// SPDX-License-Identifier: GPL-2.0-only /* * UFS Host Controller driver for Exynos specific extensions * * Copyright (C) 2014-2015 Samsung Electronics Co., Ltd. * Author: Seungwon Jeon * Author: Alim Akhtar * */ #include #include #include #include #include #include #include "ufshcd.h" #include "ufshcd-pltfrm.h" #include "ufshci.h" #include "unipro.h" #include "ufs-exynos.h" /* * Exynos's Vendor specific registers for UFSHCI */ #define HCI_TXPRDT_ENTRY_SIZE 0x00 #define PRDT_PREFECT_EN BIT(31) #define PRDT_SET_SIZE(x) ((x) & 0x1F) #define HCI_RXPRDT_ENTRY_SIZE 0x04 #define HCI_1US_TO_CNT_VAL 0x0C #define CNT_VAL_1US_MASK 0x3FF #define HCI_UTRL_NEXUS_TYPE 0x40 #define HCI_UTMRL_NEXUS_TYPE 0x44 #define HCI_SW_RST 0x50 #define UFS_LINK_SW_RST BIT(0) #define UFS_UNIPRO_SW_RST BIT(1) #define UFS_SW_RST_MASK (UFS_UNIPRO_SW_RST | UFS_LINK_SW_RST) #define HCI_DATA_REORDER 0x60 #define HCI_UNIPRO_APB_CLK_CTRL 0x68 #define UNIPRO_APB_CLK(v, x) (((v) & ~0xF) | ((x) & 0xF)) #define HCI_AXIDMA_RWDATA_BURST_LEN 0x6C #define HCI_GPIO_OUT 0x70 #define HCI_ERR_EN_PA_LAYER 0x78 #define HCI_ERR_EN_DL_LAYER 0x7C #define HCI_ERR_EN_N_LAYER 0x80 #define HCI_ERR_EN_T_LAYER 0x84 #define HCI_ERR_EN_DME_LAYER 0x88 #define HCI_CLKSTOP_CTRL 0xB0 #define REFCLK_STOP BIT(2) #define UNIPRO_MCLK_STOP BIT(1) #define UNIPRO_PCLK_STOP BIT(0) #define CLK_STOP_MASK (REFCLK_STOP |\ UNIPRO_MCLK_STOP |\ UNIPRO_PCLK_STOP) #define HCI_MISC 0xB4 #define REFCLK_CTRL_EN BIT(7) #define UNIPRO_PCLK_CTRL_EN BIT(6) #define UNIPRO_MCLK_CTRL_EN BIT(5) #define HCI_CORECLK_CTRL_EN BIT(4) #define CLK_CTRL_EN_MASK (REFCLK_CTRL_EN |\ UNIPRO_PCLK_CTRL_EN |\ UNIPRO_MCLK_CTRL_EN) /* Device fatal error */ #define DFES_ERR_EN BIT(31) #define DFES_DEF_L2_ERRS (UIC_DATA_LINK_LAYER_ERROR_RX_BUF_OF |\ UIC_DATA_LINK_LAYER_ERROR_PA_INIT) #define DFES_DEF_L3_ERRS (UIC_NETWORK_UNSUPPORTED_HEADER_TYPE |\ UIC_NETWORK_BAD_DEVICEID_ENC |\ UIC_NETWORK_LHDR_TRAP_PACKET_DROPPING) #define DFES_DEF_L4_ERRS (UIC_TRANSPORT_UNSUPPORTED_HEADER_TYPE |\ UIC_TRANSPORT_UNKNOWN_CPORTID |\ UIC_TRANSPORT_NO_CONNECTION_RX |\ UIC_TRANSPORT_BAD_TC) enum { UNIPRO_L1_5 = 0,/* PHY Adapter */ UNIPRO_L2, /* Data Link */ UNIPRO_L3, /* Network */ UNIPRO_L4, /* Transport */ UNIPRO_DME, /* DME */ }; /* * UNIPRO registers */ #define UNIPRO_COMP_VERSION 0x000 #define UNIPRO_DME_PWR_REQ 0x090 #define UNIPRO_DME_PWR_REQ_POWERMODE 0x094 #define UNIPRO_DME_PWR_REQ_LOCALL2TIMER0 0x098 #define UNIPRO_DME_PWR_REQ_LOCALL2TIMER1 0x09C #define UNIPRO_DME_PWR_REQ_LOCALL2TIMER2 0x0A0 #define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER0 0x0A4 #define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER1 0x0A8 #define UNIPRO_DME_PWR_REQ_REMOTEL2TIMER2 0x0AC /* * UFS Protector registers */ #define UFSPRSECURITY 0x010 #define NSSMU BIT(14) #define UFSPSBEGIN0 0x200 #define UFSPSEND0 0x204 #define UFSPSLUN0 0x208 #define UFSPSCTRL0 0x20C #define CNTR_DIV_VAL 40 static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en); static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en); static inline void exynos_ufs_enable_auto_ctrl_hcc(struct exynos_ufs *ufs) { exynos_ufs_auto_ctrl_hcc(ufs, true); } static inline void exynos_ufs_disable_auto_ctrl_hcc(struct exynos_ufs *ufs) { exynos_ufs_auto_ctrl_hcc(ufs, false); } static inline void exynos_ufs_disable_auto_ctrl_hcc_save( struct exynos_ufs *ufs, u32 *val) { *val = hci_readl(ufs, HCI_MISC); exynos_ufs_auto_ctrl_hcc(ufs, false); } static inline void exynos_ufs_auto_ctrl_hcc_restore( struct exynos_ufs *ufs, u32 *val) { hci_writel(ufs, *val, HCI_MISC); } static inline void exynos_ufs_gate_clks(struct exynos_ufs *ufs) { exynos_ufs_ctrl_clkstop(ufs, true); } static inline void exynos_ufs_ungate_clks(struct exynos_ufs *ufs) { exynos_ufs_ctrl_clkstop(ufs, false); } static int exynos7_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs) { return 0; } static int exynos7_ufs_pre_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; u32 val = ufs->drv_data->uic_attr->pa_dbg_option_suite; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x297, i), 0x17); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x362, i), 0xff); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x363, i), 0x00); } exynos_ufs_disable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIBERN8_CONTROL, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_TXPHY_CFGUPDT), 0x1); udelay(1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val | (1 << 12)); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_RESET_PHY), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_LINE_RESET), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_LINE_RESET_REQ), 0x1); udelay(1600); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), val); return 0; } static int exynos7_ufs_post_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x28b, i), 0x83); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x29a, i), 0x07); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x277, i), TX_LINERESET_N(exynos_ufs_calc_time_cntr(ufs, 200000))); } exynos_ufs_disable_ov_tm(hba); exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xbb8); exynos_ufs_disable_dbg_mode(hba); return 0; } static int exynos7_ufs_pre_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { unipro_writel(ufs, 0x22, UNIPRO_DBG_FORCE_DME_CTRL_STATE); return 0; } static int exynos7_ufs_post_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; int lanes = max_t(u32, pwr->lane_rx, pwr->lane_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_RXPHY_CFGUPDT), 0x1); if (lanes == 1) { exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 0x1); exynos_ufs_disable_dbg_mode(hba); } return 0; } /* * exynos_ufs_auto_ctrl_hcc - HCI core clock control by h/w * Control should be disabled in the below cases * - Before host controller S/W reset * - Access to UFS protector's register */ static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en) { u32 misc = hci_readl(ufs, HCI_MISC); if (en) hci_writel(ufs, misc | HCI_CORECLK_CTRL_EN, HCI_MISC); else hci_writel(ufs, misc & ~HCI_CORECLK_CTRL_EN, HCI_MISC); } static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en) { u32 ctrl = hci_readl(ufs, HCI_CLKSTOP_CTRL); u32 misc = hci_readl(ufs, HCI_MISC); if (en) { hci_writel(ufs, misc | CLK_CTRL_EN_MASK, HCI_MISC); hci_writel(ufs, ctrl | CLK_STOP_MASK, HCI_CLKSTOP_CTRL); } else { hci_writel(ufs, ctrl & ~CLK_STOP_MASK, HCI_CLKSTOP_CTRL); hci_writel(ufs, misc & ~CLK_CTRL_EN_MASK, HCI_MISC); } } static int exynos_ufs_get_clk_info(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct list_head *head = &hba->clk_list_head; struct ufs_clk_info *clki; u32 pclk_rate; u32 f_min, f_max; u8 div = 0; int ret = 0; if (list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!IS_ERR(clki->clk)) { if (!strcmp(clki->name, "core_clk")) ufs->clk_hci_core = clki->clk; else if (!strcmp(clki->name, "sclk_unipro_main")) ufs->clk_unipro_main = clki->clk; } } if (!ufs->clk_hci_core || !ufs->clk_unipro_main) { dev_err(hba->dev, "failed to get clk info\n"); ret = -EINVAL; goto out; } ufs->mclk_rate = clk_get_rate(ufs->clk_unipro_main); pclk_rate = clk_get_rate(ufs->clk_hci_core); f_min = ufs->pclk_avail_min; f_max = ufs->pclk_avail_max; if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) { do { pclk_rate /= (div + 1); if (pclk_rate <= f_max) break; div++; } while (pclk_rate >= f_min); } if (unlikely(pclk_rate < f_min || pclk_rate > f_max)) { dev_err(hba->dev, "not available pclk range %d\n", pclk_rate); ret = -EINVAL; goto out; } ufs->pclk_rate = pclk_rate; ufs->pclk_div = div; out: return ret; } static void exynos_ufs_set_unipro_pclk_div(struct exynos_ufs *ufs) { if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) { u32 val; val = hci_readl(ufs, HCI_UNIPRO_APB_CLK_CTRL); hci_writel(ufs, UNIPRO_APB_CLK(val, ufs->pclk_div), HCI_UNIPRO_APB_CLK_CTRL); } } static void