/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include "i915_drv.h" #include "intel_drv.h" struct ddi_buf_trans { u32 trans1; /* balance leg enable, de-emph level */ u32 trans2; /* vref sel, vswing */ u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */ }; /* HDMI/DVI modes ignore everything but the last 2 items. So we share * them for both DP and FDI transports, allowing those ports to * automatically adapt to HDMI connections as well */ static const struct ddi_buf_trans hsw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0006000E, 0x0 }, { 0x00D75FFF, 0x0005000A, 0x0 }, { 0x00C30FFF, 0x00040006, 0x0 }, { 0x80AAAFFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x0005000A, 0x0 }, { 0x00D75FFF, 0x000C0004, 0x0 }, { 0x80C30FFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x00040006, 0x0 }, { 0x80D75FFF, 0x000B0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000F000A, 0x0 }, { 0x00C30FFF, 0x00060006, 0x0 }, { 0x00AAAFFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x000F000A, 0x0 }, { 0x00D75FFF, 0x00160004, 0x0 }, { 0x00C30FFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x00060006, 0x0 }, { 0x00D75FFF, 0x001E0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV d db */ { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */ { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */ { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */ { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */ { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */ { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */ { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */ { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */ { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */ { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */ { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */ { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */ }; static const struct ddi_buf_trans bdw_ddi_translations_edp[] = { { 0x00FFFFFF, 0x00000012, 0x0 }, { 0x00EBAFFF, 0x00020011, 0x0 }, { 0x00C71FFF, 0x0006000F, 0x0 }, { 0x00AAAFFF, 0x000E000A, 0x0 }, { 0x00FFFFFF, 0x00020011, 0x0 }, { 0x00DB6FFF, 0x0005000F, 0x0 }, { 0x00BEEFFF, 0x000A000C, 0x0 }, { 0x00FFFFFF, 0x0005000F, 0x0 }, { 0x00DB6FFF, 0x000A000C, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000E000A, 0x0 }, { 0x00BEFFFF, 0x00140006, 0x0 }, { 0x80B2CFFF, 0x001B0002, 0x0 }, { 0x00FFFFFF, 0x000E000A, 0x0 }, { 0x00DB6FFF, 0x00160005, 0x0 }, { 0x80C71FFF, 0x001A0002, 0x0 }, { 0x00F7DFFF, 0x00180004, 0x0 }, { 0x80D75FFF, 0x001B0002, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0001000E, 0x0 }, { 0x00D75FFF, 0x0004000A, 0x0 }, { 0x00C30FFF, 0x00070006, 0x0 }, { 0x00AAAFFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x0004000A, 0x0 }, { 0x00D75FFF, 0x00090004, 0x0 }, { 0x00C30FFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x00070006, 0x0 }, { 0x00D75FFF, 0x000C0000, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV df db */ { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */ { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */ { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */ { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */ { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */ { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */ { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */ { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */ { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */ { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */ }; /* Skylake H and S */ static const struct ddi_buf_trans skl_ddi_translations_dp[] = { { 0x00002016, 0x000000A0, 0x0 }, { 0x00005012, 0x0000009B, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x00009010, 0x000000C7, 0x0 }, { 0x00002016, 0x0000009B, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x00007011, 0x000000C7, 0x0 }, { 0x00002016, 0x000000DF, 0x0 }, { 0x00005012, 0x000000C7, 0x0 }, }; /* Skylake U */ static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = { { 0x0000201B, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x00007011, 0x00000087, 0x0 }, { 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost level 0x1 */ { 0x0000201B, 0x0000009D, 0x0 }, { 0x00005012, 0x000000C7, 0x0 }, { 0x00007011, 0x000000C7, 0x0 }, { 0x00002016, 0x00000088, 0x0 }, { 0x00005012, 0x000000C7, 0x0 }, }; /* Skylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = { { 0x00000018, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x00007011, 0x00000087, 0x0 }, { 0x80009010, 0x000000C7, 0x3 }, /* Uses I_boost level 0x3 */ { 0x00000018, 0x0000009D, 0x0 }, { 0x00005012, 0x000000C7, 0x0 }, { 0x00007011, 0x000000C7, 0x0 }, { 0x00000018, 0x00000088, 0x0 }, { 0x00005012, 0x000000C7, 0x0 }, }; /* * Skylake H and S * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00000018, 0x000000AB, 0x0 }, { 0x00007013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake U * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00002016, 0x000000AB, 0x0 }, { 0x00005013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake Y * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000AB, 0x0 }, { 0x00007011, 0x000000A4, 0x0 }, { 0x00009010, 0x000000DF, 0x0 }, { 0x00000018, 0x000000AA, 0x0 }, { 0x00006013, 0x000000A4, 0x0 }, { 0x00007011, 0x0000009D, 0x0 }, { 0x00000018, 0x000000A0, 0x0 }, { 0x00006012, 0x000000DF, 0x0 }, { 0x00000018, 0x0000008A, 0x0 }, }; /* Skylake U, H and S */ static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = { { 0x00000018, 0x000000AC, 0x0 }, { 0x00005012, 0x0000009D, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x00000018, 0x000000A1, 0x0 }, { 0x00000018, 0x00000098, 0x0 }, { 0x00004013, 0x00000088, 0x0 }, { 0x00006012, 0x00000087, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, { 0x00003015, 0x00000087, 0x0 }, /* Default */ { 0x00003015, 0x000000C7, 0x0 }, { 0x00000018, 0x000000C7, 0x0 }, }; /* Skylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = { { 0x00000018, 0x000000A1, 0x0 }, { 0x00005012, 0x000000DF, 0x0 }, { 0x00007011, 0x00000084, 0x0 }, { 0x00000018, 0x000000A4, 0x0 }, { 0x00000018, 0x0000009D, 0x0 }, { 0x00004013, 0x00000080, 0x0 }, { 0x00006013, 0x000000C7, 0x0 }, { 0x00000018, 0x0000008A, 0x0 }, { 0x00003015, 0x000000C7, 0x0 }, /* Default */ { 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost level 0x7 */ { 0x00000018, 0x000000C7, 0x0 }, }; struct bxt_ddi_buf_trans { u32 margin; /* swing value */ u32 scale; /* scale value */ u32 enable; /* scale enable */ u32 deemphasis; bool default_index; /* true if the entry represents default value */ }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */ { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */ { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */ { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */ { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */ { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */ { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */ }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = { /* Idx NT mV diff db */ { 26, 0, 0, 128, false }, /* 0: 200 0 */ { 38, 0, 0, 112, false }, /* 1: 200 1.5 */ { 48, 0, 0, 96, false }, /* 2: 200 4 */ { 54, 0, 0, 69, false }, /* 3: 200 6 */ { 32, 0, 0, 128, false }, /* 4: 250 0 */ { 48, 0, 0, 104, false }, /* 5: 250 1.5 */ { 54, 0, 0, 85, false }, /* 6: 250 4 */ { 43, 0, 0, 128, false }, /* 7: 300 0 */ { 54, 0, 0, 101, false }, /* 8: 300 1.5 */ { 48, 0, 0, 128, false }, /* 9: 300 0 */ }; /* BSpec has 2 recommended values - entries 0 and 8. * Using the entry with higher vswing. */ static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */ { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */ { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */ { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */ { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */ { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */ { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */ }; static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level, enum port port, int type); static void ddi_get_encoder_port(struct intel_encoder *intel_encoder, struct intel_digital_port **dig_port, enum port *port) { struct drm_encoder *encoder = &intel_encoder->base; switch (intel_encoder->type) { case INTEL_OUTPUT_DP_MST: *dig_port = enc_to_mst(encoder)->primary; *port = (*dig_port)->port; break; case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_EDP: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_UNKNOWN: *dig_port = enc_to_dig_port(encoder); *port = (*dig_port)->port; break; case INTEL_OUTPUT_ANALOG: *dig_port = NULL; *port = PORT_E; break; default: WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type); break; } } enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder) { struct intel_digital_port *dig_port; enum port port; ddi_get_encoder_port(intel_encoder, &dig_port, &port); return port; } static bool intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port) { return intel_dig_port->hdmi.hdmi_reg; } static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev, int *n_entries) { const struct ddi_buf_trans *ddi_translations; if (IS_SKL_ULX(dev)) { ddi_translations = skl_y_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp); } else