/* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. * * Released under the GPL v2. (and only v2, not any later version) */ #include "util.h" #include #include #include "cpumap.h" #include "thread_map.h" #include "target.h" #include "evlist.h" #include "evsel.h" #include "debug.h" #include #include "parse-events.h" #include "parse-options.h" #include #include #include #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus, struct thread_map *threads) { int i; for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i) INIT_HLIST_HEAD(&evlist->heads[i]); INIT_LIST_HEAD(&evlist->entries); perf_evlist__set_maps(evlist, cpus, threads); evlist->workload.pid = -1; } struct perf_evlist *perf_evlist__new(void) { struct perf_evlist *evlist = zalloc(sizeof(*evlist)); if (evlist != NULL) perf_evlist__init(evlist, NULL, NULL); return evlist; } struct perf_evlist *perf_evlist__new_default(void) { struct perf_evlist *evlist = perf_evlist__new(); if (evlist && perf_evlist__add_default(evlist)) { perf_evlist__delete(evlist); evlist = NULL; } return evlist; } /** * perf_evlist__set_id_pos - set the positions of event ids. * @evlist: selected event list * * Events with compatible sample types all have the same id_pos * and is_pos. For convenience, put a copy on evlist. */ void perf_evlist__set_id_pos(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); evlist->id_pos = first->id_pos; evlist->is_pos = first->is_pos; } static void perf_evlist__update_id_pos(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) perf_evsel__calc_id_pos(evsel); perf_evlist__set_id_pos(evlist); } static void perf_evlist__purge(struct perf_evlist *evlist) { struct perf_evsel *pos, *n; evlist__for_each_safe(evlist, n, pos) { list_del_init(&pos->node); perf_evsel__delete(pos); } evlist->nr_entries = 0; } void perf_evlist__exit(struct perf_evlist *evlist) { zfree(&evlist->mmap); zfree(&evlist->pollfd); } void perf_evlist__delete(struct perf_evlist *evlist) { perf_evlist__munmap(evlist); perf_evlist__close(evlist); cpu_map__delete(evlist->cpus); thread_map__delete(evlist->threads); evlist->cpus = NULL; evlist->threads = NULL; perf_evlist__purge(evlist); perf_evlist__exit(evlist); free(evlist); } void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry) { list_add_tail(&entry->node, &evlist->entries); entry->idx = evlist->nr_entries; if (!evlist->nr_entries++) perf_evlist__set_id_pos(evlist); } void perf_evlist__splice_list_tail(struct perf_evlist *evlist, struct list_head *list, int nr_entries) { bool set_id_pos = !evlist->nr_entries; list_splice_tail(list, &evlist->entries); evlist->nr_entries += nr_entries; if (set_id_pos) perf_evlist__set_id_pos(evlist); } void __perf_evlist__set_leader(struct list_head *list) { struct perf_evsel *evsel, *leader; leader = list_entry(list->next, struct perf_evsel, node); evsel = list_entry(list->prev, struct perf_evsel, node); leader->nr_members = evsel->idx - leader->idx + 1; __evlist__for_each(list, evsel) { evsel->leader = leader; } } void perf_evlist__set_leader(struct perf_evlist *evlist) { if (evlist->nr_entries) { evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0; __perf_evlist__set_leader(&evlist->entries); } } int perf_evlist__add_default(struct perf_evlist *evlist) { struct perf_event_attr attr = { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, }; struct perf_evsel *evsel; event_attr_init(&attr); evsel = perf_evsel__new(&attr); if (evsel == NULL) goto error; /* use strdup() because free(evsel) assumes name is allocated */ evsel->name = strdup("cycles"); if (!evsel->name) goto error_free; perf_evlist__add(evlist, evsel); return 0; error_free: perf_evsel__delete(evsel); error: return -ENOMEM; } static int perf_evlist__add_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { struct perf_evsel *evsel, *n; LIST_HEAD(head); size_t i; for (i = 0; i < nr_attrs; i++) { evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i); if (evsel == NULL) goto out_delete_partial_list; list_add_tail(&evsel->node, &head); } perf_evlist__splice_list_tail(evlist, &head, nr_attrs); return 0; out_delete_partial_list: __evlist__for_each_safe(&head, n, evsel) perf_evsel__delete(evsel); return -1; } int __perf_evlist__add_default_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { size_t i; for (i = 0; i < nr_attrs; i++) event_attr_init(attrs + i); return perf_evlist__add_attrs(evlist, attrs, nr_attrs); } struct