a re-tune, there will be a SET_FRONTEND soon enough. */ if (fepriv->state & FESTATE_DISEQC) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); return; } /* if we're in the RETUNE state, set everything up for a brand * new scan, keeping the current inversion setting, as the next * tune is _very_ likely to require the same */ if (fepriv->state & FESTATE_RETUNE) { fepriv->lnb_drift = 0; fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->started_auto_step = 0; fepriv->check_wrapped = 0; } /* fast zigzag. */ if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) { fepriv->delay = fepriv->min_delay; /* peform a tune */ if (dvb_frontend_swzigzag_autotune(fe, fepriv->check_wrapped)) { /* OK, if we've run out of trials at the fast speed. * Drop back to slow for the _next_ attempt */ fepriv->state = FESTATE_SEARCHING_SLOW; fepriv->started_auto_step = fepriv->auto_step; return; } fepriv->check_wrapped = 1; /* if we've just retuned, enter the ZIGZAG_FAST state. * This ensures we cannot return from an * FE_SET_FRONTEND ioctl before the first frontend tune * occurs */ if (fepriv->state & FESTATE_RETUNE) { fepriv->state = FESTATE_TUNING_FAST; } } /* slow zigzag */ if (fepriv->state & FESTATE_SEARCHING_SLOW) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); /* Note: don't bother checking for wrapping; we stay in this * state until we get a lock */ dvb_frontend_swzigzag_autotune(fe, 0); } } static int dvb_frontend_is_exiting(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; if (fepriv->exit) return 1; if (fepriv->dvbdev->writers == 1) if (time_after(jiffies, fepriv->release_jiffies + dvb_shutdown_timeout * HZ)) return 1; return 0; } static int dvb_frontend_should_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; if (fepriv->wakeup) { fepriv->wakeup = 0; return 1; } return dvb_frontend_is_exiting(fe); } static void dvb_frontend_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; fepriv->wakeup = 1; wake_up_interruptible(&fepriv->wait_queue); } static int dvb_frontend_thread(void *data) { struct dvb_frontend *fe = data; struct dvb_frontend_private *fepriv = fe->frontend_priv; unsigned long timeout; fe_status_t s; struct dvb_frontend_parameters *params; dprintk("%s\n", __func__); fepriv->check_wrapped = 0; fepriv->quality = 0; fepriv->delay = 3*HZ; fepriv->status = 0; fepriv->wakeup = 0; fepriv->reinitialise = 0; dvb_frontend_init(fe); set_freezable(); while (1) { up(&fepriv->sem); /* is locked when we enter the thread... */ restart: timeout = wait_event_interruptible_timeout(fepriv->wait_queue, dvb_frontend_should_wakeup(fe) || kthread_should_stop() || freezing(current), fepriv->delay); if (kthread_should_stop() || dvb_frontend_is_exiting(fe)) { /* got signal or quitting */ break; } if (try_to_freeze()) goto restart; if (down_interruptible(&fepriv->sem)) break; if (fepriv->reinitialise) { dvb_frontend_init(fe); if (fepriv->tone != -1) { fe->ops.set_tone(fe, fepriv->tone); } if (fepriv->voltage != -1) { fe->ops.set_voltage(fe, fepriv->voltage); } fepriv->reinitialise = 0; } /* do an iteration of the tuning loop */ if (fe->ops.get_frontend_algo) { if (fe->ops.get_frontend_algo(fe) == FE_ALGO_HW) { /* have we been asked to retune? */ params = NULL; if (fepriv->state & FESTATE_RETUNE) { params = &fepriv->parameters; fepriv->state = FESTATE_TUNED; } fe->ops.tune(fe, params, fepriv->tune_mode_flags, &fepriv->delay, &s); if (s != fepriv->status) { dvb_frontend_add_event(fe, s); fepriv->status = s; } } else dvb_frontend_swzigzag(fe); } else dvb_frontend_swzigzag(fe); } if (dvb_powerdown_on_sleep) { if (fe->ops.set_voltage) fe->ops.set_voltage(fe, SEC_VOLTAGE_OFF); if (fe->ops.tuner_ops.sleep) { fe->ops.tuner_ops.sleep(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (fe->ops.sleep) fe->ops.sleep(fe); } fepriv->thread = NULL; mb(); dvb_frontend_wakeup(fe); return 0; } static void dvb_frontend_stop(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; dprintk ("%s\n", __func__); fepriv->exit = 1; mb(); if (!fepriv->thread) return; kthread_stop(fepriv->thread); init_MUTEX (&fepriv->sem); fepriv->state = FESTATE_IDLE; /* paranoia check in case a signal arrived */ if (fepriv->thread) printk("dvb_frontend_stop: warning: thread %p won't exit\n", fepriv->thread); } s32 timeval_usec_diff(struct timeval lasttime, struct timeval curtime) { return ((curtime.tv_usec < lasttime.tv_usec) ? 