if (IS_SKL_ULT(dev)) { ddi_translations = skl_u_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp); } else { ddi_translations = skl_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_ddi_translations_dp); } return ddi_translations; } static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev, int *n_entries) { struct drm_i915_private *dev_priv = dev->dev_private; const struct ddi_buf_trans *ddi_translations; if (IS_SKL_ULX(dev)) { if (dev_priv->edp_low_vswing) { ddi_translations = skl_y_ddi_translations_edp; *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp); } else { ddi_translations = skl_y_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp); } } else if (IS_SKL_ULT(dev)) { if (dev_priv->edp_low_vswing) { ddi_translations = skl_u_ddi_translations_edp; *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp); } else { ddi_translations = skl_u_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp); } } else { if (dev_priv->edp_low_vswing) { ddi_translations = skl_ddi_translations_edp; *n_entries = ARRAY_SIZE(skl_ddi_translations_edp); } else { ddi_translations = skl_ddi_translations_dp; *n_entries = ARRAY_SIZE(skl_ddi_translations_dp); } } return ddi_translations; } static const struct ddi_buf_trans * skl_get_buf_trans_hdmi(struct drm_device *dev, int *n_entries) { const struct ddi_buf_trans *ddi_translations; if (IS_SKL_ULX(dev)) { ddi_translations = skl_y_ddi_translations_hdmi; *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi); } else { ddi_translations = skl_ddi_translations_hdmi; *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi); } return ddi_translations; } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. The buffer values are different for FDI and DP modes, * but the HDMI/DVI fields are shared among those. So we program the DDI * in either FDI or DP modes only, as HDMI connections will work with both * of those */ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port, bool supports_hdmi) { struct drm_i915_private *dev_priv = dev->dev_private; u32 iboost_bit = 0; int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry, size; int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift; const struct ddi_buf_trans *ddi_translations_fdi; const struct ddi_buf_trans *ddi_translations_dp; const struct ddi_buf_trans *ddi_translations_edp; const struct ddi_buf_trans *ddi_translations_hdmi; const struct ddi_buf_trans *ddi_translations; if (IS_BROXTON(dev)) { if (!supports_hdmi) return; /* Vswing programming for HDMI */ bxt_ddi_vswing_sequence(dev, hdmi_level, port, INTEL_OUTPUT_HDMI); return; } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { ddi_translations_fdi = NULL; ddi_translations_dp = skl_get_buf_trans_dp(dev, &n_dp_entries); ddi_translations_edp = skl_get_buf_trans_edp(dev, &n_edp_entries); ddi_translations_hdmi = skl_get_buf_trans_hdmi(dev, &n_hdmi_entries); hdmi_default_entry = 8; /* If we're boosting the current, set bit 31 of trans1 */ if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level || dev_priv->vbt.ddi_port_info[port].dp_boost_level) iboost_bit = 1<<31; } else if (IS_BROADWELL(dev)) { ddi_translations_fdi = bdw_ddi_translations_fdi; ddi_translations_dp = bdw_ddi_translations_dp; ddi_translations_edp = bdw_ddi_translations_edp; ddi_translations_hdmi = bdw_ddi_translations_hdmi; n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp); n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp); n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); hdmi_default_entry = 7; } else if (IS_HASWELL(dev)) { ddi_translations_fdi = hsw_ddi_translations_fdi; ddi_translations_dp = hsw_ddi_translations_dp; ddi_translations_edp = hsw_ddi_translations_dp; ddi_translations_hdmi = hsw_ddi_translations_hdmi; n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp); n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi); hdmi_default_entry = 6; } else { WARN(1, "ddi translation table missing\n"); ddi_translations_edp = bdw_ddi_translations_dp; ddi_translations_fdi = bdw_ddi_translations_fdi; ddi_translations_dp = bdw_ddi_translations_dp; ddi_translations_hdmi = bdw_ddi_translations_hdmi; n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp); n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp); n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); hdmi_default_entry = 7; } switch (port) { case PORT_A: ddi_translations = ddi_translations_edp; size = n_edp_entries; break; case PORT_B: case PORT_C: ddi_translations = ddi_translations_dp; size = n_dp_entries; break; case PORT_D: if (intel_dp_is_edp(dev, PORT_D)) { ddi_translations = ddi_translations_edp; size = n_edp_entries; } else { ddi_translations = ddi_translations_dp; size = n_dp_entries; } break; case PORT_E: if (ddi_translations_fdi) ddi_translations = ddi_translations_fdi; else ddi_translations = ddi_translations_dp; size = n_dp_entries; break; default: BUG(); } for (i = 0; i < size; i++) { I915_WRITE(DDI_BUF_TRANS_LO(port, i), ddi_translations[i].trans1 | iboost_bit); I915_WRITE(DDI_BUF_TRANS_HI(port, i), ddi_translations[i].trans2); } if (!supports_hdmi) return; /* Choose a good default if VBT is badly populated */ if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN || hdmi_level >= n_hdmi_entries) hdmi_level = hdmi_default_entry; /* Entry 9 is for HDMI: */ I915_WRITE(DDI_BUF_TRANS_LO(port, i), ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit); I915_WRITE(DDI_BUF_TRANS_HI(port, i), ddi_translations_hdmi[hdmi_level].trans2); } /* Program DDI buffers translations for DP. By default, program ports A-D in DP * mode and port E for FDI. */ void intel_prepare_ddi(struct drm_device *dev) { struct intel_encoder *intel_encoder; bool visited[I915_MAX_PORTS] = { 0, }; if (!HAS_DDI(dev)) return; for_each_intel_encoder(dev, intel_encoder) { struct intel_digital_port *intel_dig_port; enum port port; bool supports_hdmi; if (intel_encoder->type == INTEL_OUTPUT_DSI) continue; ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port); if (visited[port]) continue; supports_hdmi = intel_dig_port && intel_dig_port_supports_hdmi(intel_dig_port); intel_prepare_ddi_buffers(dev, port, supports_hdmi); visited[port] = true; } } static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, enum port port) { uint32_t reg = DDI_BUF_CTL(port); int i; for (i = 0; i < 16; i++) { udelay(1); if (I915_READ(reg) & DDI_BUF_IS_IDLE) return; } DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port)); } /* Starting with Haswell, different DDI ports can work in FDI mode for * connection to the PCH-located connectors. For this, it is necessary to train * both the DDI port and PCH receiver for the desired DDI buffer settings. * * The recommended port to work in FDI mode is DDI E, which we use here. Also, * please note that when FDI mode is active on DDI E, it shares 2 lines with * DDI A (which is used for eDP) */ void hsw_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 temp, i, rx_ctl_val; /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the * mode set "sequence for CRT port" document: * - TP1 to TP2 time with the default value * - FDI delay to 90h * * WaFDIAutoLinkSetTimingOverrride:hsw */ I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2) | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); /* Enable the PCH Receiver FDI PLL */ rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | FDI_RX_PLL_ENABLE | FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); udelay(220); /* Switch from Rawclk to PCDclk */ rx_ctl_val |= FDI_PCDCLK; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); /* Configure Port Clock Select */ I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel); WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL); /* Start the training iterating through available voltages and emphasis, * testing each value twice. */ for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) { /* Configure DP_TP_CTL with auto-training */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_ENABLE); /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. * DDI E does not support port reversal, the functionality is * achieved on the PCH side in FDI_RX_CTL, so no need to set the * port reversal bit */ I915_WRITE(DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE | ((intel_crtc->config->fdi_lanes - 1) << 1) | DDI_BUF_TRANS_SELECT(i / 2)); POSTING_READ(DDI_BUF_CTL(PORT_E)); udelay(600); /* Program PCH FDI Receiver TU */ I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64)); /* Enable PCH FDI Receiver with auto-training */ rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); /* Wait for FDI receiver lane calibration */ udelay(30); /* Unset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); I915_WRITE(FDI_RX_MISC(PIPE_A), temp); POSTING_READ(FDI_RX_MISC(PIPE_A)); /* Wait for FDI auto training time */ udelay(5); temp = I915_READ(DP_TP_STATUS(PORT_E)); if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { DRM_DEBUG_KMS("FDI link training done on step %d\n", i); /* Enable normal pixel sending for FDI */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_LINK_TRAIN_NORMAL | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_ENABLE); return; } temp = I915_READ(DDI_BUF_CTL(PORT_E)); temp &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(PORT_E), temp); POSTING_READ(DDI_BUF_CTL(PORT_E)); /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ temp = I915_READ(DP_TP_CTL(PORT_E)); temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); temp |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(PORT_E), temp); POSTING_READ(DP_TP_CTL(PORT_E)); intel_wait_ddi_buf_idle(dev_priv, PORT_E); rx_ctl_val &= ~FDI_RX_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); /* Reset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(FDI_RX_MISC(PIPE_A), temp); POSTING_READ(FDI_RX_MISC(PIPE_A)); } DRM_ERROR("FDI link training failed!