/* * Cryptographic API. * * Support for ATMEL SHA1/SHA256 HW acceleration. * * Copyright (c) 2012 Eukréa Electromatique - ATMEL * Author: Nicolas Royer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from omap-sham.c drivers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atmel-sha-regs.h" /* SHA flags */ #define SHA_FLAGS_BUSY BIT(0) #define SHA_FLAGS_FINAL BIT(1) #define SHA_FLAGS_DMA_ACTIVE BIT(2) #define SHA_FLAGS_OUTPUT_READY BIT(3) #define SHA_FLAGS_INIT BIT(4) #define SHA_FLAGS_CPU BIT(5) #define SHA_FLAGS_DMA_READY BIT(6) #define SHA_FLAGS_FINUP BIT(16) #define SHA_FLAGS_SG BIT(17) #define SHA_FLAGS_ALGO_MASK GENMASK(22, 18) #define SHA_FLAGS_SHA1 BIT(18) #define SHA_FLAGS_SHA224 BIT(19) #define SHA_FLAGS_SHA256 BIT(20) #define SHA_FLAGS_SHA384 BIT(21) #define SHA_FLAGS_SHA512 BIT(22) #define SHA_FLAGS_ERROR BIT(23) #define SHA_FLAGS_PAD BIT(24) #define SHA_FLAGS_RESTORE BIT(25) #define SHA_OP_UPDATE 1 #define SHA_OP_FINAL 2 #define SHA_BUFFER_LEN (PAGE_SIZE / 16) #define ATMEL_SHA_DMA_THRESHOLD 56 struct atmel_sha_caps { bool has_dma; bool has_dualbuff; bool has_sha224; bool has_sha_384_512; bool has_uihv; }; struct atmel_sha_dev; /* * .statesize = sizeof(struct atmel_sha_state) must be <= PAGE_SIZE / 8 as * tested by the ahash_prepare_alg() function. */ struct atmel_sha_state { u8 digest[SHA512_DIGEST_SIZE]; u8 buffer[SHA_BUFFER_LEN]; u64 digcnt[2]; size_t bufcnt; }; struct atmel_sha_reqctx { struct atmel_sha_dev *dd; unsigned long flags; unsigned long op; u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32)); u64 digcnt[2]; size_t bufcnt; size_t buflen; dma_addr_t dma_addr; /* walk state */ struct scatterlist *sg; unsigned int offset; /* offset in current sg */ unsigned int total; /* total request */ size_t block_size; u8 buffer[0] __aligned(sizeof(u32)); }; struct atmel_sha_ctx { struct atmel_sha_dev *dd; unsigned long flags; }; #define ATMEL_SHA_QUEUE_LENGTH 50 struct atmel_sha_dma { struct dma_chan *chan; struct dma_slave_config dma_conf; }; struct atmel_sha_dev { struct list_head list; unsigned long phys_base; struct device *dev; struct clk *iclk; int irq; void __iomem *io_base; spinlock_t lock; int err; struct tasklet_struct done_task; struct tasklet_struct queue_task; unsigned long flags; struct crypto_queue queue; struct ahash_request *req; struct atmel_sha_dma dma_lch_in; struct atmel_sha_caps caps; u32 hw_version; }; struct atmel_sha_drv { struct list_head dev_list; spinlock_t lock; }; static struct atmel_sha_drv atmel_sha = { .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list), .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock), }; static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset) { return readl_relaxed(dd->io_base + offset); } static inline void atmel_sha_write(struct atmel_sha_dev *dd, u32 offset, u32 value) { writel_relaxed(value, dd->io_base + offset); } static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx) { size_t count; while ((ctx->bufcnt < ctx->buflen) && ctx->total) { count = min(ctx->sg->length - ctx->offset, ctx->total); count = min(count, ctx->buflen - ctx->bufcnt); if (count <= 0) { /* * Check if count <= 0 because the buffer is full or * because the sg length is 0. In the latest case, * check if there is another sg in the list, a 0 length * sg doesn't necessarily mean the end of the sg list. */ if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) { ctx->sg = sg_next(ctx->sg); continue; } else { break; } } scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg, ctx->offset, count, 0); ctx->bufcnt += count; ctx->offset += count; ctx->total -= count; if (ctx->offset == ctx->sg->length) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; else ctx->total = 0; } } return 0; } /* * The purpose of this padding is to ensure that the padded message is a * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). * The bit "1" is appended at the end of the message followed by * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or * 128 bits block (SHA384/SHA512) equals