/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include #include #include #include "iwl-drv.h" #include "iwl-modparams.h" #include "iwl-nvm-parse.h" /* NVM offsets (in words) definitions */ enum wkp_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ HW_ADDR = 0x15, /* NVM SW-Section offset (in words) definitions */ NVM_SW_SECTION = 0x1C0, NVM_VERSION = 0, RADIO_CFG = 1, SKU = 2, N_HW_ADDRS = 3, NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, /* NVM calibration section offset (in words) definitions */ NVM_CALIB_SECTION = 0x2B8, XTAL_CALIB = 0x316 - NVM_CALIB_SECTION }; enum family_8000_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ HW_ADDR0_WFPM_FAMILY_8000 = 0x12, HW_ADDR1_WFPM_FAMILY_8000 = 0x16, HW_ADDR0_PCIE_FAMILY_8000 = 0x8A, HW_ADDR1_PCIE_FAMILY_8000 = 0x8E, MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1, /* NVM SW-Section offset (in words) definitions */ NVM_SW_SECTION_FAMILY_8000 = 0x1C0, NVM_VERSION_FAMILY_8000 = 0, RADIO_CFG_FAMILY_8000 = 2, SKU_FAMILY_8000 = 4, N_HW_ADDRS_FAMILY_8000 = 5, /* NVM REGULATORY -Section offset (in words) definitions */ NVM_CHANNELS_FAMILY_8000 = 0, /* NVM calibration section offset (in words) definitions */ NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8, XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000 }; /* SKU Capabilities (actual values from NVM definition) */ enum nvm_sku_bits { NVM_SKU_CAP_BAND_24GHZ = BIT(0), NVM_SKU_CAP_BAND_52GHZ = BIT(1), NVM_SKU_CAP_11N_ENABLE = BIT(2), NVM_SKU_CAP_11AC_ENABLE = BIT(3), }; /* * These are the channel numbers in the order that they are stored in the NVM */ static const u8 iwl_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44 , 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; static const u8 iwl_nvm_channels_family_8000[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000) #define NUM_2GHZ_CHANNELS 14 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14 #define FIRST_2GHZ_HT_MINUS 5 #define LAST_2GHZ_HT_PLUS 9 #define LAST_5GHZ_HT 161 /* rate data (static) */ static struct ieee80211_rate iwl_cfg80211_rates[] = { { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, }; #define RATES_24_OFFS 0 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) #define RATES_52_OFFS 4 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) /** * enum iwl_nvm_channel_flags - channel flags in NVM * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo * @NVM_CHANNEL_IBSS: usable as an IBSS channel * @NVM_CHANNEL_ACTIVE: active scanning allowed * @NVM_CHANNEL_RADAR: radar detection required * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS * on same channel on 2.4 or same UNII band on 5.2 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) */ enum iwl_nvm_channel_flags { NVM_CHANNEL_VALID = BIT(0), NVM_CHANNEL_IBSS = BIT(1), NVM_CHANNEL_ACTIVE = BIT(3), NVM_CHANNEL_RADAR = BIT(4), NVM_CHANNEL_INDOOR_ONLY = BIT(5), NVM_CHANNEL_GO_CONCURRENT = BIT(6), NVM_CHANNEL_WIDE = BIT(8), NVM_CHANNEL_40MHZ = BIT(9), NVM_CHANNEL_80MHZ = BIT(10), NVM_CHANNEL_160MHZ = BIT(11), }; #define CHECK_AND_PRINT_I(x) \ ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, u16 nvm_flags) { u32 flags = IEEE80211_CHAN_NO_HT40; if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { if (ch_num <= LAST_2GHZ_HT_PLUS) flags &= ~IEEE80211_CHAN_NO_HT40PLUS; if (ch_num >= FIRST_2GHZ_HT_MINUS) flags &= ~IEEE80211_CHAN_NO_HT40MINUS; } else if (ch_num <= LAST_5GHZ_HT && (nvm_flags & NVM_CHANNEL_40MHZ)) { if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) flags &= ~IEEE80211_CHAN_NO_HT40PLUS; else flags &= ~IEEE80211_CHAN_NO_HT40MINUS; } if (!(nvm_flags & NVM_CHANNEL_80MHZ)) flags |= IEEE80211_CHAN_NO_80MHZ; if (!(nvm_flags & NVM_CHANNEL_160MHZ)) flags |= IEEE80211_CHAN_NO_160MHZ; if (!(nvm_flags & NVM_CHANNEL_IBSS)) flags |= IEEE80211_CHAN_NO_IR; if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) flags |= IEEE80211_CHAN_NO_IR; if (nvm_flags & NVM_CHANNEL_RADAR) flags |= IEEE80211_CHAN_RADAR; if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) flags |= IEEE80211_CHAN_INDOOR_ONLY; /* Set the GO concurrent flag only in case that NO_IR is set. * Otherwise it is meaningless */ if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & IEEE80211_CHAN_NO_IR)) flags |= IEEE80211_CHAN_GO_CONCURRENT; return flags; } static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __le16 * const nvm_ch_flags, bool lar_supported) { int ch_idx; int n_channels = 0; struct ieee80211_channel *channel; u16 