1000000 - lasttime.tv_usec + curtime.tv_usec : curtime.tv_usec - lasttime.tv_usec); } EXPORT_SYMBOL(timeval_usec_diff); static inline void timeval_usec_add(struct timeval *curtime, u32 add_usec) { curtime->tv_usec += add_usec; if (curtime->tv_usec >= 1000000) { curtime->tv_usec -= 1000000; curtime->tv_sec++; } } /* * Sleep until gettimeofday() > waketime + add_usec * This needs to be as precise as possible, but as the delay is * usually between 2ms and 32ms, it is done using a scheduled msleep * followed by usleep (normally a busy-wait loop) for the remainder */ void dvb_frontend_sleep_until(struct timeval *waketime, u32 add_usec) { struct timeval lasttime; s32 delta, newdelta; timeval_usec_add(waketime, add_usec); do_gettimeofday(&lasttime); delta = timeval_usec_diff(lasttime, *waketime); if (delta > 2500) { msleep((delta - 1500) / 1000); do_gettimeofday(&lasttime); newdelta = timeval_usec_diff(lasttime, *waketime); delta = (newdelta > delta) ? 0 : newdelta; } if (delta > 0) udelay(delta); } EXPORT_SYMBOL(dvb_frontend_sleep_until); static int dvb_frontend_start(struct dvb_frontend *fe) { int ret; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct task_struct *fe_thread; dprintk ("%s\n", __func__); if (fepriv->thread) { if (!fepriv->exit) return 0; else dvb_frontend_stop (fe); } if (signal_pending(current)) return -EINTR; if (down_interruptible (&fepriv->sem)) return -EINTR; fepriv->state = FESTATE_IDLE; fepriv->exit = 0; fepriv->thread = NULL; mb(); fe_thread = kthread_run(dvb_frontend_thread, fe, "kdvb-fe-%i", fe->dvb->num); if (IS_ERR(fe_thread)) { ret = PTR_ERR(fe_thread); printk("dvb_frontend_start: failed to start kthread (%d)\n", ret); up(&fepriv->sem); return ret; } fepriv->thread = fe_thread; return 0; } static void dvb_frontend_get_frequeny_limits(struct dvb_frontend *fe, u32 *freq_min, u32 *freq_max) { *freq_min = max(fe->ops.info.frequency_min, fe->ops.tuner_ops.info.frequency_min); if (fe->ops.info.frequency_max == 0) *freq_max = fe->ops.tuner_ops.info.frequency_max; else if (fe->ops.tuner_ops.info.frequency_max == 0) *freq_max = fe->ops.info.frequency_max; else *freq_max = min(fe->ops.info.frequency_max, fe->ops.tuner_ops.info.frequency_max); if (*freq_min == 0 || *freq_max == 0) printk(KERN_WARNING "DVB: frontend %u frequency limits undefined - fix the driver\n", fe->dvb->num); } static int dvb_frontend_check_parameters(struct dvb_frontend *fe, struct dvb_frontend_parameters *parms) { u32 freq_min; u32 freq_max; /* range check: frequency */ dvb_frontend_get_frequeny_limits(fe, &freq_min, &freq_max); if ((freq_min && parms->frequency < freq_min) || (freq_max && parms->frequency > freq_max)) { printk(KERN_WARNING "DVB: frontend %u frequency %u out of range (%u..%u)\n", fe->dvb->num, parms->frequency, freq_min, freq_max); return -EINVAL; } /* range check: symbol rate */ if (fe->ops.info.type == FE_QPSK) { if ((fe->ops.info.symbol_rate_min && parms->u.qpsk.symbol_rate < fe->ops.info.symbol_rate_min) || (fe->ops.info.symbol_rate_max && parms->u.qpsk.symbol_rate > fe->ops.info.symbol_rate_max)) { printk(KERN_WARNING "DVB: frontend %u symbol rate %u out of range (%u..%u)\n", fe->dvb->num, parms->u.qpsk.symbol_rate, fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max); return -EINVAL; } } else if (fe->ops.info.type == FE_QAM) { if ((fe->ops.info.symbol_rate_min && parms->u.qam.symbol_rate < fe->ops.info.symbol_rate_min) || (fe->ops.info.symbol_rate_max && parms->u.qam.symbol_rate > fe->ops.info.symbol_rate_max)) { printk(KERN_WARNING "DVB: frontend %u symbol rate %u out of range (%u..