perf_evsel * perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) { if (evsel->attr.type == PERF_TYPE_TRACEPOINT && (int)evsel->attr.config == id) return evsel; } return NULL; } struct perf_evsel * perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist, const char *name) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) { if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) && (strcmp(evsel->name, name) == 0)) return evsel; } return NULL; } int perf_evlist__add_newtp(struct perf_evlist *evlist, const char *sys, const char *name, void *handler) { struct perf_evsel *evsel = perf_evsel__newtp(sys, name); if (evsel == NULL) return -1; evsel->handler = handler; perf_evlist__add(evlist, evsel); return 0; } static int perf_evlist__nr_threads(struct perf_evlist *evlist, struct perf_evsel *evsel) { if (evsel->system_wide) return 1; else return thread_map__nr(evlist->threads); } void perf_evlist__disable(struct perf_evlist *evlist) { int cpu, thread; struct perf_evsel *pos; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads; for (cpu = 0; cpu < nr_cpus; cpu++) { evlist__for_each(evlist, pos) { if (!perf_evsel__is_group_leader(pos) || !pos->fd) continue; nr_threads = perf_evlist__nr_threads(evlist, pos); for (thread = 0; thread < nr_threads; thread++) ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_DISABLE, 0); } } } void perf_evlist__enable(struct perf_evlist *evlist) { int cpu, thread; struct perf_evsel *pos; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads; for (cpu = 0; cpu < nr_cpus; cpu++) { evlist__for_each(evlist, pos) { if (!perf_evsel__is_group_leader(pos) || !pos->fd) continue; nr_threads = perf_evlist__nr_threads(evlist, pos); for (thread = 0; thread < nr_threads; thread++) ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); } } } int perf_evlist__disable_event(struct perf_evlist *evlist, struct perf_evsel *evsel) { int cpu, thread, err; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = perf_evlist__nr_threads(evlist, evsel); if (!evsel->fd) return 0; for (cpu = 0; cpu < nr_cpus; cpu++) { for (thread = 0; thread < nr_threads; thread++) { err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_DISABLE, 0); if (err) return err; } } return 0; } int perf_evlist__enable_event(struct perf_evlist *evlist, struct perf_evsel *evsel) { int cpu, thread, err; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = perf_evlist__nr_threads(evlist, evsel); if (!evsel->fd) return -EINVAL; for (cpu = 0; cpu < nr_cpus; cpu++) { for (thread = 0; thread < nr_threads; thread++) { err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); if (err) return err; } } return 0; } static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist) { int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); int nfds = 0; struct perf_evsel *evsel; list_for_each_entry(evsel, &evlist->entries, node) { if (evsel->system_wide) nfds += nr_cpus; else nfds += nr_cpus * nr_threads; } evlist->pollfd = malloc(sizeof(struct pollfd) * nfds); return evlist->pollfd != NULL ? 0 : -ENOMEM; } void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd) { fcntl(fd, F_SETFL, O_NONBLOCK); evlist->pollfd[evlist->nr_fds].fd = fd; evlist->pollfd[evlist->nr_fds].events = POLLIN; evlist->nr_fds++; } static void perf_evlist__id_hash(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { int hash; struct perf_sample_id *sid = SID(evsel, cpu, thread); sid->id = id; sid->evsel = evsel; hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS); hlist_add_head(&sid->node, &evlist->heads[hash]); } void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { perf_evlist__id_hash(evlist, evsel, cpu, thread, id); evsel->id[evsel->ids++] = id; } static int perf_evlist__id_add_fd(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, int fd) { u64 read_data[4] = { 0, }; int id_idx = 1; /* The first entry is the counter value */ u64 id; int ret; ret = ioctl(fd, PERF_EVENT_IOC_ID, &id); if (!ret) goto add; if (errno != ENOTTY) return -1; /* Legacy way to get event id.. All hail to old kernels! */ /* * This way does not work with group format read, so bail * out in that case. */ if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP) return -1; if (!