ch_flags; bool is_5ghz; int num_of_ch, num_2ghz_channels; const u8 *nvm_chan; if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { num_of_ch = IWL_NUM_CHANNELS; nvm_chan = &iwl_nvm_channels[0]; num_2ghz_channels = NUM_2GHZ_CHANNELS; } else { num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000; nvm_chan = &iwl_nvm_channels_family_8000[0]; num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000; } for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); if (ch_idx >= num_2ghz_channels && !data->sku_cap_band_52GHz_enable) ch_flags &= ~NVM_CHANNEL_VALID; if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { IWL_DEBUG_EEPROM(dev, "Ch. %d Flags %x [%sGHz] - No traffic\n", nvm_chan[ch_idx], ch_flags, (ch_idx >= num_2ghz_channels) ? "5.2" : "2.4"); continue; } channel = &data->channels[n_channels]; n_channels++; channel->hw_value = nvm_chan[ch_idx]; channel->band = (ch_idx < num_2ghz_channels) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; channel->center_freq = ieee80211_channel_to_frequency( channel->hw_value, channel->band); /* Initialize regulatory-based run-time data */ /* * Default value - highest tx power value. max_power * is not used in mvm, and is used for backwards compatibility */ channel->max_power = IWL_DEFAULT_MAX_TX_POWER; is_5ghz = channel->band == IEEE80211_BAND_5GHZ; /* don't put limitations in case we're using LAR */ if (!lar_supported) channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], ch_idx, is_5ghz, ch_flags); else channel->flags = 0; IWL_DEBUG_EEPROM(dev, "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n", channel->hw_value, is_5ghz ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(INDOOR_ONLY), CHECK_AND_PRINT_I(GO_CONCURRENT), ch_flags, channel->max_power, ((ch_flags & NVM_CHANNEL_IBSS) && !(ch_flags & NVM_CHANNEL_RADAR)) ? "" : "not "); } return n_channels; } static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, struct iwl_nvm_data *data, struct ieee80211_sta_vht_cap *vht_cap, u8 tx_chains, u8 rx_chains) { int num_rx_ants = num_of_ant(rx_chains); int num_tx_ants = num_of_ant(tx_chains); unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: IEEE80211_VHT_MAX_AMPDU_1024K); vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | max_ampdu_exponent << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; if (cfg->ht_params->ldpc) vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; if (num_tx_ants > 1) vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; else vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; if (iwlwifi_mod_params.amsdu_size_8K) vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; /* this works because NOT_SUPPORTED == 3 */ vht_cap->vht_mcs.rx_mcs_map |= cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); } vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; } static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __le16 *ch_section, bool enable_vht, u8 tx_chains, u8 rx_chains, bool lar_supported) { int n_channels; int n_used = 0; struct ieee80211_supported_band *sband; if (cfg->device_family != IWL_DEVICE_FAMILY_8000) n_channels = iwl_init_channel_map( dev, cfg, data, &ch_section[NVM_CHANNELS], lar_supported); else n_channels = iwl_init_channel_map( dev, cfg, data, &ch_section[NVM_CHANNELS_FAMILY_8000], lar_supported); sband = &data->bands[IEEE80211_BAND_2GHZ]; sband->band = IEEE80211_BAND_2GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; sband->n_bitrates = N_RATES_24; n_used += iwl_init_sband_channels(data, sband, n_channels, IEEE80211_BAND_2GHZ); iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ, tx_chains, rx_chains); sband = &data->bands[IEEE80211_BAND_5GHZ]; sband->band = IEEE80211_BAND_5GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; sband->n_bitrates = N_RATES_52; n_used += iwl_init_sband_channels(data, sband, n_channels, IEEE80211_BAND_5GHZ); iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ, tx_chains, rx_chains); if (enable_vht) iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, tx_chains, rx_chains); if (n_channels != n_used) IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", n_used, n_channels); } static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { if (cfg->device_family != IWL_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + SKU); else return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000)); } static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { if (cfg->device_family != IWL_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + NVM_VERSION); else return le32_to_cpup((__le32 *)(nvm_sw + NVM_VERSION_FAMILY_8000)); } static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { if (cfg->device_family != IWL_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + RADIO_CFG); else return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000)); } #define N_HW_ADDRS_MASK_FAMILY_8000 0xF static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { if (cfg->device_family != IWL_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + N_HW_ADDRS); else return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)) & N_HW_ADDRS_MASK_FAMILY_8000; } static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, struct iwl_nvm_data *data, u32 radio_cfg) { if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); return; } /* set the radio configuration for family 8000 */ data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg); data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg); data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg); data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg); data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg); data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg); } static void iwl_set_hw_address(const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __le16 *nvm_sec) { const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR); /* The byte order is little endian 16 bit, meaning 214365 */ data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; } static void iwl_set_hw_address_family_8000(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __le16 *mac_override, const __le16 *nvm_hw) { const u8 *hw_addr; if (mac_override) { hw_addr = (const u8 *)(mac_override + MAC_ADDRESS_OVERRIDE_FAMILY_8000); /* The byte order is little endian 16 bit, meaning 214365 */ data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; if (is_valid_ether_addr(data->hw_addr)) return; IWL_ERR_DEV(dev, "mac address from nvm override section is not valid\n"); } if (nvm_hw) { /* read the MAC address from OTP */ if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) { /* read the mac address from the WFPM location */ hw_addr = (const u8 *)(nvm_hw + HW_ADDR0_WFPM_FAMILY_8000); data->hw_addr[0] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[2] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const u8 *)(nvm_hw + HW_ADDR1_WFPM_FAMILY_8000); data->hw_addr[4] = hw_addr[1]; data->hw_addr[5] = hw_addr[0]; } else if ((data->nvm_version >= 0xE08) && (data->nvm_version < 0xE0B)) { /* read "reverse order" from the PCIe location */ hw_addr = (const u8 *)(nvm_hw + HW_ADDR0_PCIE_FAMILY_8000); data->hw_addr[5] = hw_addr[2]; data->hw_addr[4] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const u8 *)(nvm_hw + HW_ADDR1_PCIE_FAMILY_8000); data->hw_addr[2] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[0] = hw_addr[1]; } else { /* read from the PCIe location */ hw_addr = (const u8 *)(nvm_hw + HW_ADDR0_PCIE_FAMILY_8000); data->hw_addr[5] = hw_addr[0]; data->hw_addr[4] = hw_addr[1]; data->hw_addr[3] = hw_addr[2]; hw_addr = (const u8 *)(nvm_hw + HW_ADDR1_PCIE_FAMILY_8000); data->hw_addr[2] = hw_addr[1]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[0] = hw_addr[3]; } if (!is_valid_ether_addr(data->hw_addr)) IWL_ERR_DEV(dev, "mac address from hw section is not valid\n"); return; } IWL_ERR_DEV(dev, "mac address is not found\n"); } struct iwl_nvm_data * iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg, const __le16 *nvm_hw, const __le16 *nvm_sw, const __le16 *nvm_calib, const __le16 *regulatory, const __le16 *mac_override, u8 tx_chains, u8 rx_chains, bool lar_supported) { struct iwl_nvm_data *data; u32 sku; u32 radio_cfg; if (cfg->device_family != IWL_DEVICE_FAMILY_8000) data = kzalloc(sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS, GFP_KERNEL); else data = kzalloc(sizeof(*data) + sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS_FAMILY_8000, GFP_KERNEL); if (!data) return NULL; data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw); iwl_set_radio_cfg(cfg, data, radio_cfg); if (data->valid_tx_ant) tx_chains &= data->valid_tx_ant; if (data->valid_rx_ant) rx_chains &= data->valid_rx_ant; sku = iwl_get_sku(cfg, nvm_sw); data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE; if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) data->sku_cap_11n_enable = false; data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { /* Checking for required sections */ if (!nvm_calib) { IWL_ERR_DEV(dev, "Can't parse empty Calib NVM sections\n"); kfree(data); return NULL; } /* in family 8000 Xtal calibration values moved to OTP */ data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); } if (cfg->device_family != IWL_DEVICE_FAMILY_8000) { iwl_set_hw_address(cfg, data, nvm_hw); iwl_init_sbands(dev, cfg, data, nvm_sw, sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains, rx_chains, lar_supported); } else { /* MAC address in family 8000 */ iwl_set_hw_address_family_8000(dev, cfg, data, mac_override, nvm_hw); iwl_init_sbands(dev, cfg, data, regulatory, sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains, rx_chains, lar_supported); } data->calib_version = 255; return data; } IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, int ch_idx, u16 nvm_flags) { u32 flags = NL80211_RRF_NO_HT40; if (ch_idx < NUM_2GHZ_CHANNELS && (nvm_flags & NVM_CHANNEL_40MHZ)) { if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) flags &= ~NL80211_RRF_NO_HT40PLUS; if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) flags &= ~NL80211_RRF_NO_HT40MINUS; } else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT && (nvm_flags & NVM_CHANNEL_40MHZ)) { if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) flags &= ~NL80211_RRF_NO_HT40PLUS; else flags &= ~NL80211_RRF_NO_HT40MINUS; } if (!(nvm_flags & NVM_CHANNEL_80MHZ)) flags |= NL80211_RRF_NO_80MHZ; if (!(nvm_flags & NVM_CHANNEL_160MHZ)) flags |= NL80211_RRF_NO_160MHZ; if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) flags |= NL80211_RRF_NO_IR; if (nvm_flags & NVM_CHANNEL_RADAR) flags |= NL80211_RRF_DFS; if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) flags |= NL80211_RRF_NO_OUTDOOR; /* Set the GO concurrent flag only in case that NO_IR is set. * Otherwise it is meaningless */ if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & NL80211_RRF_NO_IR)) flags |= NL80211_RRF_GO_CONCURRENT; return flags; } struct ieee80211_regdomain * iwl_parse_nvm_mcc_info(struct device *dev, int num_of_ch, __le32 *channels, u16 fw_mcc) { int ch_idx; u16 ch_flags, prev_ch_flags = 0; const u8 *nvm_chan = iwl_nvm_channels; /* TODO: 8000 series differs */ struct ieee80211_regdomain *regd; int size_of_regd; struct ieee80211_reg_rule *rule; enum ieee80211_band band; int center_freq, prev_center_freq = 0; int valid_rules = 0; bool new_rule; if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) return ERR_PTR(-EINVAL); IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", num_of_ch); /* build a regdomain rule for every valid channel */ size_of_regd = sizeof(struct ieee80211_regdomain) + num_of_ch * sizeof(struct ieee80211_reg_rule); regd = kzalloc(size_of_regd, GFP_KERNEL); if (!regd) return ERR_PTR(-ENOMEM); for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { ch_flags = (u16)__le32_to_cpup(channels + ch_idx); band = (ch_idx < NUM_2GHZ_CHANNELS) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], band); new_rule = false; if (!(ch_flags & NVM_CHANNEL_VALID)) { IWL_DEBUG_DEV(dev, IWL_DL_LAR, "Ch. %d Flags %x [%sGHz] - No traffic\n", nvm_chan[ch_idx], ch_flags, (ch_idx >= NUM_2GHZ_CHANNELS) ? "5.2" : "2.4"); continue; } /* we can't continue the same rule */ if (ch_idx == 0 || prev_ch_flags != ch_flags || center_freq - prev_center_freq > 20) { valid_rules++; new_rule = true; } rule = ®d->reg_rules[valid_rules - 1]; if (new_rule) rule->freq_range.start_freq_khz = MHZ_TO_KHZ(center_freq - 10); rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); /* this doesn't matter - not used by FW */ rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); rule->power_rule.max_eirp = DBM_TO_MBM(20); rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, ch_flags); /* rely on auto-calculation to merge BW of contiguous chans */ rule->flags |= NL80211_RRF_AUTO_BW; rule->freq_range.max_bandwidth_khz = 0; prev_ch_flags = ch_flags; prev_center_freq = center_freq; IWL_DEBUG_DEV(dev, IWL_DL_LAR, "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n", center_freq, band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(40MHZ), CHECK_AND_PRINT_I(80MHZ), CHECK_AND_PRINT_I(160MHZ), CHECK_AND_PRINT_I(INDOOR_ONLY), CHECK_AND_PRINT_I(GO_CONCURRENT), ch_flags, ((ch_flags & NVM_CHANNEL_ACTIVE) && !(ch_flags & NVM_CHANNEL_RADAR)) ? "" : "not "); } regd->n_reg_rules = valid_rules; /* set alpha2 from FW. */ regd->alpha2[0] = fw_mcc >> 8; regd->alpha2[1] = fw_mcc & 0xff; return regd; } IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);