to the message length in bits * is appended. * * For SHA1/SHA224/SHA256, padlen is calculated as followed: * - if message length < 56 bytes then padlen = 56 - message length * - else padlen = 64 + 56 - message length * * For SHA384/SHA512, padlen is calculated as followed: * - if message length < 112 bytes then padlen = 112 - message length * - else padlen = 128 + 112 - message length */ static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length) { unsigned int index, padlen; u64 bits[2]; u64 size[2]; size[0] = ctx->digcnt[0]; size[1] = ctx->digcnt[1]; size[0] += ctx->bufcnt; if (size[0] < ctx->bufcnt) size[1]++; size[0] += length; if (size[0] < length) size[1]++; bits[1] = cpu_to_be64(size[0] << 3); bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61); if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) { index = ctx->bufcnt & 0x7f; padlen = (index < 112) ? (112 - index) : ((128+112) - index); *(ctx->buffer + ctx->bufcnt) = 0x80; memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16); ctx->bufcnt += padlen + 16; ctx->flags |= SHA_FLAGS_PAD; } else { index = ctx->bufcnt & 0x3f; padlen = (index < 56) ? (56 - index) : ((64+56) - index); *(ctx->buffer + ctx->bufcnt) = 0x80; memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8); ctx->bufcnt += padlen + 8; ctx->flags |= SHA_FLAGS_PAD; } } static int atmel_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = NULL; struct atmel_sha_dev *tmp; spin_lock_bh(&atmel_sha.lock); if (!tctx->dd) { list_for_each_entry(tmp, &atmel_sha.dev_list, list) { dd = tmp; break; } tctx->dd = dd; } else { dd = tctx->dd; } spin_unlock_bh(&atmel_sha.lock); ctx->dd = dd; ctx->flags = 0; dev_dbg(dd->dev, "init: digest size: %d\n", crypto_ahash_digestsize(tfm)); switch (crypto_ahash_digestsize(tfm)) { case SHA1_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA1; ctx->block_size = SHA1_BLOCK_SIZE; break; case SHA224_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA224; ctx->block_size = SHA224_BLOCK_SIZE; break; case SHA256_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA256; ctx->block_size = SHA256_BLOCK_SIZE; break; case SHA384_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA384; ctx->block_size = SHA384_BLOCK_SIZE; break; case SHA512_DIGEST_SIZE: ctx->flags |= SHA_FLAGS_SHA512; ctx->block_size = SHA512_BLOCK_SIZE; break; default: return -EINVAL; break; } ctx->bufcnt = 0; ctx->digcnt[0] = 0; ctx->digcnt[1] = 0; ctx->buflen = SHA_BUFFER_LEN; return 0; } static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); u32 valmr = SHA_MR_MODE_AUTO; unsigned int i, hashsize = 0; if (likely(dma)) { if (!dd->caps.has_dma) atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE); valmr = SHA_MR_MODE_PDC; if (dd->caps.has_dualbuff) valmr |= SHA_MR_DUALBUFF; } else { atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); } switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: valmr |= SHA_MR_ALGO_SHA1; hashsize = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: valmr |= SHA_MR_ALGO_SHA224; hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA256: valmr |= SHA_MR_ALGO_SHA256; hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: valmr |= SHA_MR_ALGO_SHA384; hashsize = SHA512_DIGEST_SIZE; break; case SHA_FLAGS_SHA512: valmr |= SHA_MR_ALGO_SHA512; hashsize = SHA512_DIGEST_SIZE; break; default: break; } /* Setting CR_FIRST only for the first iteration */ if (!(ctx->digcnt[0] || ctx->digcnt[1])) { atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) { const u32 *hash = (const u32 *)ctx->digest; /* * Restore the hardware context: update the User Initialize * Hash Value (UIHV) with the value saved when the latest * 'update' operation completed on this very same crypto * request. */ ctx->flags &= ~SHA_FLAGS_RESTORE; atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV); for (i = 0; i < hashsize / sizeof(u32); ++i) atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]); atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST); valmr |= SHA_MR_UIHV; } /* * WARNING: If the UIHV feature is not available, the hardware CANNOT * process concurrent requests: the internal registers used to store * the hash/digest are still set to the partial digest output values * computed during the latest round. */ atmel_sha_write(dd, SHA_MR, valmr); } static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf, size_t length, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int count, len32; const u32 *buffer = (const u32 *)buf; dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length, final); atmel_sha_write_ctrl(dd, 0); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length; if (ctx->digcnt[0] < length) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ len32 = DIV_ROUND_UP(length, sizeof(u32)); dd->flags |= SHA_FLAGS_CPU; for (count = 0; count < len32; count++) atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]); return -EINPROGRESS; } static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int len32; dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length1, final); len32 = DIV_ROUND_UP(length1, sizeof(u32)); atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS); atmel_sha_write(dd, SHA_TPR, dma_addr1); atmel_sha_write(dd, SHA_TCR, len32); len32 = DIV_ROUND_UP(length2, sizeof(u32)); atmel_sha_write(dd, SHA_TNPR, dma_addr2); atmel_sha_write(dd, SHA_TNCR, len32); atmel_sha_write_ctrl(dd, 1); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length1; if (ctx->digcnt[0] < length1) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ dd->flags |= SHA_FLAGS_DMA_ACTIVE; /* Start DMA transfer */ atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN); return -EINPROGRESS; } static void atmel_sha_dma_callback(void *data) { struct atmel_sha_dev *dd = data; /* dma_lch_in - completed - wait DATRDY */ atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); } static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); struct dma_async_tx_descriptor *in_desc; struct scatterlist sg[2]; dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", ctx->digcnt[1], ctx->digcnt[0], length1, final); dd->dma_lch_in.dma_conf.src_maxburst = 16; dd->dma_lch_in.dma_conf.dst_maxburst = 16; dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf); if (length2) { sg_init_table(sg, 2); sg_dma_address(&sg[0]) = dma_addr1; sg_dma_len(&sg[0]) = length1; sg_dma_address(&sg[1]) = dma_addr2; sg_dma_len(&sg[1]) = length2; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } else { sg_init_table(sg, 1); sg_dma_address(&sg[0]) = dma_addr1; sg_dma_len(&sg[0]) = length1; in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (!in_desc) return -EINVAL; in_desc->callback = atmel_sha_dma_callback; in_desc->callback_param = dd; atmel_sha_write_ctrl(dd, 1); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt[0] += length1; if (ctx->digcnt[0] < length1) ctx->digcnt[1]++; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ dd->flags |= SHA_FLAGS_DMA_ACTIVE; /* Start DMA transfer */ dmaengine_submit(in_desc); dma_async_issue_pending(dd->dma_lch_in.chan); return -EINPROGRESS; } static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { if (dd->caps.has_dma) return atmel_sha_xmit_dma(dd, dma_addr1, length1, dma_addr2, length2, final); else return atmel_sha_xmit_pdc(dd, dma_addr1, length1, dma_addr2, length2, final); } static int atmel_sha_update_cpu(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int bufcnt; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, 0); bufcnt = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1); } static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd, struct atmel_sha_reqctx *ctx, size_t length, int final) { ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen + ctx->block_size); return -EINVAL; } ctx->flags &= ~SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final); } static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int final; size_t count; atmel_sha_append_sg(ctx); final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n", ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final); if (final) atmel_sha_fill_padding(ctx, 0); if (final || (ctx->bufcnt == ctx->buflen)) { count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_dma_map(dd, ctx, count, final); } return 0; } static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int length, final, tail; struct scatterlist *sg; unsigned int count; if (!ctx->total) return 0; if (ctx->bufcnt || ctx->offset) return atmel_sha_update_dma_slow(dd); dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n", ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total); sg = ctx->sg; if (!IS_ALIGNED(sg->offset, sizeof(u32))) return atmel_sha_update_dma_slow(dd); if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size)) /* size is not ctx->block_size aligned */ return atmel_sha_update_dma_slow(dd); length = min(ctx->total, sg->length); if (sg_is_last(sg)) { if (!(ctx->flags & SHA_FLAGS_FINUP)) { /* not last sg must be ctx->block_size aligned */ tail = length & (ctx->block_size - 1); length -= tail; } } ctx->total -= length; ctx->offset = length; /* offset where to start slow */ final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; /* Add padding */ if (final) { tail = length & (ctx->block_size - 1); length -= tail; ctx->total += tail; ctx->offset = length; /* offset where to start slow */ sg = ctx->sg; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, length); ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen + ctx->block_size); return -EINVAL; } if (length == 0) { ctx->flags &= ~SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0, 0, final); } else { ctx->sg = sg; if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } ctx->flags |= SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, ctx->dma_addr, count, final); } } if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } ctx->flags |= SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0, 0, final); } static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); if (ctx->flags & SHA_FLAGS_SG) { dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); if (ctx->sg->length == ctx->offset) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; } if (ctx->flags & SHA_FLAGS_PAD) { dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); } } else { dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + ctx->block_size, DMA_TO_DEVICE); } return 0; } static int atmel_sha_update_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err; dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n", ctx->total, ctx->digcnt[1], ctx->digcnt[0]); if (ctx->flags & SHA_FLAGS_CPU) err = atmel_sha_update_cpu(dd); else err = atmel_sha_update_dma_start(dd); /* wait for dma completion before can take more data */ dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n", err, ctx->digcnt[1], ctx->digcnt[0]); return err; } static int atmel_sha_final_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err = 0; int count; if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_dma_map(dd, ctx, count, 1); } /* faster to handle last block with cpu */ else { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1); } dev_dbg(dd->dev, "final_req: err: %d\n", err); return err; } static void atmel_sha_copy_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); u32 *hash = (u32 *)ctx->digest; unsigned int i, hashsize; switch (ctx->flags & SHA_FLAGS_ALGO_MASK) { case SHA_FLAGS_SHA1: hashsize = SHA1_DIGEST_SIZE; break; case SHA_FLAGS_SHA224: case SHA_FLAGS_SHA256: hashsize = SHA256_DIGEST_SIZE; break; case SHA_FLAGS_SHA384: case SHA_FLAGS_SHA512: hashsize = SHA512_DIGEST_SIZE; break; default: /* Should not happen... */ return; } for (i = 0; i < hashsize / sizeof(u32); ++i) hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); ctx->flags |= SHA_FLAGS_RESTORE; } static void atmel_sha_copy_ready_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->result) return; if (ctx->flags & SHA_FLAGS_SHA1) memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE); else if (ctx->flags & SHA_FLAGS_SHA224) memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE); else