(evsel->attr.read_format & PERF_FORMAT_ID) || read(fd, &read_data, sizeof(read_data)) == -1) return -1; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++id_idx; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++id_idx; id = read_data[id_idx]; add: perf_evlist__id_add(evlist, evsel, cpu, thread, id); return 0; } struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id) { struct hlist_head *head; struct perf_sample_id *sid; int hash; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->heads[hash]; hlist_for_each_entry(sid, head, node) if (sid->id == id) return sid; return NULL; } struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id) { struct perf_sample_id *sid; if (evlist->nr_entries == 1) return perf_evlist__first(evlist); sid = perf_evlist__id2sid(evlist, id); if (sid) return sid->evsel; if (!perf_evlist__sample_id_all(evlist)) return perf_evlist__first(evlist); return NULL; } static int perf_evlist__event2id(struct perf_evlist *evlist, union perf_event *event, u64 *id) { const u64 *array = event->sample.array; ssize_t n; n = (event->header.size - sizeof(event->header)) >> 3; if (event->header.type == PERF_RECORD_SAMPLE) { if (evlist->id_pos >= n) return -1; *id = array[evlist->id_pos]; } else { if (evlist->is_pos > n) return -1; n -= evlist->is_pos; *id = array[n]; } return 0; } static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist, union perf_event *event) { struct perf_evsel *first = perf_evlist__first(evlist); struct hlist_head *head; struct perf_sample_id *sid; int hash; u64 id; if (evlist->nr_entries == 1) return first; if (!first->attr.sample_id_all && event->header.type != PERF_RECORD_SAMPLE) return first; if (perf_evlist__event2id(evlist, event, &id)) return NULL; /* Synthesized events have an id of zero */ if (!id) return first; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->heads[hash]; hlist_for_each_entry(sid, head, node) { if (sid->id == id) return sid->evsel; } return NULL; } union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; unsigned int head = perf_mmap__read_head(md); unsigned int old = md->prev; unsigned char *data = md->base + page_size; union perf_event *event = NULL; if (evlist->overwrite) { /* * If we're further behind than half the buffer, there's a chance * the writer will bite our tail and mess up the samples under us. * * If we somehow ended up ahead of the head, we got messed up. * * In either case, truncate and restart at head. */ int diff = head - old; if (diff > md->mask / 2 || diff < 0) { fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); /* * head points to a known good entry, start there. */ old = head; } } if (old != head) { size_t size; event = (union perf_event *)&data[old & md->mask]; size = event->header.size; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((old & md->mask) + size != ((old + size) & md->mask)) { unsigned int offset = old; unsigned int len = min(sizeof(*event), size), cpy; void *dst = md->event_copy; do { cpy = min(md->mask + 1 - (offset & md->mask), len); memcpy(dst, &data[offset & md->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = (union perf_event *) md->event_copy; } old += size; } md->prev = old; return event; } void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx) { if (!evlist->overwrite) { struct perf_mmap *md = &evlist->mmap[idx]; unsigned int old = md->prev; perf_mmap__write_tail(md, old); } } static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx) { if (evlist->mmap[idx].base != NULL) { munmap(evlist->mmap[idx].base, evlist->mmap_len); evlist->mmap[idx].base = NULL; } } void perf_evlist__munmap(struct perf_evlist *evlist) { int i; if (evlist->mmap == NULL) return; for (i = 0; i < evlist->nr_mmaps; i++) __perf_evlist__munmap(evlist, i); zfree(&evlist->mmap); } static int perf_evlist__alloc_mmap(struct perf_evlist *evlist) { evlist->nr_mmaps = cpu_map__nr(evlist->cpus); if (cpu_map__empty(evlist->cpus)) evlist->nr_mmaps = thread_map__nr(evlist->threads); evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap)); return evlist->mmap != NULL ? 