exynos_ufs_set_pwm_clk_div(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; ufshcd_dme_set(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), attr->cmn_pwm_clk_ctrl); } static void exynos_ufs_calc_pwm_clk_div(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; const unsigned int div = 30, mult = 20; const unsigned long pwm_min = 3 * 1000 * 1000; const unsigned long pwm_max = 9 * 1000 * 1000; const int divs[] = {32, 16, 8, 4}; unsigned long clk = 0, _clk, clk_period; int i = 0, clk_idx = -1; clk_period = UNIPRO_PCLK_PERIOD(ufs); for (i = 0; i < ARRAY_SIZE(divs); i++) { _clk = NSEC_PER_SEC * mult / (clk_period * divs[i] * div); if (_clk >= pwm_min && _clk <= pwm_max) { if (_clk > clk) { clk_idx = i; clk = _clk; } } } if (clk_idx == -1) { ufshcd_dme_get(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), &clk_idx); dev_err(hba->dev, "failed to decide pwm clock divider, will not change\n"); } attr->cmn_pwm_clk_ctrl = clk_idx & PWM_CLK_CTRL_MASK; } long exynos_ufs_calc_time_cntr(struct exynos_ufs *ufs, long period) { const int precise = 10; long pclk_rate = ufs->pclk_rate; long clk_period, fraction; clk_period = UNIPRO_PCLK_PERIOD(ufs); fraction = ((NSEC_PER_SEC % pclk_rate) * precise) / pclk_rate; return (period * precise) / ((clk_period * precise) + fraction); } static void exynos_ufs_specify_phy_time_attr(struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg; t_cfg->tx_linereset_p = exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_p_nsec); t_cfg->tx_linereset_n = exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_n_nsec); t_cfg->tx_high_z_cnt = exynos_ufs_calc_time_cntr(ufs, attr->tx_high_z_cnt_nsec); t_cfg->tx_base_n_val = exynos_ufs_calc_time_cntr(ufs, attr->tx_base_unit_nsec); t_cfg->tx_gran_n_val = exynos_ufs_calc_time_cntr(ufs, attr->tx_gran_unit_nsec); t_cfg->tx_sleep_cnt = exynos_ufs_calc_time_cntr(ufs, attr->tx_sleep_cnt); t_cfg->rx_linereset = exynos_ufs_calc_time_cntr(ufs, attr->rx_dif_p_nsec); t_cfg->rx_hibern8_wait = exynos_ufs_calc_time_cntr(ufs, attr->rx_hibern8_wait_nsec); t_cfg->rx_base_n_val = exynos_ufs_calc_time_cntr(ufs, attr->rx_base_unit_nsec); t_cfg->rx_gran_n_val = exynos_ufs_calc_time_cntr(ufs, attr->rx_gran_unit_nsec); t_cfg->rx_sleep_cnt = exynos_ufs_calc_time_cntr(ufs, attr->rx_sleep_cnt); t_cfg->rx_stall_cnt = exynos_ufs_calc_time_cntr(ufs, attr->rx_stall_cnt); } static void exynos_ufs_config_phy_time_attr(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg; int i; exynos_ufs_set_pwm_clk_div(ufs); exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_FILLER_ENABLE, i), ufs->drv_data->uic_attr->rx_filler_enable); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_LINERESET_VAL, i), RX_LINERESET(t_cfg->rx_linereset)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_07_00, i), RX_BASE_NVAL_L(t_cfg->rx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_15_08, i), RX_BASE_NVAL_H(t_cfg->rx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_07_00, i), RX_GRAN_NVAL_L(t_cfg->rx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_10_08, i), RX_GRAN_NVAL_H(t_cfg->rx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_SLEEP_CNT_TIMER, i), RX_OV_SLEEP_CNT(t_cfg->rx_sleep_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_STALL_CNT_TIMER, i), RX_OV_STALL_CNT(t_cfg->rx_stall_cnt)); } for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LINERESET_P_VAL, i), TX_LINERESET_P(t_cfg->tx_linereset_p)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_07_00, i), TX_HIGH_Z_CNT_L(t_cfg->tx_high_z_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_11_08, i), TX_HIGH_Z_CNT_H(t_cfg->tx_high_z_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_07_00, i), TX_BASE_NVAL_L(t_cfg->tx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_15_08, i), TX_BASE_NVAL_H(t_cfg->tx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_07_00, i), TX_GRAN_NVAL_L(t_cfg->tx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_10_08, i), TX_GRAN_NVAL_H(t_cfg->tx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_OV_SLEEP_CNT_TIMER, i), TX_OV_H8_ENTER_EN | TX_OV_SLEEP_CNT(t_cfg->tx_sleep_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_MIN_ACTIVATETIME, i), ufs->drv_data->uic_attr->tx_min_activatetime); } exynos_ufs_disable_ov_tm(hba); } static void exynos_ufs_config_phy_cap_attr(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G1_SYNC_LENGTH_CAP, i), attr->rx_hs_g1_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G2_SYNC_LENGTH_CAP, i), attr->rx_hs_g2_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G3_SYNC_LENGTH_CAP, i), attr->rx_hs_g3_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G1_PREP_LENGTH_CAP, i), attr->rx_hs_g1_prep_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G2_PREP_LENGTH_CAP, i), attr->rx_hs_g2_prep_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G3_PREP_LENGTH_CAP, i), attr->rx_hs_g3_prep_sync_len_cap); } if (attr->rx_adv_fine_gran_sup_en == 0) { for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), 0); if (attr->rx_min_actv_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_MIN_ACTIVATETIME_CAP, i), attr->rx_min_actv_time_cap); if (attr->rx_hibern8_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAP, i), attr->rx_hibern8_time_cap); } } else if (attr->rx_adv_fine_gran_sup_en == 1) { for_each_ufs_rx_lane(ufs, i) { if (attr->rx_adv_fine_gran_step) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), RX_ADV_FINE_GRAN_STEP( attr->rx_adv_fine_gran_step)); if (attr->rx_adv_min_actv_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL( RX_ADV_MIN_ACTIVATETIME_CAP, i), attr->rx_adv_min_actv_time_cap); if (attr->rx_adv_hibern8_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_HIBERN8TIME_CAP, i), attr->rx_adv_hibern8_time_cap); } } exynos_ufs_disable_ov_tm(hba); } static void exynos_ufs_establish_connt(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; enum { DEV_ID = 0x00, PEER_DEV_ID = 0x01, PEER_CPORT_ID = 0x00, TRAFFIC_CLASS = 0x00, }; /* allow cport attributes to be set */ ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_IDLE); /* local unipro attributes */ ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID), DEV_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID_VALID), TRUE); ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERDEVICEID), PEER_DEV_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERCPORTID), PEER_CPORT_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(T_CPORTFLAGS), CPORT_DEF_FLAGS); ufshcd_dme_set(hba, UIC_ARG_MIB(T_TRAFFICCLASS), TRAFFIC_CLASS); ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_CONNECTED); } static void exynos_ufs_config_smu(struct exynos_ufs *ufs) { u32 reg, val; exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val); /* make encryption disabled by default */ reg = ufsp_readl(ufs, UFSPRSECURITY); ufsp_writel(ufs, reg | NSSMU, UFSPRSECURITY); ufsp_writel(ufs, 0x0, UFSPSBEGIN0); ufsp_writel(ufs, 0xffffffff, UFSPSEND0); ufsp_writel(ufs, 0xff, UFSPSLUN0); ufsp_writel(ufs, 0xf1, UFSPSCTRL0); exynos_ufs_auto_ctrl_hcc_restore(ufs, &val); } static void exynos_ufs_config_sync_pattern_mask(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; u8 g = max_t(u32, pwr->gear_rx, pwr->gear_tx); u32 mask, sync_len; enum { SYNC_LEN_G1 = 80 * 1000, /* 80us */ SYNC_LEN_G2 = 40 * 1000, /* 44us */ SYNC_LEN_G3 = 20 * 1000, /* 20us */ }; int i; if (g == 1) sync_len = SYNC_LEN_G1; else if (g == 2) sync_len = SYNC_LEN_G2; else if (g == 3) sync_len = SYNC_LEN_G3; else return; mask = exynos_ufs_calc_time_cntr(ufs, sync_len); mask = (mask >> 8) & 0xff; exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_SYNC_MASK_LENGTH, i), mask); exynos_ufs_disable_ov_tm(hba); } static int exynos_ufs_pre_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; struct ufs_dev_params ufs_exynos_cap; int ret; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); ret = -EINVAL; goto out; } ufs_exynos_cap.tx_lanes = UFS_EXYNOS_LIMIT_NUM_LANES_TX; ufs_exynos_cap.rx_lanes = UFS_EXYNOS_LIMIT_NUM_LANES_RX; ufs_exynos_cap.hs_rx_gear = UFS_EXYNOS_LIMIT_HSGEAR_RX; ufs_exynos_cap.hs_tx_gear = UFS_EXYNOS_LIMIT_HSGEAR_TX; ufs_exynos_cap.pwm_rx_gear = UFS_EXYNOS_LIMIT_PWMGEAR_RX; ufs_exynos_cap.pwm_tx_gear = UFS_EXYNOS_LIMIT_PWMGEAR_TX; ufs_exynos_cap.rx_pwr_pwm = UFS_EXYNOS_LIMIT_RX_PWR_PWM; ufs_exynos_cap.tx_pwr_pwm = UFS_EXYNOS_LIMIT_TX_PWR_PWM; ufs_exynos_cap.rx_pwr_hs = UFS_EXYNOS_LIMIT_RX_PWR_HS; ufs_exynos_cap.tx_pwr_hs = UFS_EXYNOS_LIMIT_TX_PWR_HS; ufs_exynos_cap.hs_rate = UFS_EXYNOS_LIMIT_HS_RATE; ufs_exynos_cap.desired_working_mode = UFS_EXYNOS_LIMIT_DESIRED_MODE; ret = ufshcd_get_pwr_dev_param(&ufs_exynos_cap, dev_max_params, dev_req_params); if (ret) { pr_err("%s: failed to determine capabilities\n", __func__); goto out; } if (ufs->drv_data->pre_pwr_change) ufs->drv_data->pre_pwr_change(ufs, dev_req_params); if (ufshcd_is_hs_mode(dev_req_params)) { exynos_ufs_config_sync_pattern_mask(ufs, dev_req_params); switch (dev_req_params->hs_rate) { case PA_HS_MODE_A: case PA_HS_MODE_B: phy_calibrate(generic_phy); break; } } return 0; out: return ret; } #define PWR_MODE_STR_LEN 64 static int exynos_ufs_post_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_max, struct ufs_pa_layer_attr *pwr_req) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; int gear = max_t(u32, pwr_req->gear_rx, pwr_req->gear_tx); int lanes = max_t(u32, pwr_req->lane_rx, pwr_req->lane_tx); char pwr_str[PWR_MODE_STR_LEN] = ""; /* let default be PWM Gear 1, Lane 1 */ if (!gear) gear = 1; if (!lanes) lanes = 1; if (ufs->drv_data->post_pwr_change) ufs->drv_data->post_pwr_change(ufs, pwr_req); if ((ufshcd_is_hs_mode(pwr_req))) { switch (pwr_req->hs_rate) { case PA_HS_MODE_A: case PA_HS_MODE_B: phy_calibrate(generic_phy); break; } snprintf(pwr_str, PWR_MODE_STR_LEN, "%s series_%s G_%d L_%d", "FAST", pwr_req->hs_rate == PA_HS_MODE_A ? "A" : "B", gear, lanes); } else { snprintf(pwr_str, PWR_MODE_STR_LEN, "%s G_%d L_%d", "SLOW", gear, lanes); } dev_info(hba->dev, "Power mode changed to : %s\n", pwr_str); return 0; } static void exynos_ufs_specify_nexus_t_xfer_req(struct ufs_hba *hba, int tag, bool op) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); u32 type; type = hci_readl(ufs, HCI_UTRL_NEXUS_TYPE); if (op) hci_writel(ufs, type | (1 << tag), HCI_UTRL_NEXUS_TYPE); else hci_writel(ufs, type & ~(1 << tag), HCI_UTRL_NEXUS_TYPE); } static void exynos_ufs_specify_nexus_t_tm_req(struct ufs_hba *hba, int tag, u8 func) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); u32 type; type = hci_readl(ufs, HCI_UTMRL_NEXUS_TYPE); switch (func) { case UFS_ABORT_TASK: case UFS_QUERY_TASK: hci_writel(ufs, type | (1 << tag), HCI_UTMRL_NEXUS_TYPE); break; case UFS_ABORT_TASK_SET: case UFS_CLEAR_TASK_SET: case UFS_LOGICAL_RESET: case UFS_QUERY_TASK_SET: hci_writel(ufs, type & ~(1 << tag), HCI_UTMRL_NEXUS_TYPE); break; } } static int exynos_ufs_phy_init(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct phy *generic_phy = ufs->phy; int ret = 0; if (ufs->avail_ln_rx == 0 || ufs->avail_ln_tx == 0) { ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILRXDATALANES), &ufs->avail_ln_rx); ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILTXDATALANES), &ufs->avail_ln_tx); WARN(ufs->avail_ln_rx != ufs->avail_ln_tx, "available data lane is not equal(rx:%d, tx:%d)\n", ufs->avail_ln_rx, ufs->avail_ln_tx); } phy_set_bus_width(generic_phy, ufs->avail_ln_rx); ret = phy_init(generic_phy); if (ret) { dev_err(hba->dev, "%s: phy init failed, ret = %d\n", __func__, ret); goto out_exit_phy; } return 0; out_exit_phy: phy_exit(generic_phy); return ret; } static void exynos_ufs_config_unipro(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_CLK_PERIOD), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTRAILINGCLOCKS), ufs->drv_data->uic_attr->tx_trailingclks); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_OPTION_SUITE), ufs->drv_data->uic_attr->pa_dbg_option_suite); } static void exynos_ufs_config_intr(struct