\n"); } void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); intel_dp->DP = intel_dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0); intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count); } static struct intel_encoder * intel_ddi_get_crtc_encoder(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder, *ret = NULL; int num_encoders = 0; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { ret = intel_encoder; num_encoders++; } if (num_encoders != 1) WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders, pipe_name(intel_crtc->pipe)); BUG_ON(ret == NULL); return ret; } struct intel_encoder * intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_encoder *ret = NULL; struct drm_atomic_state *state; struct drm_connector *connector; struct drm_connector_state *connector_state; int num_encoders = 0; int i; state = crtc_state->base.state; for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc_state->base.crtc) continue; ret = to_intel_encoder(connector_state->best_encoder); num_encoders++; } WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders, pipe_name(crtc->pipe)); BUG_ON(ret == NULL); return ret; } #define LC_FREQ 2700 #define LC_FREQ_2K U64_C(LC_FREQ * 2000) #define P_MIN 2 #define P_MAX 64 #define P_INC 2 /* Constraints for PLL good behavior */ #define REF_MIN 48 #define REF_MAX 400 #define VCO_MIN 2400 #define VCO_MAX 4800 #define abs_diff(a, b) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ (void) (&__a == &__b); \ __a > __b ? (__a - __b) : (__b - __a); }) struct hsw_wrpll_rnp { unsigned p, n2, r2; }; static unsigned hsw_wrpll_get_budget_for_freq(int clock) { unsigned budget; switch (clock) { case 25175000: case 25200000: case 27000000: case 27027000: case 37762500: case 37800000: case 40500000: case 40541000: case 54000000: case 54054000: case 59341000: case 59400000: case 72000000: case 74176000: case 74250000: case 81000000: case 81081000: case 89012000: case 89100000: case 108000000: case 108108000: case 111264000: case 111375000: case 148352000: case 148500000: case 162000000: case 162162000: case 222525000: case 222750000: case 296703000: case 297000000: budget = 0; break; case 233500000: case 245250000: case 247750000: case 253250000: case 298000000: budget = 1500; break; case 169128000: case 169500000: case 179500000: case 202000000: budget = 2000; break; case 256250000: case 262500000: case 270000000: case 272500000: case 273750000: case 280750000: case 281250000: case 286000000: case 291750000: budget = 4000; break; case 267250000: case 268500000: budget = 5000; break; default: budget = 1000; break; } return budget; } static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget, unsigned r2, unsigned n2, unsigned p, struct hsw_wrpll_rnp *best) { uint64_t a, b, c, d, diff, diff_best; /* No best (r,n,p) yet */ if (best->p == 0) { best->p = p; best->n2 = n2; best->r2 = r2; return; } /* * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to * freq2k. * * delta = 1e6 * * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / * freq2k; * * and we would like delta <= budget. * * If the discrepancy is above the PPM-based budget, always prefer to * improve upon the previous solution. However, if you're within the * budget, try to maximize Ref * VCO, that is N / (P * R^2). */ a = freq2k * budget * p * r2; b = freq2k * budget * best->p * best->r2; diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); diff_best = abs_diff(freq2k * best->p * best->r2, LC_FREQ_2K * best->n2); c = 1000000 * diff; d = 1000000 * diff_best; if (a < c && b < d) { /* If both are above the budget, pick the closer */ if (best->p * best->r2 * diff < p * r2 * diff_best) { best->p = p; best->n2 = n2; best->r2 = r2; } } else if (a >= c && b < d) { /* If A is below the threshold but B is above it? Update. */ best->p = p; best->n2 = n2; best->r2 = r2; } else if (a >= c && b >= d) { /* Both are below the limit, so pick the higher n2/(r2*r2) */ if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { best->p = p; best->n2 = n2; best->r2 = r2; } } /* Otherwise a < c && b >= d, do nothing */ } static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg) { int refclk = LC_FREQ; int n, p, r; u32 wrpll; wrpll = I915_READ(reg); switch (wrpll & WRPLL_PLL_REF_MASK) { case WRPLL_PLL_SSC: case WRPLL_PLL_NON_SSC: /* * We could calculate spread here, but our checking * code only cares about 5% accuracy, and spread is a max of * 0.5% downspread. */ refclk = 135; break; case WRPLL_PLL_LCPLL: refclk = LC_FREQ; break; default: WARN(1, "bad wrpll refclk\n"); return 0; } r = wrpll & WRPLL_DIVIDER_REF_MASK; p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; /* Convert to KHz, p & r have a fixed point portion */ return (refclk * n * 100) / (p * r); } static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv, uint32_t dpll) { uint32_t cfgcr1_reg, cfgcr2_reg; uint32_t cfgcr1_val, cfgcr2_val; uint32_t p0, p1, p2, dco_freq; cfgcr1_reg = DPLL_CFGCR1(dpll); cfgcr2_reg = DPLL_CFGCR2(dpll); cfgcr1_val = I915_READ(cfgcr1_reg); cfgcr2_val = I915_READ(cfgcr2_reg); p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK; p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK; if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1)) p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8; else p1 = 1; switch (p0) { case DPLL_CFGCR2_PDIV_1: p0 = 1; break; case DPLL_CFGCR2_PDIV_2: p0 = 2; break; case DPLL_CFGCR2_PDIV_3: p0 = 3; break; case DPLL_CFGCR2_PDIV_7: p0 = 7; break; } switch (p2) { case DPLL_CFGCR2_KDIV_5: p2 = 5; break; case DPLL_CFGCR2_KDIV_2: p2 = 2; break; case DPLL_CFGCR2_KDIV_3: p2 = 3; break; case DPLL_CFGCR2_KDIV_1: p2 = 1; break; } dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000; dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 * 1000) / 0x8000; return dco_freq / (p0 * p1 * p2 * 5); } static void ddi_dotclock_get(struct intel_crtc_state *pipe_config) { int dotclock; if (pipe_config->has_pch_encoder) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->fdi_m_n); else if (pipe_config->has_dp_encoder) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36) dotclock = pipe_config->port_clock * 2 / 3; else dotclock = pipe_config->port_clock; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->base.adjusted_mode.crtc_clock = dotclock; } static void skl_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; int link_clock = 0; uint32_t dpll_ctl1, dpll; dpll = pipe_config->ddi_pll_sel; dpll_ctl1 = I915_READ(DPLL_CTRL1); if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) { link_clock = skl_calc_wrpll_link(dev_priv, dpll); } else { link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll); link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll); switch (link_clock) { case DPLL_CTRL1_LINK_RATE_810: link_clock = 81000; break; case DPLL_CTRL1_LINK_RATE_1080: link_clock = 108000; break; case DPLL_CTRL1_LINK_RATE_1350: link_clock = 135000; break; case DPLL_CTRL1_LINK_RATE_1620: link_clock = 162000; break; case DPLL_CTRL1_LINK_RATE_2160: link_clock = 216000; break; case DPLL_CTRL1_LINK_RATE_2700: link_clock = 270000; break; default: WARN(1, "Unsupported link rate\n"); break; } link_clock *= 2; } pipe_config->port_clock = link_clock; ddi_dotclock_get(pipe_config); } static void hsw_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; int link_clock = 0; u32 val, pll; val = pipe_config->ddi_pll_sel; switch (val & PORT_CLK_SEL_MASK) { case PORT_CLK_SEL_LCPLL_810: link_clock = 81000; break; case PORT_CLK_SEL_LCPLL_1350: link_clock = 135000; break; case PORT_CLK_SEL_LCPLL_2700: link_clock = 270000; break; case PORT_CLK_SEL_WRPLL1: link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0)); break; case PORT_CLK_SEL_WRPLL2: link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1)); break; case PORT_CLK_SEL_SPLL: pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK; if (pll == SPLL_PLL_FREQ_810MHz) link_clock = 81000; else if (pll == SPLL_PLL_FREQ_1350MHz) link_clock = 135000; else if (pll == SPLL_PLL_FREQ_2700MHz) link_clock = 270000; else { WARN(1, "bad spll freq\n"); return; } break; default: WARN(1, "bad port clock sel\n"); return; } pipe_config->port_clock = link_clock * 2; ddi_dotclock_get(pipe_config); } static int bxt_calc_pll_link(struct drm_i915_private *dev_priv, enum intel_dpll_id dpll) { struct intel_shared_dpll *pll; struct intel_dpll_hw_state *state; intel_clock_t clock; /* For DDI ports we always use a shared PLL. */ if (WARN_ON(dpll == DPLL_ID_PRIVATE)) return 0; pll = &dev_priv->shared_dplls[dpll]; state = &pll->config.hw_state; clock.m1 = 2; clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22; if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE) clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK; clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT; clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT; clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT; return chv_calc_dpll_params(100000, &clock); } static void bxt_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; enum port port = intel_ddi_get_encoder_port(encoder); uint32_t dpll = port; pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll); ddi_dotclock_get(pipe_config); } void intel_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_device *dev = encoder->base.dev; if (INTEL_INFO(dev)->gen <= 8) hsw_ddi_clock_get(encoder, pipe_config); else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) skl_ddi_clock_get(encoder, pipe_config); else if (IS_BROXTON(dev)) bxt_ddi_clock_get(encoder, pipe_config); } static void hsw_ddi_calculate_wrpll(int clock /* in Hz */, unsigned *r2_out, unsigned *n2_out, unsigned *p_out) { uint64_t freq2k; unsigned p, n2, r2; struct hsw_wrpll_rnp best = { 0, 0, 0 }; unsigned budget; freq2k = clock / 100; budget = hsw_wrpll_get_budget_for_freq(clock); /* Special case handling for 540 pixel clock: bypass WR PLL entirely * and directly pass the LC PLL to it. */ if (freq2k == 5400000) { *n2_out = 2; *p_out = 1; *r2_out = 2; return; } /* * Ref = LC_FREQ / R, where Ref is the actual reference input seen by * the WR PLL. * * We want R so that REF_MIN <= Ref <= REF_MAX. * Injecting R2 = 2 * R gives: * REF_MAX * r2 > LC_FREQ * 2 and * REF_MIN * r2 < LC_FREQ * 2 * * Which means the desired boundaries for r2 are: * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN * */ for (r2 = LC_FREQ * 2 / REF_MAX + 1; r2 <= LC_FREQ * 2 / REF_MIN; r2++) { /* * VCO = N * Ref, that is: VCO = N * LC_FREQ / R * * Once again we want VCO_MIN <= VCO <= VCO_MAX. * Injecting R2 = 2 * R and N2 = 2 * N, we get: * VCO_MAX * r2 > n2 * LC_FREQ and * VCO_MIN * r2 < n2 * LC_FREQ) * * Which means the desired boundaries for n2 are: * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ */ for (n2 = VCO_MIN * r2 / LC_FREQ + 1; n2 <= VCO_MAX * r2 / LC_FREQ; n2++) { for (p = P_MIN; p <= P_MAX; p += P_INC) hsw_wrpll_update_rnp(freq2k, budget, r2, n2, p, &best); } } *n2_out = best.n2; *p_out = best.p; *r2_out = best.r2; } static bool hsw_ddi_pll_select(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *intel_encoder) { int clock = crtc_state->port_clock; if (intel_encoder->type == INTEL_OUTPUT_HDMI) { struct intel_shared_dpll *pll; uint32_t val; unsigned p, n2, r2; hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL | WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p); memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state.wrpll = val; pll = intel_get_shared_dpll(intel_crtc, crtc_state); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(intel_crtc->pipe)); return false; } crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id); } return true; } struct skl_wrpll_context { uint64_t min_deviation; /* current minimal deviation */ uint64_t central_freq; /* chosen central freq */ uint64_t dco_freq; /* chosen dco freq */ unsigned int p; /* chosen divider */ }; static void skl_wrpll_context_init(struct skl_wrpll_context *ctx) { memset(ctx, 0, sizeof(*ctx)); ctx->min_deviation = U64_MAX; } /* DCO freq must be within +1%/-6% of the DCO central freq */ #define SKL_DCO_MAX_PDEVIATION 100 #define SKL_DCO_MAX_NDEVIATION 600 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, uint64_t central_freq, uint64_t dco_freq, unsigned int divider) { uint64_t deviation; deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), central_freq); /* positive deviation */ if (dco_freq >= central_freq) { if (deviation < SKL_DCO_MAX_PDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } /* negative deviation */ } else if (deviation < SKL_DCO_MAX_NDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } } static void skl_wrpll_get_multipliers(unsigned int p, unsigned int *p0 /* out */, unsigned int *p1 /* out */, unsigned int *p2 /* out */) { /* even dividers */ if (p % 2 == 0) { unsigned int half = p / 2; if (half == 1 || half == 2 || half == 3 || half == 5) { *p0 = 2; *p1 = 1; *p2 = half; } else if (half % 2 == 0) { *p0 = 2; *p1 = half / 2; *p2 = 2; } else if (half % 3 == 0) { *p0 = 3; *p1 = half / 3; *p2 = 2; } else if (half % 7 == 0) { *p0 = 7; *p1 = half / 7; *p2 = 2; } } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ *p0 = 3; *p1 = 1; *p2 = p / 3; } else if (p == 5 || p == 7) { *p0 = p; *p1 = 1; *p2 = 1; } else if (p == 15) { *p0 = 3; *p1 = 1; *p2 = 5; } else if (p == 21) { *p0 = 7; *p1 = 1; *p2 = 3; } else if (p == 35) { *p0 = 7; *p1 = 1; *p2 = 5; } } struct skl_wrpll_params { uint32_t dco_fraction; uint32_t dco_integer; uint32_t qdiv_ratio; uint32_t qdiv_mode; uint32_t kdiv; uint32_t pdiv; uint32_t central_freq; }; static void skl_wrpll_params_populate(struct skl_wrpll_params *params, uint64_t afe_clock, uint64_t central_freq, uint32_t p0, uint32_t p1, uint32_t p2) { uint64_t dco_freq; switch (central_freq) { case 9600000000ULL: params->central_freq = 0; break; case 9000000000ULL: params->central_freq = 1; break; case 8400000000ULL: params->central_freq = 3; } switch (p0) { case 1: params->pdiv = 0; break; case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 7: params->pdiv = 4; break; default: WARN(1, "Incorrect PDiv\n"); } switch (p2) { case 5: params->kdiv = 0; break; case 2: params->kdiv = 1; break; case 3: params->kdiv = 2; break; case 1: params->kdiv = 3; break; default: WARN(1, "Incorrect KDiv\n"); } params->qdiv_ratio = p1; params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; dco_freq = p0 * p1 * p2 * afe_clock; /* * Intermediate values are in Hz. * Divide by MHz to match bsepc */ params->dco_integer = div_u64(dco_freq, 24 * MHz(1)); params->dco_fraction = div_u64((div_u64(dco_freq, 24) - params->dco_integer * MHz(1)) * 0x8000, MHz(1)); } static bool skl_ddi_calculate_wrpll(int clock /* in Hz */, struct skl_wrpll_params *wrpll_params) { uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ uint64_t dco_central_freq[3] = {8400000000ULL, 9000000000ULL, 9600000000ULL}; static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98 }; static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; static const struct { const int *list; int n_dividers; } dividers[] = { { even_dividers, ARRAY_SIZE(even_dividers) }, { odd_dividers, ARRAY_SIZE(odd_dividers) }, }; struct skl_wrpll_context ctx; unsigned int dco, d, i; unsigned int p0, p1, p2; skl_wrpll_context_init(&ctx); for (d = 0; d < ARRAY_SIZE(dividers); d++) { for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { for (i = 0; i < dividers[d].n_dividers; i++) { unsigned int p = dividers[d].list[i]; uint64_t dco_freq = p * afe_clock; skl_wrpll_try_divider(&ctx, dco_central_freq[dco], dco_freq, p); /* * Skip the remaining dividers if we're sure to * have found the definitive divider, we can't * improve a 0 deviation. */ if (ctx.min_deviation == 0) goto skip_remaining_dividers; } } skip_remaining_dividers: /* * If a solution is found with an even divider, prefer * this one. */ if (d == 0 && ctx.p) break; } if (!ctx.p) { DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock); return false; } /* * gcc incorrectly analyses that these can be used without being * initialized. To be fair, it's hard to guess. */ p0 = p1 = p2 = 0; skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq, p0, p1, p2); return true; } static bool skl_ddi_pll_select(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *intel_encoder) { struct intel_shared_dpll *pll; uint32_t ctrl1, cfgcr1, cfgcr2; int clock = crtc_state->port_clock; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); if (intel_encoder->type == INTEL_OUTPUT_HDMI) { struct skl_wrpll_params wrpll_params = { 0, }; ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params)) return false; cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | wrpll_params.dco_integer; cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | wrpll_params.central_freq; } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { switch (crtc_state->port_clock / 2) { case 81000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); break; case 135000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); break; case 270000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); break; } cfgcr1 = cfgcr2 = 0; } else /* eDP */ return true; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state.ctrl1 = ctrl1; crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; pll = intel_get_shared_dpll(intel_crtc, crtc_state); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(intel_crtc->pipe)); return false; } /* shared DPLL id 0 is DPLL 1 */ crtc_state->ddi_pll_sel = pll->id + 1; return true; } /* bxt clock parameters */ struct bxt_clk_div { int clock; uint32_t p1; uint32_t p2; uint32_t m2_int; uint32_t m2_frac; bool m2_frac_en; uint32_t n; }; /* pre-calculated values for DP linkrates */ static const struct bxt_clk_div bxt_dp_clk_val[] = { {162000, 4, 2, 32, 1677722, 1, 1}, {270000, 4, 1, 27, 0, 0, 1}, {540000, 2, 1, 27, 0, 0, 1}, {216000, 3, 2, 32, 1677722, 1, 1}, {243000, 4, 1, 24, 1258291, 1, 1}, {324000, 4, 1, 32, 1677722, 1, 1}, {432000, 3, 1, 32, 1677722, 1, 1} }; static bool