0 : -ENOMEM; } struct mmap_params { int prot; int mask; }; static int __perf_evlist__mmap(struct perf_evlist *evlist, int idx, struct mmap_params *mp, int fd) { evlist->mmap[idx].prev = 0; evlist->mmap[idx].mask = mp->mask; evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, mp->prot, MAP_SHARED, fd, 0); if (evlist->mmap[idx].base == MAP_FAILED) { pr_debug2("failed to mmap perf event ring buffer, error %d\n", errno); evlist->mmap[idx].base = NULL; return -1; } perf_evlist__add_pollfd(evlist, fd); return 0; } static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx, struct mmap_params *mp, int cpu, int thread, int *output) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) { int fd; if (evsel->system_wide && thread) continue; fd = FD(evsel, cpu, thread); if (*output == -1) { *output = fd; if (__perf_evlist__mmap(evlist, idx, mp, *output) < 0) return -1; } else { if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0) return -1; } if ((evsel->attr.read_format & PERF_FORMAT_ID) && perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0) return -1; } return 0; } static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, struct mmap_params *mp) { int cpu, thread; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); pr_debug2("perf event ring buffer mmapped per cpu\n"); for (cpu = 0; cpu < nr_cpus; cpu++) { int output = -1; for (thread = 0; thread < nr_threads; thread++) { if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu, thread, &output)) goto out_unmap; } } return 0; out_unmap: for (cpu = 0; cpu < nr_cpus; cpu++) __perf_evlist__munmap(evlist, cpu); return -1; } static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, struct mmap_params *mp) { int thread; int nr_threads = thread_map__nr(evlist->threads); pr_debug2("perf event ring buffer mmapped per thread\n"); for (thread = 0; thread < nr_threads; thread++) { int output = -1; if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread, &output)) goto out_unmap; } return 0; out_unmap: for (thread = 0; thread < nr_threads; thread++) __perf_evlist__munmap(evlist, thread); return -1; } static size_t perf_evlist__mmap_size(unsigned long pages) { /* 512 kiB: default amount of unprivileged mlocked memory */ if (pages == UINT_MAX) pages = (512 * 1024) / page_size; else if (!is_power_of_2(pages)) return 0; return (pages + 1) * page_size; } static long parse_pages_arg(const char *str, unsigned long min, unsigned long max) { unsigned long pages, val; static struct parse_tag tags[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; if (str == NULL) return -EINVAL; val = parse_tag_value(str, tags); if (val != (unsigned long) -1) { /* we got file size value */ pages = PERF_ALIGN(val, page_size) / page_size; } else { /* we got pages count value */ char *eptr; pages = strtoul(str, &eptr, 10); if (*eptr != '\0') return -EINVAL; } if (pages == 0 && min == 0) { /* leave number of pages at 0 */ } else if (!is_power_of_2(pages)) { /* round pages up to next power of 2 */ pages = next_pow2_l(pages); if (!pages) return -EINVAL; pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n", pages * page_size, pages); } if (pages > max) return -EINVAL; return pages; } int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) { unsigned int *mmap_pages = opt->value; unsigned long max = UINT_MAX; long pages; if (max > SIZE_MAX / page_size) max = SIZE_MAX / page_size; pages = parse_pages_arg(str, 1, max); if (pages < 0) { pr_err("Invalid argument for --mmap_pages/-m\n"); return -1; } *mmap_pages = pages; return 0; } /** * perf_evlist__mmap - Create mmaps to receive events. * @evlist: list of events * @pages: map length in pages * @overwrite: overwrite older events? * * If @overwrite is %false the user needs to signal event consumption using * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this * automatically. * * Return: %0 on success, negative error code otherwise. */ int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages, bool overwrite) { struct perf_evsel *evsel; const struct cpu_map *cpus = evlist->cpus; const struct thread_map *threads = evlist->threads; struct mmap_params mp = { .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), }; if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0) return -ENOMEM; if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0) return -ENOMEM; evlist->overwrite = overwrite; evlist->mmap_len = perf_evlist__mmap_size(pages); pr_debug("mmap size %zuB\n", evlist->mmap_len); mp.mask = evlist->mmap_len - page_size - 1; evlist__for_each(evlist, evsel) { if ((evsel->attr.read_format & PERF_FORMAT_ID) && evsel->sample_id == NULL && perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0) return -ENOMEM; } if (cpu_map__empty(cpus)) return perf_evlist__mmap_per_thread(evlist, &mp); return perf_evlist__mmap_per_cpu(evlist, &mp); } int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target) { evlist->threads = thread_map__new_str(target->pid, target->tid, target->uid); if (evlist->threads == NULL) return -1; if (target__uses_dummy_map(target)) evlist->cpus = cpu_map__dummy_new(); else evlist->cpus = cpu_map__new(target->cpu_list); if (evlist->cpus == NULL) goto out_delete_threads; return 0; out_delete_threads: thread_map__delete(evlist->threads); return -1; } int perf_evlist__apply_filters(struct perf_evlist *evlist) { struct perf_evsel *evsel; int err = 0; const int ncpus = cpu_map__nr(evlist->cpus), nthreads = thread_map__nr(evlist->threads); evlist__for_each(evlist, evsel) { if (evsel->filter == NULL) continue; err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter); if (err) break; } return err; } int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter) { struct perf_evsel *evsel; int err = 0; const int ncpus = cpu_map__nr(evlist->cpus), nthreads = thread_map__nr(evlist->threads); evlist__for_each(evlist, evsel) { err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter); if (err) break; } return err; } bool perf_evlist__valid_sample_type(struct perf_evlist *evlist) { struct perf_evsel *pos; if (evlist->nr_entries == 1) return true; if (evlist->id_pos < 0 || evlist->is_pos < 0) return false; evlist__for_each(evlist, pos) { if (pos->id_pos != evlist->id_pos || pos->is_pos != evlist->is_pos) return false; } return true; } u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist) { struct perf_evsel *evsel; if (evlist->combined_sample_type) return evlist->combined_sample_type; evlist__for_each(evlist, evsel) evlist->combined_sample_type |= evsel->attr.sample_type; return evlist->combined_sample_type; } u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist) { evlist->combined_sample_type = 0; return __perf_evlist__combined_sample_type(evlist); } bool perf_evlist__valid_read_format(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; u64 read_format = first->attr.read_format; u64 sample_type = first->attr.sample_type; evlist__for_each(evlist, pos) { if (read_format != pos->attr.read_format) return false; } /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */ if ((sample_type & PERF_SAMPLE_READ) && !(read_format & PERF_FORMAT_ID)) { return false; } return true; } u64 perf_evlist__read_format(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.read_format; } u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); struct perf_sample *data; u64 sample_type; u16 size = 0; if (!first->attr.sample_id_all) goto out; sample_type = first->attr.sample_type; if (sample_type & PERF_SAMPLE_TID) size += sizeof(data->tid) * 2; if (sample_type & PERF_SAMPLE_TIME) size += sizeof(data->time); if (sample_type & PERF_SAMPLE_ID) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) size += sizeof(data->stream_id); if (sample_type & PERF_SAMPLE_CPU) size += sizeof(data->cpu) * 2; if (sample_type & PERF_SAMPLE_IDENTIFIER) size += sizeof(data->id); out: return size; } bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; evlist__for_each_continue(evlist, pos) { if (first->attr.sample_id_all != pos->attr.sample_id_all) return false; } return true; } bool perf_evlist__sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.sample_id_all; } void perf_evlist__set_selected(struct perf_evlist *evlist, struct perf_evsel *evsel) { evlist->selected = evsel; } void perf_evlist__close(struct perf_evlist *evlist) { struct perf_evsel *evsel; int ncpus = cpu_map__nr(evlist->cpus); int nthreads = thread_map__nr(evlist->threads); int n; evlist__for_each_reverse(evlist, evsel) { n = evsel->cpus ? evsel->cpus->nr : ncpus; perf_evsel__close(evsel, n, nthreads); } } int perf_evlist__open(struct perf_evlist *evlist) { struct perf_evsel *evsel; int err; perf_evlist__update_id_pos(evlist); evlist__for_each(evlist, evsel) { err = perf_evsel__open(evsel, evlist->cpus, evlist->threads); if (err < 0) goto out_err; } return 0; out_err: perf_evlist__close(evlist); errno = -err; return err; } int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target, const char *argv[], bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) { int child_ready_pipe[2], go_pipe[2]; char bf; if (pipe(child_ready_pipe) < 0) { perror("failed to create 'ready' pipe"); return -1; } if (pipe(go_pipe) < 0) { perror("failed to create 'go' pipe"); goto out_close_ready_pipe; } evlist->workload.pid = fork(); if (evlist->workload.pid < 0) { perror("failed