exynos_ufs *ufs, u32 errs, u8 index) { switch (index) { case UNIPRO_L1_5: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_PA_LAYER); break; case UNIPRO_L2: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DL_LAYER); break; case UNIPRO_L3: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_N_LAYER); break; case UNIPRO_L4: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_T_LAYER); break; case UNIPRO_DME: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DME_LAYER); break; } } static int exynos_ufs_pre_link(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); /* hci */ exynos_ufs_config_intr(ufs, DFES_DEF_L2_ERRS, UNIPRO_L2); exynos_ufs_config_intr(ufs, DFES_DEF_L3_ERRS, UNIPRO_L3); exynos_ufs_config_intr(ufs, DFES_DEF_L4_ERRS, UNIPRO_L4); exynos_ufs_set_unipro_pclk_div(ufs); /* unipro */ exynos_ufs_config_unipro(ufs); /* m-phy */ exynos_ufs_phy_init(ufs); exynos_ufs_config_phy_time_attr(ufs); exynos_ufs_config_phy_cap_attr(ufs); if (ufs->drv_data->pre_link) ufs->drv_data->pre_link(ufs); return 0; } static void exynos_ufs_fit_aggr_timeout(struct exynos_ufs *ufs) { u32 val; val = exynos_ufs_calc_time_cntr(ufs, IATOVAL_NSEC / CNTR_DIV_VAL); hci_writel(ufs, val & CNT_VAL_1US_MASK, HCI_1US_TO_CNT_VAL); } static int exynos_ufs_post_link(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; exynos_ufs_establish_connt(ufs); exynos_ufs_fit_aggr_timeout(ufs); hci_writel(ufs, 0xa, HCI_DATA_REORDER); hci_writel(ufs, PRDT_SET_SIZE(12), HCI_TXPRDT_ENTRY_SIZE); hci_writel(ufs, PRDT_SET_SIZE(12), HCI_RXPRDT_ENTRY_SIZE); hci_writel(ufs, (1 << hba->nutrs) - 1, HCI_UTRL_NEXUS_TYPE); hci_writel(ufs, (1 << hba->nutmrs) - 1, HCI_UTMRL_NEXUS_TYPE); hci_writel(ufs, 0xf, HCI_AXIDMA_RWDATA_BURST_LEN); if (ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB) ufshcd_dme_set(hba, UIC_ARG_MIB(T_DBG_SKIP_INIT_HIBERN8_EXIT), TRUE); if (attr->pa_granularity) { exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_GRANULARITY), attr->pa_granularity); exynos_ufs_disable_dbg_mode(hba); if (attr->pa_tactivate) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), attr->pa_tactivate); if (attr->pa_hibern8time && !(ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER)) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), attr->pa_hibern8time); } if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) { if (!attr->pa_granularity) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &attr->pa_granularity); if (!attr->pa_hibern8time) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &attr->pa_hibern8time); /* * not wait for HIBERN8 time to exit hibernation */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 0); if (attr->pa_granularity < 1 || attr->pa_granularity > 6) { /* Valid range for granularity: 1 ~ 6 */ dev_warn(hba->dev, "%s: pa_granularity %d is invalid, assuming backwards compatibility\n", __func__, attr->pa_granularity); attr->pa_granularity = 6; } } phy_calibrate(generic_phy); if (ufs->drv_data->post_link) ufs->drv_data->post_link(ufs); return 0; } static int exynos_ufs_parse_dt(struct device *dev, struct exynos_ufs *ufs) { struct device_node *np = dev->of_node; struct exynos_ufs_drv_data *drv_data = &exynos_ufs_drvs; struct exynos_ufs_uic_attr *attr; int ret = 0; while (drv_data->compatible) { if (of_device_is_compatible(np, drv_data->compatible)) { ufs->drv_data = drv_data; break; } drv_data++; } if (ufs->drv_data && ufs->drv_data->uic_attr) { attr = ufs->drv_data->uic_attr; } else { dev_err(dev, "failed to get uic attributes\n"); ret = -EINVAL; goto out; } ufs->pclk_avail_min = PCLK_AVAIL_MIN; ufs->pclk_avail_max = PCLK_AVAIL_MAX; attr->rx_adv_fine_gran_sup_en = RX_ADV_FINE_GRAN_SUP_EN; attr->rx_adv_fine_gran_step = RX_ADV_FINE_GRAN_STEP_VAL; attr->rx_adv_min_actv_time_cap = RX_ADV_MIN_ACTV_TIME_CAP; attr->pa_granularity = PA_GRANULARITY_VAL; attr->pa_tactivate = PA_TACTIVATE_VAL; attr->pa_hibern8time = PA_HIBERN8TIME_VAL; out: return ret; } static int