bxt_ddi_pll_select(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *intel_encoder) { struct intel_shared_dpll *pll; struct bxt_clk_div clk_div = {0}; int vco = 0; uint32_t prop_coef, int_coef, gain_ctl, targ_cnt; uint32_t lanestagger; int clock = crtc_state->port_clock; if (intel_encoder->type == INTEL_OUTPUT_HDMI) { intel_clock_t best_clock; /* Calculate HDMI div */ /* * FIXME: tie the following calculation into * i9xx_crtc_compute_clock */ if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) { DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n", clock, pipe_name(intel_crtc->pipe)); return false; } clk_div.p1 = best_clock.p1; clk_div.p2 = best_clock.p2; WARN_ON(best_clock.m1 != 2); clk_div.n = best_clock.n; clk_div.m2_int = best_clock.m2 >> 22; clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1); clk_div.m2_frac_en = clk_div.m2_frac != 0; vco = best_clock.vco; } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || intel_encoder->type == INTEL_OUTPUT_EDP) { int i; clk_div = bxt_dp_clk_val[0]; for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { if (bxt_dp_clk_val[i].clock == clock) { clk_div = bxt_dp_clk_val[i]; break; } } vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2; } if (vco >= 6200000 && vco <= 6700000) { prop_coef = 4; int_coef = 9; gain_ctl = 3; targ_cnt = 8; } else if ((vco > 5400000 && vco < 6200000) || (vco >= 4800000 && vco < 5400000)) { prop_coef = 5; int_coef = 11; gain_ctl = 3; targ_cnt = 9; } else if (vco == 5400000) { prop_coef = 3; int_coef = 8; gain_ctl = 1; targ_cnt = 9; } else { DRM_ERROR("Invalid VCO\n"); return false; } memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (clock > 270000) lanestagger = 0x18; else if (clock > 135000) lanestagger = 0x0d; else if (clock > 67000) lanestagger = 0x07; else if (clock > 33000) lanestagger = 0x04; else lanestagger = 0x02; crtc_state->dpll_hw_state.ebb0 = PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2); crtc_state->dpll_hw_state.pll0 = clk_div.m2_int; crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n); crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac; if (clk_div.m2_frac_en) crtc_state->dpll_hw_state.pll3 = PORT_PLL_M2_FRAC_ENABLE; crtc_state->dpll_hw_state.pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef); crtc_state->dpll_hw_state.pll6 |= PORT_PLL_GAIN_CTL(gain_ctl); crtc_state->dpll_hw_state.pll8 = targ_cnt; crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT; crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT) | PORT_PLL_DCO_AMP_OVR_EN_H; crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE; crtc_state->dpll_hw_state.pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; pll = intel_get_shared_dpll(intel_crtc, crtc_state); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(intel_crtc->pipe)); return false; } /* shared DPLL id 0 is DPLL A */ crtc_state->ddi_pll_sel = pll->id; return true; } /* * Tries to find a *shared* PLL for the CRTC and store it in * intel_crtc->ddi_pll_sel. * * For private DPLLs, compute_config() should do the selection for us. This * function should be folded into compute_config() eventually. */ bool intel_ddi_pll_select(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = intel_crtc->base.dev; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_new_encoder(crtc_state); if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) return skl_ddi_pll_select(intel_crtc, crtc_state, intel_encoder); else if (IS_BROXTON(dev)) return bxt_ddi_pll_select(intel_crtc, crtc_state, intel_encoder); else return hsw_ddi_pll_select(intel_crtc, crtc_state, intel_encoder); } void intel_ddi_set_pipe_settings(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; int type = intel_encoder->type; uint32_t temp; if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) { temp = TRANS_MSA_SYNC_CLK; switch (intel_crtc->config->pipe_bpp) { case 18: temp |= TRANS_MSA_6_BPC; break; case 24: temp |= TRANS_MSA_8_BPC; break; case 30: temp |= TRANS_MSA_10_BPC; break; case 36: temp |= TRANS_MSA_12_BPC; break; default: BUG(); } I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp); } } void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; uint32_t temp; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (state == true) temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC; else temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC; I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; uint32_t temp; /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ temp = TRANS_DDI_FUNC_ENABLE; temp |= TRANS_DDI_SELECT_PORT(port); switch (intel_crtc->config->pipe_bpp) { case 18: temp |= TRANS_DDI_BPC_6; break; case 24: temp |= TRANS_DDI_BPC_8; break; case 30: temp |= TRANS_DDI_BPC_10; break; case 36: temp |= TRANS_DDI_BPC_12; break; default: BUG(); } if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DDI_PVSYNC; if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DDI_PHSYNC; if (cpu_transcoder == TRANSCODER_EDP) { switch (pipe) { case PIPE_A: /* On Haswell, can only use the always-on power well for * eDP when not using the panel fitter, and when not * using motion blur mitigation (which we don't * support). */ if (IS_HASWELL(dev) && (intel_crtc->config->pch_pfit.enabled || intel_crtc->config->pch_pfit.force_thru)) temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; else temp |= TRANS_DDI_EDP_INPUT_A_ON; break; case PIPE_B: temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; break; case PIPE_C: temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; break; default: BUG(); break; } } if (type == INTEL_OUTPUT_HDMI) { if (intel_crtc->config->has_hdmi_sink) temp |= TRANS_DDI_MODE_SELECT_HDMI; else temp |= TRANS_DDI_MODE_SELECT_DVI; } else if (type == INTEL_OUTPUT_ANALOG) { temp |= TRANS_DDI_MODE_SELECT_FDI; temp |= (intel_crtc->config->fdi_lanes - 1) << 1; } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (intel_dp->is_mst) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; } else temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count); } else if (type == INTEL_OUTPUT_DP_MST) { struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp; if (intel_dp->is_mst) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; } else temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count); } else { WARN(1, "Invalid encoder type %d for pipe %c\n", intel_encoder->type, pipe_name(pipe)); } I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); uint32_t val = I915_READ(reg); val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC); val |= TRANS_DDI_PORT_NONE; I915_WRITE(reg, val); } bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) { struct drm_device *dev = intel_connector->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder = intel_connector->encoder; int type = intel_connector->base.connector_type; enum port port = intel_ddi_get_encoder_port(intel_encoder); enum pipe pipe = 0; enum transcoder cpu_transcoder; enum intel_display_power_domain power_domain; uint32_t tmp; power_domain = intel_display_port_power_domain(intel_encoder); if (!intel_display_power_is_enabled(dev_priv, power_domain)) return false; if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) return false; if (port == PORT_A) cpu_transcoder = TRANSCODER_EDP; else cpu_transcoder = (enum transcoder) pipe; tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: case TRANS_DDI_MODE_SELECT_DVI: return (type == DRM_MODE_CONNECTOR_HDMIA); case TRANS_DDI_MODE_SELECT_DP_SST: if (type == DRM_MODE_CONNECTOR_eDP) return true; return (type == DRM_MODE_CONNECTOR_DisplayPort); case TRANS_DDI_MODE_SELECT_DP_MST: /* if the transcoder is in MST state then * connector isn't connected */ return false; case TRANS_DDI_MODE_SELECT_FDI: return (type == DRM_MODE_CONNECTOR_VGA); default: return false; } } bool intel_ddi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_ddi_get_encoder_port(encoder); enum intel_display_power_domain power_domain; u32 tmp; int i; power_domain = intel_display_port_power_domain(encoder); if (!intel_display_power_is_enabled(dev_priv, power_domain)) return false; tmp = I915_READ(DDI_BUF_CTL(port)); if (!