%u)\n", fe->dvb->num, parms->u.qam.symbol_rate, fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max); return -EINVAL; } } return 0; } struct tv_cmds_h tv_cmds[] = { [TV_SEQ_UNDEFINED] = { .name = "TV_SEQ_UNDEFINED", .cmd = TV_SEQ_UNDEFINED, .set = 1, }, [TV_SEQ_START] = { .name = "TV_SEQ_START", .cmd = TV_SEQ_START, .set = 1, }, [TV_SEQ_CONTINUE] = { .name = "TV_SEQ_CONTINUE", .cmd = TV_SEQ_CONTINUE, .set = 1, }, [TV_SEQ_COMPLETE] = { .name = "TV_SEQ_COMPLETE", .cmd = TV_SEQ_COMPLETE, .set = 1, }, [TV_SEQ_TERMINATE] = { .name = "TV_SEQ_TERMINATE", .cmd = TV_SEQ_TERMINATE, .set = 1, }, /* Set */ [TV_SET_FREQUENCY] = { .name = "TV_SET_FREQUENCY", .cmd = TV_SET_FREQUENCY, .set = 1, }, [TV_SET_BANDWIDTH] = { .name = "TV_SET_BANDWIDTH", .cmd = TV_SET_BANDWIDTH, .set = 1, }, [TV_SET_MODULATION] = { .name = "TV_SET_MODULATION", .cmd = TV_SET_MODULATION, .set = 1, }, [TV_SET_INVERSION] = { .name = "TV_SET_INVERSION", .cmd = TV_SET_INVERSION, .set = 1, }, [TV_SET_DISEQC_MASTER] = { .name = "TV_SET_DISEQC_MASTER", .cmd = TV_SET_DISEQC_MASTER, .set = 1, .buffer = 1, }, [TV_SET_SYMBOLRATE] = { .name = "TV_SET_SYMBOLRATE", .cmd = TV_SET_SYMBOLRATE, .set = 1, }, [TV_SET_INNERFEC] = { .name = "TV_SET_INNERFEC", .cmd = TV_SET_INNERFEC, .set = 1, }, [TV_SET_VOLTAGE] = { .name = "TV_SET_VOLTAGE", .cmd = TV_SET_VOLTAGE, .set = 1, }, [TV_SET_TONE] = { .name = "TV_SET_TONE", .cmd = TV_SET_TONE, .set = 1, }, [TV_SET_PILOT] = { .name = "TV_SET_PILOT", .cmd = TV_SET_PILOT, .set = 1, }, [TV_SET_ROLLOFF] = { .name = "TV_SET_ROLLOFF", .cmd = TV_SET_ROLLOFF, .set = 1, }, [TV_SET_DELIVERY_SYSTEM] = { .name = "TV_SET_DELIVERY_SYSTEM", .cmd = TV_SET_DELIVERY_SYSTEM, .set = 1, }, [TV_SET_ISDB_SEGMENT_NUM] = { .name = "TV_SET_ISDB_SEGMENT_NUM", .cmd = TV_SET_ISDB_SEGMENT_NUM, .set = 1, }, [TV_SET_ISDB_SEGMENT_WIDTH] = { .name = "TV_SET_ISDB_SEGMENT_WIDTH", .cmd = TV_SET_ISDB_SEGMENT_WIDTH, .set = 1, }, /* Get */ [TV_GET_FREQUENCY] = { .name = "TV_GET_FREQUENCY", .cmd = TV_GET_FREQUENCY, .set = 0, }, [TV_GET_BANDWIDTH] = { .name = "TV_GET_BANDWIDTH", .cmd = TV_GET_BANDWIDTH, .set = 0, }, [TV_GET_MODULATION] = { .name = "TV_GET_MODULATION", .cmd = TV_GET_MODULATION, .set = 0, }, [TV_GET_INVERSION] = { .name = "TV_GET_INVERSION", .cmd = TV_GET_INVERSION, .set = 0, }, [TV_GET_DISEQC_SLAVE_REPLY] = { .name = "TV_GET_DISEQC_SLAVE_REPLY", .cmd = TV_GET_DISEQC_SLAVE_REPLY, .set = 0, .buffer = 1, }, [TV_GET_SYMBOLRATE] = { .name = "TV_GET_SYMBOLRATE", .cmd = TV_GET_SYMBOLRATE, .set = 0, }, [TV_GET_INNERFEC] = { .name = "TV_GET_INNERFEC", .cmd = TV_GET_INNERFEC, .set = 0, }, [TV_GET_VOLTAGE] = { .name = "TV_GET_VOLTAGE", .cmd = TV_GET_VOLTAGE, .set = 0, }, [TV_GET_TONE] = { .name = "TV_GET_TONE", .cmd = TV_GET_TONE, .set = 0, }, [TV_GET_PILOT] = { .name = "TV_GET_PILOT", .cmd = TV_GET_PILOT, .set = 0, }, [TV_GET_ROLLOFF] = { .name = "TV_GET_ROLLOFF", .cmd = TV_GET_ROLLOFF, .set = 0, }, [TV_GET_DELIVERY_SYSTEM] = { .name = "TV_GET_DELIVERY_SYSTEM", .cmd = TV_GET_DELIVERY_SYSTEM, .set = 0, }, [TV_GET_ISDB_SEGMENT_NUM] = { .name = "TV_GET_ISDB_SEGMENT_NUM", .cmd = TV_GET_ISDB_SEGMENT_NUM, .set = 0, }, [TV_GET_ISDB_SEGMENT_WIDTH] = { .name = "TV_GET_ISDB_SEGMENT_WIDTH", .cmd = TV_GET_ISDB_SEGMENT_WIDTH, .set = 0, }, [TV_GET_ISDB_LAYERA_FEC] = { .name = "TV_GET_ISDB_LAYERA_FEC", .cmd = TV_GET_ISDB_LAYERA_FEC, .set = 0, }, [TV_GET_ISDB_LAYERA_MODULATION] = { .name = "TV_GET_ISDB_LAYERA_MODULATION", .cmd = TV_GET_ISDB_LAYERA_MODULATION, .set = 0, }, [TV_GET_ISDB_LAYERA_SEGMENT_WIDTH] = { .name = "TV_GET_ISDB_LAYERA_SEGMENT_WIDTH", .cmd = TV_GET_ISDB_LAYERA_SEGMENT_WIDTH, .set = 0, }, [TV_GET_ISDB_LAYERB_FEC] = { .name = "TV_GET_ISDB_LAYERB_FEC", .cmd = TV_GET_ISDB_LAYERB_FEC, .set = 0, }, [TV_GET_ISDB_LAYERB_MODULATION] = { .name = "TV_GET_ISDB_LAYERB_MODULATION", .cmd = TV_GET_ISDB_LAYERB_MODULATION, .set = 0, }, [TV_GET_ISDB_LAYERB_SEGMENT_WIDTH] = { .name = "TV_GET_ISDB_LAYERB_SEGMENT_WIDTH", .cmd = TV_GET_ISDB_LAYERB_SEGMENT_WIDTH, .set = 0, }, [TV_GET_ISDB_LAYERC_FEC] = { .name = "TV_GET_ISDB_LAYERC_FEC", .cmd = TV_GET_ISDB_LAYERC_FEC, .set = 0, }, [TV_GET_ISDB_LAYERC_MODULATION] = { .name = "TV_GET_ISDB_LAYERC_MODULATION", .cmd = TV_GET_ISDB_LAYERC_MODULATION, .set = 0, }, [TV_GET_ISDB_LAYERC_SEGMENT_WIDTH] = { .name = "TV_GET_ISDB_LAYERC_SEGMENT_WIDTH", .cmd = TV_GET_ISDB_LAYERC_SEGMENT_WIDTH, .set = 0, }, }; void tv_property_dump(tv_property_t *tvp) { int i; printk("%s() tvp.cmd = 0x%08x (%s)\n" ,__FUNCTION__ ,tvp->cmd ,tv_cmds[ tvp->cmd ].name); if(tv_cmds[ tvp->cmd ].buffer) { printk("%s() tvp.u.buffer.len = 0x%02x\n" ,__FUNCTION__ ,tvp->u.buffer.len); for(i = 0; i < tvp->u.buffer.len; i++) printk("%s() tvp.u.buffer.data[0x%02x] = 0x%02x\n" ,__FUNCTION__ ,i ,tvp->u.buffer.data[i]); } else