if (ctx->flags & SHA_FLAGS_SHA256) memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE); else if (ctx->flags & SHA_FLAGS_SHA384) memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE); else memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE); } static int atmel_sha_finish(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; if (ctx->digcnt[0] || ctx->digcnt[1]) atmel_sha_copy_ready_hash(req); dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt); return 0; } static void atmel_sha_finish_req(struct ahash_request *req, int err) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; if (!err) { atmel_sha_copy_hash(req); if (SHA_FLAGS_FINAL & dd->flags) err = atmel_sha_finish(req); } else { ctx->flags |= SHA_FLAGS_ERROR; } /* atomic operation is not needed here */ dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU | SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); clk_disable_unprepare(dd->iclk); if (req->base.complete) req->base.complete(&req->base, err); /* handle new request */ tasklet_schedule(&dd->queue_task); } static int atmel_sha_hw_init(struct atmel_sha_dev *dd) { int err; err = clk_prepare_enable(dd->iclk); if (err) return err; if (!(SHA_FLAGS_INIT & dd->flags)) { atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST); dd->flags |= SHA_FLAGS_INIT; dd->err = 0; } return 0; } static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd) { return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff; } static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd) { atmel_sha_hw_init(dd); dd->hw_version = atmel_sha_get_version(dd); dev_info(dd->dev, "version: 0x%x\n", dd->hw_version); clk_disable_unprepare(dd->iclk); } static int atmel_sha_handle_queue(struct atmel_sha_dev *dd, struct ahash_request *req) { struct crypto_async_request *async_req, *backlog; struct atmel_sha_reqctx *ctx; unsigned long flags; int err = 0, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ahash_enqueue_request(&dd->queue, req); if (SHA_FLAGS_BUSY & dd->flags) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= SHA_FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ahash_request_cast(async_req); dd->req = req; ctx = ahash_request_ctx(req); dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", ctx->op, req->nbytes); err = atmel_sha_hw_init(dd); if (err) goto err1; if (ctx->op == SHA_OP_UPDATE) { err = atmel_sha_update_req(dd); if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) /* no final() after finup() */ err = atmel_sha_final_req(dd); } else if (ctx->op == SHA_OP_FINAL) { err = atmel_sha_final_req(dd); } err1: if (err != -EINPROGRESS) /* done_task will not finish it, so do it here */ atmel_sha_finish_req(req, err); dev_dbg(dd->dev, "exit, err: %d\n", err); return ret; } static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct atmel_sha_dev *dd = tctx->dd; ctx->op = op; return atmel_sha_handle_queue(dd, req); } static int atmel_sha_update(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->nbytes) return 0; ctx->total = req->nbytes; ctx->sg = req->src; ctx->offset = 0; if (ctx->flags & SHA_FLAGS_FINUP) { if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD) /* faster to use CPU for short transfers */ ctx->flags |= SHA_FLAGS_CPU; } else if (ctx->bufcnt + ctx->total < ctx->buflen) { atmel_sha_append_sg(ctx); return 0; } return atmel_sha_enqueue(req, SHA_OP_UPDATE); } static int atmel_sha_final(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct atmel_sha_dev *dd = tctx->dd; int err = 0; ctx->flags |= SHA_FLAGS_FINUP; if (ctx->flags & SHA_FLAGS_ERROR) return 0; /* uncompleted hash is not needed */ if (ctx->bufcnt) { return atmel_sha_enqueue(req, SHA_OP_FINAL); } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */ err = atmel_sha_hw_init(dd); if (err) goto err1; dd->req = req; dd->flags |= SHA_FLAGS_BUSY; err = atmel_sha_final_req(dd); } else { /* copy ready hash (+ finalize hmac) */ return atmel_sha_finish(req); } err1: if (err != -EINPROGRESS) /* done_task will