(tmp & DDI_BUF_CTL_ENABLE)) return false; if (port == PORT_A) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { case TRANS_DDI_EDP_INPUT_A_ON: case TRANS_DDI_EDP_INPUT_A_ONOFF: *pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: *pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: *pipe = PIPE_C; break; } return true; } else { for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(i)); if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) { if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST) return false; *pipe = i; return true; } } } DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port)); return false; } void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); enum port port = intel_ddi_get_encoder_port(intel_encoder); enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_PORT(port)); } void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_DISABLED); } static void skl_ddi_set_iboost(struct drm_device *dev, u32 level, enum port port, int type) { struct drm_i915_private *dev_priv = dev->dev_private; const struct ddi_buf_trans *ddi_translations; uint8_t iboost; uint8_t dp_iboost, hdmi_iboost; int n_entries; u32 reg; /* VBT may override standard boost values */ dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level; hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level; if (type == INTEL_OUTPUT_DISPLAYPORT) { if (dp_iboost) { iboost = dp_iboost; } else { ddi_translations = skl_get_buf_trans_dp(dev, &n_entries); iboost = ddi_translations[port].i_boost; } } else if (type == INTEL_OUTPUT_EDP) { if (dp_iboost) { iboost = dp_iboost; } else { ddi_translations = skl_get_buf_trans_edp(dev, &n_entries); iboost = ddi_translations[port].i_boost; } } else if (type == INTEL_OUTPUT_HDMI) { if (hdmi_iboost) { iboost = hdmi_iboost; } else { ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries); iboost = ddi_translations[port].i_boost; } } else { return; } /* Make sure that the requested I_boost is valid */ if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) { DRM_ERROR("Invalid I_boost value %u\n", iboost); return; } reg = I915_READ(DISPIO_CR_TX_BMU_CR0); reg &= ~BALANCE_LEG_MASK(port); reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port)); if (iboost) reg |= iboost << BALANCE_LEG_SHIFT(port); else reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port); I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg); } static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level, enum port port, int type) { struct drm_i915_private *dev_priv = dev->dev_private; const struct bxt_ddi_buf_trans *ddi_translations; u32 n_entries, i; uint32_t val; if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) { n_entries = ARRAY_SIZE(bxt_ddi_translations_edp); ddi_translations = bxt_ddi_translations_edp; } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { n_entries = ARRAY_SIZE(bxt_ddi_translations_dp); ddi_translations = bxt_ddi_translations_dp; } else if (type == INTEL_OUTPUT_HDMI) { n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi); ddi_translations = bxt_ddi_translations_hdmi; } else { DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n", type); return; } /* Check if default value has to be used */ if (level >= n_entries || (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) { for (i = 0; i < n_entries; i++) { if (ddi_translations[i].default_index) { level = i; break; } } } /* * While we write to the group register to program all lanes at once we * can read only lane registers and we pick lanes 0/1 for that. */ val = I915_READ(BXT_PORT_PCS_DW10_LN01(port)); val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val); val = I915_READ(BXT_PORT_TX_DW2_LN0(port)); val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE); val |= ddi_translations[level].margin << MARGIN_000_SHIFT | ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT; I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val); val = I915_READ(BXT_PORT_TX_DW3_LN0(port)); val &= ~SCALE_DCOMP_METHOD; if (ddi_translations[level].enable) val |= SCALE_DCOMP_METHOD; if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set"); I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val); val = I915_READ(BXT_PORT_TX_DW4_LN0(port)); val &= ~DE_EMPHASIS; val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT; I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val); val = I915_READ(BXT_PORT_PCS_DW10_LN01(port)); val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT; I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val); } static uint32_t translate_signal_level(int signal_levels) { uint32_t level; switch (signal_levels) { default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n", signal_levels); case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: level = 0; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: level = 1; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: level = 2; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3: level = 3; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: level = 4; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: level = 5; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: level = 6; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: level = 7; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: level = 8; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: level = 9; break; } return level; } uint32_t ddi_signal_levels(struct intel_dp *intel_dp) { struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_device *dev = dport->base.base.dev; struct intel_encoder *encoder = &dport->base; uint8_t train_set = intel_dp->train_set[0]; int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); enum port port = dport->port; uint32_t level; level = translate_signal_level(signal_levels); if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) skl_ddi_set_iboost(dev, level, port, encoder->type); else if (IS_BROXTON(dev)) bxt_ddi_vswing_sequence(dev, level, port, encoder->type); return DDI_BUF_TRANS_SELECT(level); } void intel_ddi_clk_select(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = intel_ddi_get_encoder_port(encoder); if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { uint32_t dpll = pipe_config->ddi_pll_sel; uint32_t val; /* * DPLL0 is used for eDP and is the only "private" DPLL (as * opposed to shared) on SKL */ if (encoder->type == INTEL_OUTPUT_EDP) { WARN_ON(dpll != SKL_DPLL0); val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) | DPLL_CTRL1_LINK_RATE_MASK(dpll)); val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); } /* DDI -> PLL mapping */ val = I915_READ(DPLL_CTRL2); val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) | DPLL_CTRL2_DDI_CLK_SEL_MASK(port)); val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) | DPLL_CTRL2_DDI_SEL_OVERRIDE(port)); I915_WRITE(DPLL_CTRL2, val); } else if (INTEL_INFO(dev_priv)->gen < 9) { WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE); I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel); } } static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(encoder->crtc); enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; int hdmi_level; if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_edp_panel_on(intel_dp); } intel_ddi_clk_select(intel_encoder, crtc->config); if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp_set_link_params(intel_dp, crtc->config); intel_ddi_init_dp_buf_reg(intel_encoder); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); if (port != PORT_A || INTEL_INFO(dev)->gen >= 9) intel_dp_stop_link_train(intel_dp); } else if (type == INTEL_OUTPUT_HDMI) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); if (IS_BROXTON(dev)) { hdmi_level = dev_priv->vbt. ddi_port_info[port].hdmi_level_shift; bxt_ddi_vswing_sequence(dev, hdmi_level, port, INTEL_OUTPUT_HDMI); } intel_hdmi->set_infoframes(encoder, crtc->config->has_hdmi_sink, &crtc->config->base.adjusted_mode); } } static void intel_ddi_post_disable(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; uint32_t val; bool wait = false; val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_edp_panel_vdd_on(intel_dp); intel_edp_panel_off(intel_dp); } if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) | DPLL_CTRL2_DDI_CLK_OFF(port))); else if (INTEL_INFO(dev)->gen < 9) I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); } static void intel_enable_ddi(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; if (type == INTEL_OUTPUT_HDMI) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); /* In HDMI/DVI mode, the port width, and swing/emphasis values * are ignored so nothing special needs to be done besides * enabling the port. */ I915_WRITE(DDI_BUF_CTL(port), intel_dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE); } else if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (port == PORT_A && INTEL_INFO(dev)->gen < 9) intel_dp_stop_link_train(intel_dp); intel_edp_backlight_on(intel_dp); intel_psr_enable(intel_dp); intel_edp_drrs_enable(intel_dp); } if (intel_crtc->config->has_audio) { intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO); intel_audio_codec_enable(intel_encoder); } } static void intel_disable_ddi(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int type = intel_encoder->type; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (intel_crtc->config->has_audio) { intel_audio_codec_disable(intel_encoder); intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO); } if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_edp_drrs_disable(intel_dp); intel_psr_disable(intel_dp); intel_edp_backlight_off(intel_dp); } } static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll); POSTING_READ(WRPLL_CTL(pll->id)); udelay(20); } static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(WRPLL_CTL(pll->id)); I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE); POSTING_READ(WRPLL_CTL(pll->id)); } static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(WRPLL_CTL(pll->id)); hw_state->wrpll = val; return val & WRPLL_PLL_ENABLE; } static const char * const hsw_ddi_pll_names[] = { "WRPLL 1", "WRPLL 2", }; static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv) { int i; dev_priv->num_shared_dpll = 2; for (i = 0; i < dev_priv->num_shared_dpll; i++) { dev_priv->shared_dplls[i].id = i; dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i]; dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable; dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable; dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_pll_get_hw_state; } } static const char * const skl_ddi_pll_names[] = { "DPLL 1", "DPLL 2", "DPLL 3", }; struct skl_dpll_regs { u32 ctl, cfgcr1, cfgcr2; }; /* this array is indexed by the *shared* pll id */ static const struct skl_dpll_regs skl_dpll_regs[3] = { { /* DPLL 1 */ .ctl = LCPLL2_CTL, .