printk("%s() tvp.u.data = 0x%08x\n", __FUNCTION__, tvp->u.data); } int is_legacy_delivery_system(fe_delivery_system_t s) { if((s == SYS_UNDEFINED) || (s == SYS_DVBC_ANNEX_AC) || (s == SYS_DVBC_ANNEX_B) || (s == SYS_DVBT) || (s == SYS_DVBS)) return 1; return 0; } int tv_property_cache_submit(struct dvb_frontend *fe) { /* We have to do one of two things: * To support legacy devices using the new API we take values from * the tv_cache and generate a legacy truning structure. * * Or, * * To support advanced tuning devices with the new API we * notify the new advance driver type that a tuning operation is required * and let it pull values from the cache as is, we don't need to * pass structures. * * We'll use the modulation type to assess how this is handled. as the API * progresses we'll probably want to have a flag in dvb_frontend_ops * to allow the frontend driver to dictate how it likes to be tuned. * * Because of how this is attached to the ioctl handler for legacy support, * it's important to return an appropriate result code with atleast the following * three meanings: * < 0 = processing error * 0 = lecagy ioctl handler to submit a traditional set_frontend() call. * 1 = lecagy ioctl handler should NOT submit a traditional set_frontend() call. */ int r; struct tv_frontend_properties *c = &fe->tv_property_cache; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_frontend_parameters p; printk("%s()\n", __FUNCTION__); /* For legacy delivery systems we don't need the delivery_system to be specified */ if(is_legacy_delivery_system(c->delivery_system)) { switch(c->modulation) { case QPSK: printk("%s() Preparing QPSK req\n", __FUNCTION__); p.frequency = c->frequency; p.inversion = c->inversion; p.u.qpsk.symbol_rate = c->symbol_rate; p.u.qpsk.fec_inner = c->fec_inner; memcpy(&fepriv->parameters, &p, sizeof (struct dvb_frontend_parameters)); /* Call the traditional tuning mechanisms. */ r = 0; break; case QAM_16: case QAM_32: case QAM_64: case QAM_128: case QAM_256: case QAM_AUTO: printk("%s() Preparing QAM req\n", __FUNCTION__); p.frequency = c->frequency; p.inversion = c->inversion; p.u.qam.symbol_rate = c->symbol_rate; p.u.vsb.modulation = c->modulation; printk("%s() frequency = %d\n", __FUNCTION__, p.frequency); printk("%s() QAM = %d\n", __FUNCTION__, p.u.vsb.modulation); memcpy(&fepriv->parameters, &p, sizeof (struct dvb_frontend_parameters)); /* At this point we're fully formed for backwards * compatability and we need to return this * via the ioctl handler as SET_FRONTEND (arg). * We've already patched the new values into the * frontends tuning structures so the ioctl code just * continues as if a legacy tune structure was passed * from userspace. */ r = 0; break; case VSB_8: case VSB_16: printk("%s() Preparing VSB req\n", __FUNCTION__); p.frequency = c->frequency; p.u.vsb.modulation = c->modulation; memcpy(&fepriv->parameters, &p, sizeof (struct dvb_frontend_parameters)); /* Call the traditional tuning mechanisms. */ r = 0; break; /* TODO: Add any missing modulation types */ default: r = -1; } } else { /* For advanced delivery systems / modulation types ... * we seed the lecacy dvb_frontend_parameters structure * so that the sanity checking code later in the IOCTL processing * can validate our basic frequency ranges, symbolrates, modulation * etc. */ r = -1; switch(c->modulation) { case _8PSK: case _16APSK: case NBC_QPSK: /* Just post a notification to the demod driver and let it pull * the specific values it wants from its tv_property_cache. * It can decide how best to use those parameters. * IOCTL will call set_frontend (by default) due to zigzag * support etc. */ if (fe->ops.set_params) r = fe->ops.set_params(fe); p.frequency = c->frequency; p.inversion = c->inversion; p.u.qpsk.symbol_rate = c->symbol_rate; p.u.qpsk.fec_inner = c->fec_inner; memcpy(&fepriv->parameters, &p, sizeof (struct dvb_frontend_parameters)); r = 0; break; default: r = -1; } if(c->delivery_system == SYS_ISDBT) { /* Fake out a generic DVB-T request so we pass validation in the ioctl */ p.frequency = c->frequency; p.inversion = INVERSION_AUTO; p.u.ofdm.constellation = QAM_AUTO; p.u.ofdm.code_rate_HP = FEC_AUTO; p.u.ofdm.code_rate_LP = FEC_AUTO; p.u.ofdm.bandwidth = BANDWIDTH_AUTO; p.u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO; p.u.ofdm.guard_interval = GUARD_INTERVAL_AUTO; p.u.ofdm.hierarchy_information = HIERARCHY_AUTO; memcpy(&fepriv->parameters, &p, sizeof (struct dvb_frontend_parameters)); r = 0; } } return r; } static int dvb_frontend_ioctl_legacy(struct inode *inode, struct file *file, unsigned int cmd, void *parg); static int dvb_frontend_ioctl_properties(struct inode *inode, struct file *file, unsigned int cmd, void *parg); int tv_property_process(struct dvb_frontend *fe, tv_property_t *tvp, struct inode *inode, struct file *file) { int r = 0; struct dvb_frontend_private *fepriv = fe->frontend_priv; printk("%s()\n", __FUNCTION__); tv_property_dump(tvp); switch(tvp->cmd) { case TV_SEQ_START: case TV_SEQ_TERMINATE: /* Reset a cache of data specific to the frontend here. This does * not effect hardware. */ printk("%s() Flushing property cache\n", __FUNCTION__); memset(&fe->tv_property_cache, 0, sizeof(struct tv_frontend_properties)); fe->tv_property_cache.state = TV_SEQ_START; fe->tv_property_cache.delivery_system = SYS_UNDEFINED; break; case TV_SEQ_COMPLETE: /* interpret the cache of data, build either a traditional frontend * tunerequest and submit it to a subset of the ioctl handler, * or, call a new undefined method on the frontend to deal with * all new tune requests. */ fe->tv_property_cache.state = TV_SEQ_COMPLETE; printk("%s() Finalised property cache\n", __FUNCTION__); r |= tv_property_cache_submit(fe); r |= dvb_frontend_ioctl_legacy(inode, file, FE_SET_FRONTEND, &fepriv->parameters); break; case TV_SET_FREQUENCY: fe->tv_property_cache.frequency = tvp->u.data; break; case TV_GET_FREQUENCY: tvp->u.data = fe->tv_property_cache.frequency; break; case TV_SET_MODULATION: fe->tv_property_cache.modulation = tvp->u.data; break; case TV_GET_MODULATION: tvp->u.data = fe->tv_property_cache.modulation; break; case TV_SET_BANDWIDTH: fe->tv_property_cache.bandwidth = tvp->u.data; break; case TV_GET_BANDWIDTH: tvp->u.data = fe->tv_property_cache.bandwidth; break; case TV_SET_INVERSION: fe->tv_property_cache.inversion = tvp->u.data; break; case TV_GET_INVERSION: tvp->u.data = fe->tv_property_cache.inversion; break; case TV_SET_SYMBOLRATE: fe->tv_property_cache.symbol_rate = tvp->u.data; break; case TV_GET_SYMBOLRATE: tvp->u.data = fe->tv_property_cache.symbol_rate; break; case TV_SET_INNERFEC: fe->tv_property_cache.fec_inner = tvp->u.data; break; case TV_GET_INNERFEC: tvp->u.data = fe->tv_property_cache.fec_inner; break; case TV_SET_PILOT: fe->tv_property_cache.pilot = tvp->u.data; break; case TV_GET_PILOT: tvp->u.data = fe->tv_property_cache.pilot; break; case TV_SET_ROLLOFF: fe->tv_property_cache.rolloff = tvp->u.data; break; case TV_GET_ROLLOFF: tvp->u.data = fe->tv_property_cache.rolloff; break; case TV_SET_DELIVERY_SYSTEM: fe->tv_property_cache.delivery_system = tvp->u.data; break; case TV_GET_DELIVERY_SYSTEM: tvp->u.data = fe->tv_property_cache.delivery_system; break; /* ISDB-T Support here */ case TV_SET_ISDB_SEGMENT_NUM: fe->tv_property_cache.isdb_segment_num = tvp->u.data; break; case TV_GET_ISDB_SEGMENT_NUM: tvp->u.data = fe->tv_property_cache.isdb_segment_num; break; case TV_SET_ISDB_SEGMENT_WIDTH: fe->tv_property_cache.isdb_segment_width = tvp->u.data; break; case TV_GET_ISDB_SEGMENT_WIDTH: tvp->u.data = fe->tv_property_cache.isdb_segment_width; break; case TV_GET_ISDB_LAYERA_FEC: tvp->u.data = fe->tv_property_cache.isdb_layera_fec; break; case TV_GET_ISDB_LAYERA_MODULATION: tvp->u.data = fe->tv_property_cache.isdb_layera_modulation; break; case TV_GET_ISDB_LAYERA_SEGMENT_WIDTH: tvp->u.data = fe->tv_property_cache.isdb_layera_segment_width; break; case TV_GET_ISDB_LAYERB_FEC: tvp->u.data = fe->tv_property_cache.isdb_layerb_fec; break; case TV_GET_ISDB_LAYERB_MODULATION: tvp->u.data = fe->tv_property_cache.isdb_layerb_modulation; break; case TV_GET_ISDB_LAYERB_SEGMENT_WIDTH: tvp->u.data = fe->tv_property_cache.isdb_layerb_segment_width; break; case TV_GET_ISDB_LAYERC_FEC: tvp->u.data = fe->tv_property_cache.isdb_layerc_fec; break; case TV_GET_ISDB_LAYERC_MODULATION: tvp->u.data = fe->tv_property_cache.isdb_layerc_modulation; break; case TV_GET_ISDB_LAYERC_SEGMENT_WIDTH: tvp->u.data = fe->tv_property_cache.isdb_layerc_segment_width; break; case TV_SET_VOLTAGE: fe->tv_property_cache.voltage = tvp->u.data; r = dvb_frontend_ioctl_legacy(inode, file, FE_SET_VOLTAGE, (void *)fe->tv_property_cache.voltage); break; case TV_GET_VOLTAGE: tvp->u.data = fe->tv_property_cache.voltage; break; case TV_SET_TONE: fe->tv_property_cache.sectone = tvp->u.data; r = dvb_frontend_ioctl_legacy(inode, file, FE_SET_TONE, (void *)fe->tv_property_cache.sectone); break; case TV_GET_TONE: tvp->u.data = fe->tv_property_cache.sectone; break; } return r; } static int dvb_frontend_ioctl(struct inode *inode, struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; int err = -EOPNOTSUPP; dprintk ("%s\n", __func__); if (fepriv->exit) return -ENODEV; if ((file->f_flags & O_ACCMODE) == O_RDONLY && (_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT || cmd == FE_DISEQC_RECV_SLAVE_REPLY)) return -EPERM; if (down_interruptible (&fepriv->sem)) return -ERESTARTSYS; if ((cmd == FE_SET_PROPERTY) || (cmd == FE_GET_PROPERTY)) err = dvb_frontend_ioctl_properties(inode, file, cmd, parg); else err = dvb_frontend_ioctl_legacy(inode, file, cmd, parg); up(&fepriv->sem); return err; } static int dvb_frontend_ioctl_properties(struct inode *inode, struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; int err = -EOPNOTSUPP; tv_property_t *tvp; dprintk("%s\n", __func__); if(cmd == FE_SET_PROPERTY) { printk("%s() FE_SET_PROPERTY\n", __FUNCTION__); /* TODO: basic property validation here */ /* TODO: ioctl userdata out of range check here */ tvp = parg; while(tvp->cmd != TV_SEQ_UNDEFINED) { tv_property_process(fe, tvp, inode, file); if( (tvp->cmd == TV_SEQ_TERMINATE) || (tvp->cmd == TV_SEQ_COMPLETE) ) break; tvp++; } if(fe->tv_property_cache.state == TV_SEQ_COMPLETE) { printk("%s() Property cache is full, tuning\n", __FUNCTION__); } err = 0; } return err; } static int dvb_frontend_ioctl_legacy(struct inode *inode, struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; int err = -EOPNOTSUPP; switch (cmd) { case FE_GET_INFO: { struct dvb_frontend_info* info = parg; memcpy(info, &fe->ops.info, sizeof(struct dvb_frontend_info)); dvb_frontend_get_frequeny_limits(fe, &info->frequency_min, &info->frequency_max); /* Force the CAN_INVERSION_AUTO bit on. If the frontend doesn't * do it, it is done for it. */ info->caps |= FE_CAN_INVERSION_AUTO; err = 0; break; } case FE_READ_STATUS: { fe_status_t* status = parg; /* if retune was requested but hasn't occured yet, prevent * that user get signal state from previous tuning */ if(fepriv->state == FESTATE_RETUNE) { err=0; *status = 0; break; } if (fe->ops.read_status) err = fe->ops.read_status(fe, status); break; } case FE_READ_BER: if (fe->ops.read_ber) err = fe->ops.read_ber(fe, (__u32*) parg); break; case FE_READ_SIGNAL_STRENGTH: if (fe->ops.read_signal_strength) err = fe->ops.read_signal_strength(fe, (__u16*) parg); break; case FE_READ_SNR: if (fe->ops.read_snr) err = fe->ops.read_snr(fe, (__u16*) parg); break; case FE_READ_UNCORRECTED_BLOCKS: if (fe->ops.read_ucblocks) err = fe->ops.read_ucblocks(fe, (__u32*) parg); break; case FE_DISEQC_RESET_OVERLOAD: if (fe->ops.diseqc_reset_overload) { err = fe->ops.diseqc_reset_overload(fe); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_MASTER_CMD: if (fe->ops.diseqc_send_master_cmd) { err = fe->ops.diseqc_send_master_cmd(fe, (struct dvb_diseqc_master_cmd*) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_BURST: if (fe->ops.diseqc_send_burst) { err = fe->ops.diseqc_send_burst(fe, (fe_sec_mini_cmd_t) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_TONE: if (fe->ops.set_tone) { err = fe->ops.set_tone(fe, (fe_sec_tone_mode_t) parg); fepriv->tone = (fe_sec_tone_mode_t) parg; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_VOLTAGE: if (fe->ops.set_voltage) { err = fe->ops.set_voltage(fe, (fe_sec_voltage_t) parg); fepriv->voltage = (fe_sec_voltage_t) parg; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISHNETWORK_SEND_LEGACY_CMD: if (fe->ops.dishnetwork_send_legacy_command) { err = fe->ops.dishnetwork_send_legacy_command(fe, (unsigned long) parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } else if (fe->ops.set_voltage) { /* * NOTE: This is a fallback condition. Some frontends * (stv0299 for instance) take longer than 8msec to * respond to a set_voltage command. Those switches * need custom routines to switch properly. For all * other frontends, the following shoule work ok. * Dish network legacy switches (as used by Dish500) * are controlled by sending 9-bit command words * spaced 8msec apart. * the actual command word is switch/port dependant * so it is up to the userspace application to send * the right command. * The command must always start with a '0' after * initialization, so parg is 8 bits and does not * include the initialization or start bit */ unsigned long swcmd = ((unsigned long) parg) << 1; struct timeval nexttime; struct timeval tv[10]; int i; u8 last = 1; if (dvb_frontend_debug) printk("%s switch command: 0x%04lx\n", __func__, swcmd); do_gettimeofday(&nexttime); if (dvb_frontend_debug) memcpy(&tv[0], &nexttime, sizeof(struct timeval)); /* before sending a command, initialize by sending * a 32ms 18V to the switch */ fe->ops.set_voltage(fe, SEC_VOLTAGE_18); dvb_frontend_sleep_until(&nexttime, 32000); for (i = 0; i < 9; i++) { if (dvb_frontend_debug) do_gettimeofday(&tv[i + 1]); if ((swcmd & 0x01) != last) { /* set voltage to (last ? 13V : 18V) */ fe->ops.set_voltage(fe, (last) ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18); last = (last) ? 0 : 1; } swcmd = swcmd >> 1; if (i != 8) dvb_frontend_sleep_until(&nexttime, 8000); } if (dvb_frontend_debug) { printk("%s(%d): switch delay (should be 32k followed by all 8k\n", __func__, fe->dvb->num); for (i = 1; i < 10; i++) printk("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i])); } err = 0; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_RECV_SLAVE_REPLY: if (fe->ops.diseqc_recv_slave_reply) err = fe->ops.diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg); break; case FE_ENABLE_HIGH_LNB_VOLTAGE: if (fe->ops.enable_high_lnb_voltage) err = fe->ops.enable_high_lnb_voltage(fe, (long) parg); break; case FE_SET_FRONTEND: { struct dvb_frontend_tune_settings fetunesettings; if(fe->tv_property_cache.state == TV_SEQ_COMPLETE) { if (dvb_frontend_check_parameters(fe, &fepriv->parameters) < 0) { err = -EINVAL; break; } } else { if (dvb_frontend_check_parameters(fe, parg) < 0) { err = -EINVAL; break; } memcpy (&fepriv->parameters, parg, sizeof (struct dvb_frontend_parameters)); } memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings)); memcpy(&fetunesettings.parameters, parg, sizeof (struct dvb_frontend_parameters)); /* force auto frequency inversion if requested */ if (dvb_force_auto_inversion) { fepriv->parameters.inversion = INVERSION_AUTO; fetunesettings.parameters.inversion = INVERSION_AUTO; } if (fe->ops.info.type == FE_OFDM) { /* without hierarchical coding code_rate_LP is irrelevant, * so we tolerate the otherwise invalid FEC_NONE setting */ if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE && fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE) fepriv->parameters.u.ofdm.code_rate_LP = FEC_AUTO; } /* get frontend-specific tuning settings */ if (fe->ops.get_tune_settings && (fe->ops.get_tune_settings(fe, &fetunesettings) == 0)) { fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000; fepriv->max_drift = fetunesettings.max_drift; fepriv->step_size = fetunesettings.step_size; } else { /* default values */ switch(fe->ops.info.type) { case FE_QPSK: fepriv->min_delay = HZ/20; fepriv->step_size = fepriv->parameters.u.qpsk.symbol_rate / 16000; fepriv->max_drift = fepriv->parameters.u.qpsk.symbol_rate / 2000; break; case FE_QAM: fepriv->min_delay = HZ/20; fepriv->step_size = 0; /* no zigzag */ fepriv->max_drift = 0; break; case FE_OFDM: fepriv->min_delay = HZ/20; fepriv->step_size = fe->ops.info.frequency_stepsize * 2; fepriv->max_drift = (fe->ops.info.frequency_stepsize * 2) + 1; break; case FE_ATSC: fepriv->min_delay = HZ/20; fepriv->step_size = 0; fepriv->max_drift = 0; break; } } if (dvb_override_tune_delay > 0) fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000; fepriv->state = FESTATE_RETUNE; dvb_frontend_wakeup(fe); dvb_frontend_add_event(fe, 0); fepriv->status = 0; err = 0; break; } case FE_GET_EVENT: err = dvb_frontend_get_event (fe, parg, file->f_flags); break; case FE_GET_FRONTEND: if (fe->ops.get_frontend) { memcpy (parg, &fepriv->parameters, sizeof (struct dvb_frontend_parameters)); err = fe->ops.get_frontend(fe, (struct dvb_frontend_parameters*) parg); } break; case FE_SET_FRONTEND_TUNE_MODE: fepriv->tune_mode_flags = (unsigned long) parg; err = 0; break; }; return err; } static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; dprintk ("%s\n", __func__); poll_wait (file, &fepriv->events.wait_queue, wait); if (fepriv->events.eventw != fepriv->events.eventr) return (POLLIN | POLLRDNORM | POLLPRI); return 0; } static int dvb_frontend_open(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; int ret; dprintk ("%s\n", __func__); if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) { if ((ret = fe->ops.ts_bus_ctrl(fe, 1)) < 0) return ret; } if ((ret = dvb_generic_open (inode, file)) < 0) goto err1; if ((file->f_flags & O_ACCMODE) != O_RDONLY) { /* normal tune mode when opened R/W */ fepriv->tune_mode_flags &= ~FE_TUNE_MODE_ONESHOT; fepriv->tone = -1; fepriv->voltage = -1; ret = dvb_frontend_start (fe); if (ret) goto err2; /* empty event queue */ fepriv->events.eventr = fepriv->events.eventw = 0; } return ret; err2: dvb_generic_release(inode, file); err1: if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) fe->ops.ts_bus_ctrl(fe, 0); return ret; } static int dvb_frontend_release(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; int ret; dprintk ("%s\n", __func__); if ((file->f_flags & O_ACCMODE) != O_RDONLY) fepriv->release_jiffies = jiffies; ret = dvb_generic_release (inode, file); if (dvbdev->users == -1) { if (fepriv->exit == 1) { fops_put(file->f_op); file->f_op = NULL; wake_up(&dvbdev->wait_queue); } if (fe->ops.ts_bus_ctrl) fe->ops.ts_bus_ctrl(fe, 0); } return ret; } static struct file_operations dvb_frontend_fops = { .owner = THIS_MODULE, .ioctl = dvb_generic_ioctl, .poll = dvb_frontend_poll, .open = dvb_frontend_open, .release = dvb_frontend_release }; int dvb_register_frontend(struct dvb_adapter* dvb, struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv; static const struct dvb_device dvbdev_template = { .users = ~0, .writers = 1, .readers = (~0)-1, .fops = &dvb_frontend_fops, .kernel_ioctl = dvb_frontend_ioctl }; dprintk ("%s\n", __func__); if (mutex_lock_interruptible(&frontend_mutex)) return -ERESTARTSYS; fe->frontend_priv = kzalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL); if (fe->frontend_priv == NULL) { mutex_unlock(&frontend_mutex); return -ENOMEM; } fepriv = fe->frontend_priv; init_MUTEX (&fepriv->sem); init_waitqueue_head (&fepriv->wait_queue); init_waitqueue_head (&fepriv->events.wait_queue); mutex_init(&fepriv->events.mtx); fe->dvb = dvb; fepriv->inversion = INVERSION_OFF; printk ("DVB: registering frontend %i (%s)...\n", fe->dvb->num, fe->ops.info.name); dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template, fe, DVB_DEVICE_FRONTEND); mutex_unlock(&frontend_mutex); return 0; } EXPORT_SYMBOL(dvb_register_frontend); int dvb_unregister_frontend(struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; dprintk ("%s\n", __func__); mutex_lock(&frontend_mutex); dvb_frontend_stop (fe); mutex_unlock(&frontend_mutex); if (fepriv->dvbdev->users < -1) wait_event(fepriv->dvbdev->wait_queue, fepriv->dvbdev->users==-1); mutex_lock(&frontend_mutex); dvb_unregister_device (fepriv->dvbdev); /* fe is invalid now */ kfree(fepriv); mutex_unlock(&frontend_mutex); return 0; } EXPORT_SYMBOL(dvb_unregister_frontend); #ifdef CONFIG_MEDIA_ATTACH void dvb_frontend_detach(struct dvb_frontend* fe) { void *ptr; if (fe->ops.release_sec) { fe->ops.release_sec(fe); symbol_put_addr(fe->ops.release_sec); } if (fe->ops.tuner_ops.release) { fe->ops.tuner_ops.release(fe); symbol_put_addr(fe->ops.tuner_ops.release); } if (fe->ops.analog_ops.release) { fe->ops.analog_ops.release(fe); symbol_put_addr(fe->ops.analog_ops.release); } ptr = (void*)fe->ops.release; if (ptr) { fe->ops.release(fe); symbol_put_addr(ptr); } } #else void dvb_frontend_detach(struct dvb_frontend* fe) { if (fe->ops.release_sec) fe->ops.release_sec(fe); if (fe->ops.tuner_ops.release) fe->ops.tuner_ops.release(fe); if (fe->ops.analog_ops.release) fe->ops.analog_ops.release(fe); if (fe->ops.release) fe->ops.release(fe); } #endif EXPORT_SYMBOL(dvb_frontend_detach);