not finish it, so do it here */ atmel_sha_finish_req(req, err); return err; } static int atmel_sha_finup(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->flags |= SHA_FLAGS_FINUP; err1 = atmel_sha_update(req); if (err1 == -EINPROGRESS || err1 == -EBUSY) return err1; /* * final() has to be always called to cleanup resources * even if udpate() failed, except EINPROGRESS */ err2 = atmel_sha_final(req); return err1 ?: err2; } static int atmel_sha_digest(struct ahash_request *req) { return atmel_sha_init(req) ?: atmel_sha_finup(req); } static int atmel_sha_export(struct ahash_request *req, void *out) { const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_state state; memcpy(state.digest, ctx->digest, SHA512_DIGEST_SIZE); memcpy(state.buffer, ctx->buffer, ctx->bufcnt); state.bufcnt = ctx->bufcnt; state.digcnt[0] = ctx->digcnt[0]; state.digcnt[1] = ctx->digcnt[1]; /* out might be unaligned. */ memcpy(out, &state, sizeof(state)); return 0; } static int atmel_sha_import(struct ahash_request *req, const void *in) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_state state; /* in might be unaligned. */ memcpy(&state, in, sizeof(state)); memcpy(ctx->digest, state.digest, SHA512_DIGEST_SIZE); memcpy(ctx->buffer, state.buffer, state.bufcnt); ctx->bufcnt = state.bufcnt; ctx->digcnt[0] = state.digcnt[0]; ctx->digcnt[1] = state.digcnt[1]; return 0; } static int atmel_sha_cra_init(struct crypto_tfm *tfm) { crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct atmel_sha_reqctx) + SHA_BUFFER_LEN + SHA512_BLOCK_SIZE); return 0; } static struct ahash_alg sha_1_256_algs[] = { { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .export = atmel_sha_export, .import = atmel_sha_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct atmel_sha_state), .base = { .cra_name = "sha1", .cra_driver_name = "atmel-sha1", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, } } }, { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .export = atmel_sha_export, .import = atmel_sha_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct atmel_sha_state), .base = { .cra_name = "sha256", .cra_driver_name = "atmel-sha256", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, } } }, }; static struct ahash_alg sha_224_alg = { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .export = atmel_sha_export, .import = atmel_sha_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct atmel_sha_state), .base = { .cra_name = "sha224", .cra_driver_name = "atmel-sha224", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, } } }; static struct ahash_alg sha_384_512_algs[] = { { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .export = atmel_sha_export, .import = atmel_sha_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct atmel_sha_state), .base = { .cra_name = "sha384", .cra_driver_name = "atmel-sha384", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0x3, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, } } }, { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .export = atmel_sha_export, .import = atmel_sha_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct atmel_sha_state), .base = { .cra_name = "sha512", .cra_driver_name = "atmel-sha512", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0x3, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, } } }, }; static void atmel_sha_queue_task(unsigned long data) { struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; atmel_sha_handle_queue(dd, NULL); } static void atmel_sha_done_task(unsigned long data) { struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; int err = 0; if (SHA_FLAGS_CPU & dd->flags) { if (SHA_FLAGS_OUTPUT_READY & dd->flags) { dd->flags &= ~SHA_FLAGS_OUTPUT_READY; goto finish; } } else if (SHA_FLAGS_DMA_READY & dd->flags) { if (SHA_FLAGS_DMA_ACTIVE & dd->flags) { dd->flags &= ~SHA_FLAGS_DMA_ACTIVE; atmel_sha_update_dma_stop(dd); if (dd->err) { err = dd->err; goto finish; } } if (SHA_FLAGS_OUTPUT_READY & dd->flags) { /* hash or semi-hash ready */ dd->flags &= ~(SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); err = atmel_sha_update_dma_start(dd); if (err != -EINPROGRESS) goto finish; } } return; finish: /* finish curent request */ atmel_sha_finish_req(dd->req, err); } static irqreturn_t atmel_sha_irq(int irq, void *dev_id) { struct atmel_sha_dev *sha_dd = dev_id; u32 reg; reg = atmel_sha_read(sha_dd, SHA_ISR); if (reg & atmel_sha_read(sha_dd, SHA_IMR)) { atmel_sha_write(sha_dd, SHA_IDR, reg); if (SHA_FLAGS_BUSY & sha_dd->flags) { sha_dd->flags |= SHA_FLAGS_OUTPUT_READY; if (!