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), }, { /* DPLL 2 */ .ctl = WRPLL_CTL(0), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), }, { /* DPLL 3 */ .ctl = WRPLL_CTL(1), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), }, }; static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; unsigned int dpll; const struct skl_dpll_regs *regs = skl_dpll_regs; /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */ dpll = pll->id + 1; val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) | DPLL_CTRL1_LINK_RATE_MASK(dpll)); val |= pll->config.hw_state.ctrl1 << (dpll * 6); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1); I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2); POSTING_READ(regs[pll->id].cfgcr1); POSTING_READ(regs[pll->id].cfgcr2); /* the enable bit is always bit 31 */ I915_WRITE(regs[pll->id].ctl, I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE); if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5)) DRM_ERROR("DPLL %d not locked\n", dpll); } static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; /* the enable bit is always bit 31 */ I915_WRITE(regs[pll->id].ctl, I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE); POSTING_READ(regs[pll->id].ctl); } static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; unsigned int dpll; const struct skl_dpll_regs *regs = skl_dpll_regs; if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */ dpll = pll->id + 1; val = I915_READ(regs[pll->id].ctl); if (!(val & LCPLL_PLL_ENABLE)) return false; val = I915_READ(DPLL_CTRL1); hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f; /* avoid reading back stale values if HDMI mode is not enabled */ if (val & DPLL_CTRL1_HDMI_MODE(dpll)) { hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1); hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2); } return true; } static void skl_shared_dplls_init(struct drm_i915_private *dev_priv) { int i; dev_priv->num_shared_dpll = 3; for (i = 0; i < dev_priv->num_shared_dpll; i++) { dev_priv->shared_dplls[i].id = i; dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i]; dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable; dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable; dev_priv->shared_dplls[i].get_hw_state = skl_ddi_pll_get_hw_state; } } static void broxton_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) { enum port port; uint32_t val; val = I915_READ(BXT_P_CR_GT_DISP_PWRON); val |= GT_DISPLAY_POWER_ON(phy); I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val); /* Considering 10ms timeout until BSpec is updated */ if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10)) DRM_ERROR("timeout during PHY%d power on\n", phy); for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A); port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) { int lane; for (lane = 0; lane < 4; lane++) { val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane)); /* * Note that on CHV this flag is called UPAR, but has * the same function. */ val &= ~LATENCY_OPTIM; if (lane != 1) val |= LATENCY_OPTIM; I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val); } } /* Program PLL Rcomp code offset */ val = I915_READ(BXT_PORT_CL1CM_DW9(phy)); val &= ~IREF0RC_OFFSET_MASK; val |= 0xE4 << IREF0RC_OFFSET_SHIFT; I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val); val = I915_READ(BXT_PORT_CL1CM_DW10(phy)); val &= ~IREF1RC_OFFSET_MASK; val |= 0xE4 << IREF1RC_OFFSET_SHIFT; I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val); /* Program power gating */ val = I915_READ(BXT_PORT_CL1CM_DW28(phy)); val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val); if (phy == DPIO_PHY0) { val = I915_READ(BXT_PORT_CL2CM_DW6_BC); val |= DW6_OLDO_DYN_PWR_DOWN_EN; I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val); } val = I915_READ(BXT_PORT_CL1CM_DW30(phy)); val &= ~OCL2_LDOFUSE_PWR_DIS; /* * On PHY1 disable power on the second channel, since no port is * connected there. On PHY0 both channels have a port, so leave it * enabled. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should * power down the second channel on PHY0 as well. */ if (phy == DPIO_PHY1) val |= OCL2_LDOFUSE_PWR_DIS; I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val); if (phy == DPIO_PHY0) { uint32_t grc_code; /* * PHY0 isn't connected to an RCOMP resistor so copy over * the corresponding calibrated value from PHY1, and disable * the automatic calibration on PHY0. */ if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE, 10)) DRM_ERROR("timeout waiting for PHY1 GRC\n"); val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1)); val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT; grc_code = val << GRC_CODE_FAST_SHIFT | val << GRC_CODE_SLOW_SHIFT | val; I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code); val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0)); val |= GRC_DIS | GRC_RDY_OVRD; I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val); } val = I915_READ(BXT_PHY_CTL_FAMILY(phy)); val |= COMMON_RESET_DIS; I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val); } void broxton_ddi_phy_init(struct drm_device *dev) { /* Enable PHY1 first since it provides Rcomp for PHY0 */ broxton_phy_init(dev->dev_private, DPIO_PHY1); broxton_phy_init(dev->dev_private, DPIO_PHY0); } static void broxton_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) { uint32_t val; val = I915_READ(BXT_PHY_CTL_FAMILY(phy)); val &= ~COMMON_RESET_DIS; I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val); } void broxton_ddi_phy_uninit(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; broxton_phy_uninit(dev_priv, DPIO_PHY1); broxton_phy_uninit(dev_priv, DPIO_PHY0); /* FIXME: do this in broxton_phy_uninit per phy */ I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0); } static const char * const bxt_ddi_pll_names[] = { "PORT PLL A", "PORT PLL B", "PORT PLL C", }; static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t temp; enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp &= ~PORT_PLL_REF_SEL; /* Non-SSC reference */ I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); /* Disable 10 bit clock */ temp = I915_READ(BXT_PORT_PLL_EBB_4(port)); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); /* Write P1 & P2 */ temp = I915_READ(BXT_PORT_PLL_EBB_0(port)); temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK); temp |= pll->config.hw_state.ebb0; I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp); /* Write M2 integer */ temp = I915_READ(BXT_PORT_PLL(port, 0)); temp &= ~PORT_PLL_M2_MASK; temp |= pll->config.hw_state.pll0; I915_WRITE(BXT_PORT_PLL(port, 0), temp); /* Write N */ temp = I915_READ(BXT_PORT_PLL(port, 1)); temp &= ~PORT_PLL_N_MASK; temp |= pll->config.hw_state.pll1; I915_WRITE(BXT_PORT_PLL(port, 1), temp); /* Write M2 fraction */ temp = I915_READ(BXT_PORT_PLL(port, 2)); temp &= ~PORT_PLL_M2_FRAC_MASK; temp |= pll->config.hw_state.pll2; I915_WRITE(BXT_PORT_PLL(port, 2), temp); /* Write M2 fraction enable */ temp = I915_READ(BXT_PORT_PLL(port, 3)); temp &= ~PORT_PLL_M2_FRAC_ENABLE; temp |= pll->config.hw_state.pll3; I915_WRITE(BXT_PORT_PLL(port, 3), temp); /* Write coeff */ temp = I915_READ(BXT_PORT_PLL(port, 6)); temp &= ~PORT_PLL_PROP_COEFF_MASK; temp &= ~PORT_PLL_INT_COEFF_MASK; temp &= ~PORT_PLL_GAIN_CTL_MASK; temp |= pll->config.hw_state.pll6; I915_WRITE(BXT_PORT_PLL(port, 6), temp); /* Write calibration val */ temp = I915_READ(BXT_PORT_PLL(port, 8)); temp &= ~PORT_PLL_TARGET_CNT_MASK; temp |= pll->config.hw_state.pll8; I915_WRITE(BXT_PORT_PLL(port, 8), temp); temp = I915_READ(BXT_PORT_PLL(port, 9)); temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK; temp |= pll->config.hw_state.pll9; I915_WRITE(BXT_PORT_PLL(port, 9), temp); temp = I915_READ(BXT_PORT_PLL(port, 10)); temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; temp &= ~PORT_PLL_DCO_AMP_MASK; temp |= pll->config.hw_state.pll10; I915_WRITE(BXT_PORT_PLL(port, 10), temp); /* Recalibrate with new settings */ temp = I915_READ(BXT_PORT_PLL_EBB_4(port)); temp |= PORT_PLL_RECALIBRATE; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; temp |= pll->config.hw_state.ebb4; I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp); /* Enable PLL */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), 200)) DRM_ERROR("PLL %d not locked\n", port); /* * While we write to the group register to program all lanes at once we * can read only lane registers and we pick lanes 0/1 for that. */ temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port)); temp &= ~LANE_STAGGER_MASK; temp &= ~LANESTAGGER_STRAP_OVRD; temp |= pll->config.hw_state.pcsdw12; I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp); } static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ uint32_t temp; temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp &= ~PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); } static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */ uint32_t val; if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(BXT_PORT_PLL_ENABLE(port)); if (!