exynos_ufs_init(struct ufs_hba *hba) { struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct exynos_ufs *ufs; struct resource *res; int ret; ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL); if (!ufs) return -ENOMEM; /* exynos-specific hci */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vs_hci"); ufs->reg_hci = devm_ioremap_resource(dev, res); if (IS_ERR(ufs->reg_hci)) { dev_err(dev, "cannot ioremap for hci vendor register\n"); return PTR_ERR(ufs->reg_hci); } /* unipro */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "unipro"); ufs->reg_unipro = devm_ioremap_resource(dev, res); if (IS_ERR(ufs->reg_unipro)) { dev_err(dev, "cannot ioremap for unipro register\n"); return PTR_ERR(ufs->reg_unipro); } /* ufs protector */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ufsp"); ufs->reg_ufsp = devm_ioremap_resource(dev, res); if (IS_ERR(ufs->reg_ufsp)) { dev_err(dev, "cannot ioremap for ufs protector register\n"); return PTR_ERR(ufs->reg_ufsp); } ret = exynos_ufs_parse_dt(dev, ufs); if (ret) { dev_err(dev, "failed to get dt info.\n"); goto out; } ufs->phy = devm_phy_get(dev, "ufs-phy"); if (IS_ERR(ufs->phy)) { ret = PTR_ERR(ufs->phy); dev_err(dev, "failed to get ufs-phy\n"); goto out; } ret = phy_power_on(ufs->phy); if (ret) goto phy_off; ufs->hba = hba; ufs->opts = ufs->drv_data->opts; ufs->rx_sel_idx = PA_MAXDATALANES; if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX) ufs->rx_sel_idx = 0; hba->priv = (void *)ufs; hba->quirks = ufs->drv_data->quirks; if (ufs->drv_data->drv_init) { ret = ufs->drv_data->drv_init(dev, ufs); if (ret) { dev_err(dev, "failed to init drv-data\n"); goto out; } } ret = exynos_ufs_get_clk_info(ufs); if (ret) goto out; exynos_ufs_specify_phy_time_attr(ufs); exynos_ufs_config_smu(ufs); return 0; phy_off: phy_power_off(ufs->phy); out: hba->priv = NULL; return ret; } static int exynos_ufs_host_reset(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); unsigned long timeout = jiffies + msecs_to_jiffies(1); u32 val; int ret = 0; exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val); hci_writel(ufs, UFS_SW_RST_MASK, HCI_SW_RST); do { if (!(hci_readl(ufs, HCI_SW_RST) & UFS_SW_RST_MASK)) goto out; } while (time_before(jiffies, timeout)); dev_err(hba->dev, "timeout host sw-reset\n"); ret = -ETIMEDOUT; out: exynos_ufs_auto_ctrl_hcc_restore(ufs, &val); return ret; } static void exynos_ufs_dev_hw_reset(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); hci_writel(ufs, 0 << 0, HCI_GPIO_OUT); udelay(5); hci_writel(ufs, 1 << 0, HCI_GPIO_OUT); } static void exynos_ufs_pre_hibern8(struct ufs_hba *hba, u8 enter) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; if (!enter) { if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_disable_auto_ctrl_hcc(ufs); exynos_ufs_ungate_clks(ufs); if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) { const unsigned int granularity_tbl[] = { 1, 4, 8, 16, 32, 100 }; int h8_time = attr->pa_hibern8time * granularity_tbl[attr->pa_granularity - 1]; unsigned long us; s64 delta; do { delta = h8_time - ktime_us_delta(ktime_get(), ufs->entry_hibern8_t); if (delta <= 0) break; us = min_t(s64, delta, USEC_PER_MSEC); if (us >= 10) usleep_range(us, us + 10); } while (1); } } } static void exynos_ufs_post_hibern8(struct ufs_hba *hba, u8 enter) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!enter) { u32 cur_mode = 0; u32 pwrmode; if (ufshcd_is_hs_mode(&ufs->dev_req_params)) pwrmode = FAST_MODE; else pwrmode = SLOW_MODE; ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &cur_mode); if (cur_mode != (pwrmode << 4 | pwrmode)) { dev_warn(hba->dev, "%s: power mode change\n", __func__); hba->pwr_info.pwr_rx = (cur_mode >> 4) & 0xf; hba->pwr_info.pwr_tx = cur_mode & 0xf; ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); } if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB)) exynos_ufs_establish_connt(ufs); } else { ufs->entry_hibern8_t = ktime_get(); exynos_ufs_gate_clks(ufs); if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_enable_auto_ctrl_hcc(ufs); } } static int exynos_ufs_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); int ret = 0; switch (status) { case PRE_CHANGE: ret = exynos_ufs_host_reset(hba); if (ret) return ret; exynos_ufs_dev_hw_reset(hba); break; case POST_CHANGE: exynos_ufs_calc_pwm_clk_div(ufs); if (!(ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)) exynos_ufs_enable_auto_ctrl_hcc(ufs); break; } return ret; } static int exynos_ufs_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { int ret = 0; switch (status) { case PRE_CHANGE: ret = exynos_ufs_pre_link(hba); break; case POST_CHANGE: ret = exynos_ufs_post_link(hba); break; } return ret; } static int exynos_ufs_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { int ret = 0; switch (status) { case PRE_CHANGE: ret = exynos_ufs_pre_pwr_mode(hba, dev_max_params, dev_req_params); break; case POST_CHANGE: ret = exynos_ufs_post_pwr_mode(hba, NULL, dev_req_params); break; } return ret; } static void exynos_ufs_hibern8_notify(struct ufs_hba *hba, enum uic_cmd_dme enter, enum ufs_notify_change_status notify) { switch ((u8)notify) { case PRE_CHANGE: exynos_ufs_pre_hibern8(hba, enter); break; case POST_CHANGE: exynos_ufs_post_hibern8(hba, enter); break; } } static int exynos_ufs_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!ufshcd_is_link_active(hba)) phy_power_off(ufs->phy); return 0; } static int exynos_ufs_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!ufshcd_is_link_active(hba)) phy_power_on(ufs->phy); exynos_ufs_config_smu(ufs); return 0; } static struct ufs_hba_variant_ops ufs_hba_exynos_ops = { .name = "exynos_ufs", .init = exynos_ufs_init, .hce_enable_notify = exynos_ufs_hce_enable_notify, .link_startup_notify = exynos_ufs_link_startup_notify, .pwr_change_notify = exynos_ufs_pwr_change_notify, .setup_xfer_req = exynos_ufs_specify_nexus_t_xfer_req, .setup_task_mgmt = exynos_ufs_specify_nexus_t_tm_req, .hibern8_notify = exynos_ufs_hibern8_notify, .suspend = exynos_ufs_suspend, .resume = exynos_ufs_resume, }; static int exynos_ufs_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; err = ufshcd_pltfrm_init(pdev, &ufs_hba_exynos_ops); if (err) dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err); return err; } static int exynos_ufs_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); return 0; } struct exynos_ufs_drv_data exynos_ufs_drvs = { .compatible = "samsung,exynos7-ufs", .uic_attr = &exynos7_uic_attr, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR | UFSHCI_QUIRK_BROKEN_HCE | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL, .opts = EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL | EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL | EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX | EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB | EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER, .drv_init = exynos7_ufs_drv_init, .pre_link = exynos7_ufs_pre_link, .post_link = exynos7_ufs_post_link, .pre_pwr_change = exynos7_ufs_pre_pwr_change, .post_pwr_change = exynos7_ufs_post_pwr_change, }; static const struct of_device_id exynos_ufs_of_match[] = { { .compatible = "samsung,exynos7-ufs", .data = &exynos_ufs_drvs }, {}, }; static const struct dev_pm_ops exynos_ufs_pm_ops = { .suspend = ufshcd_pltfrm_suspend, .resume = ufshcd_pltfrm_resume, .runtime_suspend = ufshcd_pltfrm_runtime_suspend, .runtime_resume = ufshcd_pltfrm_runtime_resume, .runtime_idle = ufshcd_pltfrm_runtime_idle, }; static struct platform_driver exynos_ufs_pltform = { .probe = exynos_ufs_probe, .remove = exynos_ufs_remove, .shutdown = ufshcd_pltfrm_shutdown, .driver = { .name = "exynos-ufshc", .pm = &exynos_ufs_pm_ops, .of_match_table = of_match_ptr(exynos_ufs_of_match), }, }; module_platform_driver(exynos_ufs_pltform); MODULE_AUTHOR("Alim Akhtar "); MODULE_AUTHOR("Seungwon Jeon "); MODULE_DESCRIPTION("Exynos UFS HCI Driver"); MODULE_LICENSE("GPL v2");