(SHA_FLAGS_CPU & sha_dd->flags)) sha_dd->flags |= SHA_FLAGS_DMA_READY; tasklet_schedule(&sha_dd->done_task); } else { dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n"); } return IRQ_HANDLED; } return IRQ_NONE; } static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd) { int i; for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) crypto_unregister_ahash(&sha_1_256_algs[i]); if (dd->caps.has_sha224) crypto_unregister_ahash(&sha_224_alg); if (dd->caps.has_sha_384_512) { for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) crypto_unregister_ahash(&sha_384_512_algs[i]); } } static int atmel_sha_register_algs(struct atmel_sha_dev *dd) { int err, i, j; for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) { err = crypto_register_ahash(&sha_1_256_algs[i]); if (err) goto err_sha_1_256_algs; } if (dd->caps.has_sha224) { err = crypto_register_ahash(&sha_224_alg); if (err) goto err_sha_224_algs; } if (dd->caps.has_sha_384_512) { for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) { err = crypto_register_ahash(&sha_384_512_algs[i]); if (err) goto err_sha_384_512_algs; } } return 0; err_sha_384_512_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_384_512_algs[j]); crypto_unregister_ahash(&sha_224_alg); err_sha_224_algs: i = ARRAY_SIZE(sha_1_256_algs); err_sha_1_256_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_1_256_algs[j]); return err; } static bool atmel_sha_filter(struct dma_chan *chan, void *slave) { struct at_dma_slave *sl = slave; if (sl && sl->dma_dev == chan->device->dev) { chan->private = sl; return true; } else { return false; } } static int atmel_sha_dma_init(struct atmel_sha_dev *dd, struct crypto_platform_data *pdata) { int err = -ENOMEM; dma_cap_mask_t mask_in; /* Try to grab DMA channel */ dma_cap_zero(mask_in); dma_cap_set(DMA_SLAVE, mask_in); dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in, atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx"); if (!dd->dma_lch_in.chan) { dev_warn(dd->dev, "no DMA channel available\n"); return err; } dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV; dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base + SHA_REG_DIN(0); dd->dma_lch_in.dma_conf.src_maxburst = 1; dd->dma_lch_in.dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.dst_maxburst = 1; dd->dma_lch_in.dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dd->dma_lch_in.dma_conf.device_fc = false; return 0; } static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd) { dma_release_channel(dd->dma_lch_in.chan); } static void atmel_sha_get_cap(struct atmel_sha_dev *dd) { dd->caps.has_dma = 0; dd->caps.has_dualbuff = 0; dd->caps.has_sha224 = 0; dd->caps.has_sha_384_512 = 0; dd->caps.has_uihv = 0; /* keep only major version number */ switch (dd->hw_version & 0xff0) { case 0x510: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; dd->caps.has_uihv = 1; break; case 0x420: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; dd->caps.has_uihv = 1; break; case 0x410: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; dd->caps.has_sha_384_512 = 1; break; case 0x400: dd->caps.has_dma = 1; dd->caps.has_dualbuff = 1; dd->caps.has_sha224 = 1; break; case 0x320: break; default: dev_warn(dd->dev, "Unmanaged sha version, set minimum capabilities\n"); break; } } #if defined(CONFIG_OF) static const struct of_device_id atmel_sha_dt_ids[] = { { .compatible = "atmel,at91sam9g46-sha" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids); static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct crypto_platform_data *pdata; if (!np) { dev_err(&pdev->dev, "device node not found\n"); return ERR_PTR(-EINVAL); } pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "could not allocate memory for pdata\n"); return ERR_PTR(-ENOMEM); } pdata->dma_slave = devm_kzalloc(&pdev->dev, sizeof(*(pdata->dma_slave)), GFP_KERNEL); if (!pdata->dma_slave) { dev_err(&pdev->dev, "could not allocate memory for dma_slave\n"); return ERR_PTR(-ENOMEM); } return pdata; } #else /* CONFIG_OF */ static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev) { return ERR_PTR(-EINVAL); } #endif static int atmel_sha_probe(struct platform_device *pdev) { struct atmel_sha_dev *sha_dd; struct crypto_platform_data *pdata; struct device *dev = &pdev->dev; struct resource *sha_res; int err; sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL); if (sha_dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto sha_dd_err; } sha_dd->dev = dev; platform_set_drvdata(pdev, sha_dd); INIT_LIST_HEAD(&sha_dd->list); spin_lock_init(&sha_dd->lock); tasklet_init(&sha_dd->done_task, atmel_sha_done_task, (unsigned long)sha_dd); tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task, (unsigned long)sha_dd); crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH); sha_dd->irq = -1; /* Get the base address */ sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!sha_res) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto res_err; } sha_dd->phys_base = sha_res->start; /* Get the IRQ */ sha_dd->irq = platform_get_irq(pdev, 0); if (sha_dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = sha_dd->irq; goto res_err; } err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha", sha_dd); if (err) { dev_err(dev, "unable to request sha irq.\n"); goto res_err; } /* Initializing the clock */ sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk"); if (IS_ERR(sha_dd->iclk)) { dev_err(dev, "clock initialization failed.\n"); err = PTR_ERR(sha_dd->iclk); goto res_err; } sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res); if (!sha_dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto res_err; } atmel_sha_hw_version_init(sha_dd); atmel_sha_get_cap(sha_dd); if (sha_dd->caps.has_dma) { pdata = pdev->dev.platform_data; if (!pdata) { pdata = atmel_sha_of_init(pdev); if (IS_ERR(pdata)) { dev_err(&pdev->dev, "platform data not available\n"); err = PTR_ERR(pdata); goto res_err; } } if (!pdata->dma_slave) { err = -ENXIO; goto res_err; } err = atmel_sha_dma_init(sha_dd, pdata); if (err) goto err_sha_dma; dev_info(dev, "using %s for DMA transfers\n", dma_chan_name(sha_dd->dma_lch_in.chan)); } spin_lock(&atmel_sha.lock); list_add_tail(&sha_dd->list, &atmel_sha.dev_list); spin_unlock(&atmel_sha.lock); err = atmel_sha_register_algs(sha_dd); if (err) goto err_algs; dev_info(dev, "Atmel SHA1/SHA256%s%s\n", sha_dd->caps.has_sha224 ? "/SHA224" : "", sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : ""); return 0; err_algs: spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); if (sha_dd->caps.has_dma) atmel_sha_dma_cleanup(sha_dd); err_sha_dma: res_err: tasklet_kill(&sha_dd->queue_task); tasklet_kill(&sha_dd->done_task); sha_dd_err: dev_err(dev, "initialization failed.\n"); return err; } static int atmel_sha_remove(struct platform_device *pdev) { static struct atmel_sha_dev *sha_dd; sha_dd = platform_get_drvdata(pdev); if (!sha_dd) return -ENODEV; spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); atmel_sha_unregister_algs(sha_dd); tasklet_kill(&sha_dd->queue_task); tasklet_kill(&sha_dd->done_task); if (sha_dd->caps.has_dma) atmel_sha_dma_cleanup(sha_dd); iounmap(sha_dd->io_base); clk_put(sha_dd->iclk); if (sha_dd->irq >= 0) free_irq(sha_dd->irq, sha_dd); return 0; } static struct platform_driver atmel_sha_driver = { .probe = atmel_sha_probe, .remove = atmel_sha_remove, .driver = { .name = "atmel_sha", .of_match_table = of_match_ptr(atmel_sha_dt_ids), }, }; module_platform_driver(atmel_sha_driver); MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");