(val & PORT_PLL_ENABLE)) return false; hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port)); hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port)); hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0)); hw_state->pll0 &= PORT_PLL_M2_MASK; hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1)); hw_state->pll1 &= PORT_PLL_N_MASK; hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2)); hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3)); hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6)); hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | PORT_PLL_INT_COEFF_MASK | PORT_PLL_GAIN_CTL_MASK; hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8)); hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9)); hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10)); hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | PORT_PLL_DCO_AMP_MASK; /* * While we write to the group register to program all lanes at once we * can read only lane registers. We configure all lanes the same way, so * here just read out lanes 0/1 and output a note if lanes 2/3 differ. */ hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port)); if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12) DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", hw_state->pcsdw12, I915_READ(BXT_PORT_PCS_DW12_LN23(port))); hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; return true; } static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv) { int i; dev_priv->num_shared_dpll = 3; for (i = 0; i < dev_priv->num_shared_dpll; i++) { dev_priv->shared_dplls[i].id = i; dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i]; dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable; dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable; dev_priv->shared_dplls[i].get_hw_state = bxt_ddi_pll_get_hw_state; } } void intel_ddi_pll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val = I915_READ(LCPLL_CTL); if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) skl_shared_dplls_init(dev_priv); else if (IS_BROXTON(dev)) bxt_shared_dplls_init(dev_priv); else hsw_shared_dplls_init(dev_priv); if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { int cdclk_freq; cdclk_freq = dev_priv->display.get_display_clock_speed(dev); dev_priv->skl_boot_cdclk = cdclk_freq; if (skl_sanitize_cdclk(dev_priv)) DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n"); else intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); } else if (IS_BROXTON(dev)) { broxton_init_cdclk(dev); broxton_ddi_phy_init(dev); } else { /* * The LCPLL register should be turned on by the BIOS. For now * let's just check its state and print errors in case * something is wrong. Don't even try to turn it on. */ if (val & LCPLL_CD_SOURCE_FCLK) DRM_ERROR("CDCLK source is not LCPLL\n"); if (val & LCPLL_PLL_DISABLE) DRM_ERROR("LCPLL is disabled\n"); } } void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); enum port port = intel_dig_port->port; uint32_t val; bool wait = false; if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) { val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } val = DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE; if (intel_dp->is_mst) val |= DP_TP_CTL_MODE_MST; else { val |= DP_TP_CTL_MODE_SST; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; } I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); intel_dp->DP |= DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP); POSTING_READ(DDI_BUF_CTL(port)); udelay(600); } void intel_ddi_fdi_disable(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); uint32_t val; intel_ddi_post_disable(intel_encoder); val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), val); val = I915_READ(FDI_RX_MISC(PIPE_A)); val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(FDI_RX_MISC(PIPE_A), val); val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_PCDCLK; I915_WRITE(FDI_RX_CTL(PIPE_A), val); val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_PLL_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), val); } void intel_ddi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; struct intel_hdmi *intel_hdmi; u32 temp, flags = 0; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (temp & TRANS_DDI_PHSYNC) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (temp & TRANS_DDI_PVSYNC) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; pipe_config->base.adjusted_mode.flags |= flags; switch (temp & TRANS_DDI_BPC_MASK) { case TRANS_DDI_BPC_6: pipe_config->pipe_bpp = 18; break; case TRANS_DDI_BPC_8: pipe_config->pipe_bpp = 24; break; case TRANS_DDI_BPC_10: pipe_config->pipe_bpp = 30; break; case TRANS_DDI_BPC_12: pipe_config->pipe_bpp = 36; break; default: break; } switch (temp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: pipe_config->has_hdmi_sink = true; intel_hdmi = enc_to_intel_hdmi(&encoder->base); if (intel_hdmi->infoframe_enabled(&encoder->base)) pipe_config->has_infoframe = true; break; case TRANS_DDI_MODE_SELECT_DVI: case TRANS_DDI_MODE_SELECT_FDI: break; case TRANS_DDI_MODE_SELECT_DP_SST: case TRANS_DDI_MODE_SELECT_DP_MST: pipe_config->has_dp_encoder = true; pipe_config->lane_count = ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(intel_crtc, pipe_config); break; default: break; } if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) { temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe)) pipe_config->has_audio = true; } if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; } intel_ddi_clock_get(encoder, pipe_config); } static void intel_ddi_destroy(struct drm_encoder *encoder) { /* HDMI has nothing special to destroy, so we can go with this. */ intel_dp_encoder_destroy(encoder); } static bool intel_ddi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { int type = encoder->type; int port = intel_ddi_get_encoder_port(encoder); WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n"); if (port == PORT_A) pipe_config->cpu_transcoder = TRANSCODER_EDP; if (type == INTEL_OUTPUT_HDMI) return intel_hdmi_compute_config(encoder, pipe_config); else return intel_dp_compute_config(encoder, pipe_config); } static const struct drm_encoder_funcs intel_ddi_funcs = { .destroy = intel_ddi_destroy, }; static struct intel_connector * intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->port; connector = intel_connector_alloc(); if (!connector) return NULL; intel_dig_port->dp.output_reg = DDI_BUF_CTL(port); if (!intel_dp_init_connector(intel_dig_port, connector)) { kfree(connector); return NULL; } return connector; } static struct intel_connector * intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->port; connector = intel_connector_alloc(); if (!connector) return NULL; intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); intel_hdmi_init_connector(intel_dig_port, connector); return connector; } void intel_ddi_init(struct drm_device *dev, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; bool init_hdmi, init_dp; init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi || dev_priv->vbt.ddi_port_info[port].supports_hdmi); init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp; if (!init_dp && !init_hdmi) { DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n", port_name(port)); return; } intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; drm_encoder_init(dev, encoder, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS); intel_encoder->compute_config = intel_ddi_compute_config; intel_encoder->enable = intel_enable_ddi; intel_encoder->pre_enable = intel_ddi_pre_enable; intel_encoder->disable = intel_disable_ddi; intel_encoder->post_disable = intel_ddi_post_disable; intel_encoder->get_hw_state = intel_ddi_get_hw_state; intel_encoder->get_config = intel_ddi_get_config; intel_dig_port->port = port; intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES); /* * Bspec says that DDI_A_4_LANES is the only supported configuration * for Broxton. Yet some BIOS fail to set this bit on port A if eDP * wasn't lit up at boot. Force this bit on in our internal * configuration so that we use the proper lane count for our * calculations. */ if (IS_BROXTON(dev) && port == PORT_A) { if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) { DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n"); intel_dig_port->saved_port_bits |= DDI_A_4_LANES; } } intel_encoder->type = INTEL_OUTPUT_UNKNOWN; intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); intel_encoder->cloneable = 0; if (init_dp) { if (!intel_ddi_init_dp_connector(intel_dig_port)) goto err; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; /* * On BXT A0/A1, sw needs to activate DDIA HPD logic and * interrupts to check the external panel connection. */ if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B) dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port; else dev_priv->hotplug.irq_port[port] = intel_dig_port; } /* In theory we don't need the encoder->type check, but leave it just in * case we have some really bad VBTs... */ if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) { if (!intel_ddi_init_hdmi_connector(intel_dig_port)) goto err; } return; err: drm_encoder_cleanup(encoder); kfree(intel_dig_port); }