to fork"); goto out_close_pipes; } if (!evlist->workload.pid) { int ret; if (pipe_output) dup2(2, 1); signal(SIGTERM, SIG_DFL); close(child_ready_pipe[0]); close(go_pipe[1]); fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); /* * Tell the parent we're ready to go */ close(child_ready_pipe[1]); /* * Wait until the parent tells us to go. */ ret = read(go_pipe[0], &bf, 1); /* * The parent will ask for the execvp() to be performed by * writing exactly one byte, in workload.cork_fd, usually via * perf_evlist__start_workload(). * * For cancelling the workload without actuallin running it, * the parent will just close workload.cork_fd, without writing * anything, i.e. read will return zero and we just exit() * here. */ if (ret != 1) { if (ret == -1) perror("unable to read pipe"); exit(ret); } execvp(argv[0], (char **)argv); if (exec_error) { union sigval val; val.sival_int = errno; if (sigqueue(getppid(), SIGUSR1, val)) perror(argv[0]); } else perror(argv[0]); exit(-1); } if (exec_error) { struct sigaction act = { .sa_flags = SA_SIGINFO, .sa_sigaction = exec_error, }; sigaction(SIGUSR1, &act, NULL); } if (target__none(target)) evlist->threads->map[0] = evlist->workload.pid; close(child_ready_pipe[1]); close(go_pipe[0]); /* * wait for child to settle */ if (read(child_ready_pipe[0], &bf, 1) == -1) { perror("unable to read pipe"); goto out_close_pipes; } fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); evlist->workload.cork_fd = go_pipe[1]; close(child_ready_pipe[0]); return 0; out_close_pipes: close(go_pipe[0]); close(go_pipe[1]); out_close_ready_pipe: close(child_ready_pipe[0]); close(child_ready_pipe[1]); return -1; } int perf_evlist__start_workload(struct perf_evlist *evlist) { if (evlist->workload.cork_fd > 0) { char bf = 0; int ret; /* * Remove the cork, let it rip! */ ret = write(evlist->workload.cork_fd, &bf, 1); if (ret < 0) perror("enable to write to pipe"); close(evlist->workload.cork_fd); return ret; } return 0; } int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event, struct perf_sample *sample) { struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event); if (!evsel) return -EFAULT; return perf_evsel__parse_sample(evsel, event, sample); } size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp) { struct perf_evsel *evsel; size_t printed = 0; evlist__for_each(evlist, evsel) { printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "", perf_evsel__name(evsel)); } return printed + fprintf(fp, "\n"); } int perf_evlist__strerror_tp(struct perf_evlist *evlist __maybe_unused, int err, char *buf, size_t size) { char sbuf[128]; switch (err) { case ENOENT: scnprintf(buf, size, "%s", "Error:\tUnable to find debugfs\n" "Hint:\tWas your kernel was compiled with debugfs support?\n" "Hint:\tIs the debugfs filesystem mounted?\n" "Hint:\tTry 'sudo mount -t debugfs nodev /sys/kernel/debug'"); break; case EACCES: scnprintf(buf, size, "Error:\tNo permissions to read %s/tracing/events/raw_syscalls\n" "Hint:\tTry 'sudo mount -o remount,mode=755 %s'\n", debugfs_mountpoint, debugfs_mountpoint); break; default: scnprintf(buf, size, "%s", strerror_r(err, sbuf, sizeof(sbuf))); break; } return 0; } int perf_evlist__strerror_open(struct perf_evlist *evlist __maybe_unused, int err, char *buf, size_t size) { int printed, value; char sbuf[128], *emsg = strerror_r(err, sbuf, sizeof(sbuf)); switch (err) { case EACCES: case EPERM: printed = scnprintf(buf, size, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); value = perf_event_paranoid(); printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); if (value >= 2) { printed += scnprintf(buf + printed, size - printed, "For your workloads it needs to be <= 1\nHint:\t"); } printed += scnprintf(buf + printed, size - printed, "For system wide tracing it needs to be set to -1.\n"); printed += scnprintf(buf + printed, size - printed, "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" "Hint:\tThe current value is %d.", value); break; default: scnprintf(buf, size, "%s", emsg); break; } return 0; } void perf_evlist__to_front(struct perf_evlist *evlist, struct perf_evsel *move_evsel) { struct perf_evsel *evsel, *n; LIST_HEAD(move); if (move_evsel == perf_evlist__first(evlist)) return; evlist__for_each_safe(evlist, n, evsel) { if (evsel->leader == move_evsel->leader) list_move_tail(&evsel->node, &move); } list_splice(&move, &evlist->entries); }