/* Copyright (C) 2004 - 2007 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 generic device routines. */ #include #include #include "rt2x00.h" #include "rt2x00lib.h" #include "rt2x00dump.h" /* * Ring handler. */ struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev, const unsigned int queue) { int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags); /* * Check if we are requesting a reqular TX ring, * or if we are requesting a Beacon or Atim ring. * For Atim rings, we should check if it is supported. */ if (queue < rt2x00dev->hw->queues && rt2x00dev->tx) return &rt2x00dev->tx[queue]; if (!rt2x00dev->bcn || !beacon) return NULL; if (queue == IEEE80211_TX_QUEUE_BEACON) return &rt2x00dev->bcn[0]; else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON) return &rt2x00dev->bcn[1]; return NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_get_ring); /* * Link tuning handlers */ static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev) { rt2x00dev->link.count = 0; rt2x00dev->link.vgc_level = 0; memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual)); /* * The RX and TX percentage should start at 50% * this will assure we will get at least get some * decent value when the link tuner starts. * The value will be dropped and overwritten with * the correct (measured )value anyway during the * first run of the link tuner. */ rt2x00dev->link.qual.rx_percentage = 50; rt2x00dev->link.qual.tx_percentage = 50; /* * Reset the link tuner. */ rt2x00dev->ops->lib->reset_tuner(rt2x00dev); queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, LINK_TUNE_INTERVAL); } static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev) { cancel_delayed_work_sync(&rt2x00dev->link.work); } void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; rt2x00lib_stop_link_tuner(rt2x00dev); rt2x00lib_start_link_tuner(rt2x00dev); } /* * Ring initialization */ static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring = rt2x00dev->rx; unsigned int i; if (!rt2x00dev->ops->lib->init_rxentry) return; if (ring->data_addr) memset(ring->data_addr, 0, rt2x00_get_ring_size(ring)); for (i = 0; i < ring->stats.limit; i++) rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]); rt2x00_ring_index_clear(ring); } static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; unsigned int i; if (!rt2x00dev->ops->lib->init_txentry) return; txringall_for_each(rt2x00dev, ring) { if (ring->data_addr) memset(ring->data_addr, 0, rt2x00_get_ring_size(ring)); for (i = 0; i < ring->stats.limit; i++) rt2x00dev->ops->lib->init_txentry(rt2x00dev, &ring->entry[i]); rt2x00_ring_index_clear(ring); } } /* * Radio control handlers. */ int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) { int status; /* * Don't enable the radio twice. * And check if the hardware button has been disabled. */ if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags)) return 0; /* * Initialize all data rings. */ rt2x00lib_init_rxrings(rt2x00dev); rt2x00lib_init_txrings(rt2x00dev); /* * Enable radio. */ status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); if (status) return status; __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); /* * Enable RX. */ rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); /* * Start the TX queues. */ ieee80211_start_queues(rt2x00dev->hw); return 0; } void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Stop all scheduled work. */ if (work_pending(&rt2x00dev->beacon_work)) cancel_work_sync(&rt2x00dev->beacon_work); if (work_pending(&rt2x00dev->filter_work)) cancel_work_sync(&rt2x00dev->filter_work); if (work_pending(&rt2x00dev->config_work)) cancel_work_sync(&rt2x00dev->config_work); /* * Stop the TX queues. */ ieee80211_stop_queues(rt2x00dev->hw); /* * Disable RX. */ rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); /* * Disable radio. */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); } void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { /* * When we are disabling the RX, we should also stop the link tuner. */ if (state == STATE_RADIO_RX_OFF) rt2x00lib_stop_link_tuner(rt2x00dev); rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); /* * When we are enabling the RX, we should also start the link tuner. */ if (state == STATE_RADIO_RX_ON && is_interface_present(&rt2x00dev->interface)) rt2x00lib_start_link_tuner(rt2x00dev); } static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev) { enum antenna rx = rt2x00dev->link.ant.active.rx; enum antenna tx = rt2x00dev->link.ant.active.tx; int sample_a = rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A); int sample_b = rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B); /* * We are done sampling. Now we should evaluate the results. */ rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE; /* * During the last period we have sampled the RSSI * from both antenna's. It now is time to determine * which antenna demonstrated the best performance. * When we are already on the antenna with the best * performance, then there really is nothing for us * left to do. */ if (sample_a == sample_b) return; if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) { if (sample_a > sample_b && rx == ANTENNA_B) rx = ANTENNA_A; else if (rx == ANTENNA_A) rx = ANTENNA_B; } if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) { if (sample_a > sample_b && tx == ANTENNA_B) tx = ANTENNA_A; else if (tx == ANTENNA_A) tx = ANTENNA_B; } rt2x00lib_config_antenna(rt2x00dev, rx, tx); } static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev) { enum antenna rx = rt2x00dev->link.ant.active.rx; enum antenna tx = rt2x00dev->link.ant.active.tx; int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link); int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr); /* * Legacy driver indicates that we should swap antenna's * when the difference in RSSI is greater that 5. This * also should be done when the RSSI was actually better * then the previous sample. * When the difference exceeds the threshold we should * sample the rssi from the other antenna to make a valid * comparison between the 2 antennas. */ if (abs(rssi_curr - rssi_old) < 5) return; rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE; if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; rt2x00lib_config_antenna(rt2x00dev, rx, tx); } static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev) { /* * Determine if software diversity is enabled for * either the TX or RX antenna (or both). * Always perform this check since within the link * tuner interval the configuration might have changed. */ rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY; rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY; if (rt2x00dev->hw->conf.antenna_sel_rx == 0 && rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY; if (rt2x00dev->hw->conf.antenna_sel_tx == 0 && rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY; if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) && !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) { rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE; return; } /* * If we have only sampled the data over the last period * we should now harvest the data. Otherwise just evaluate * the data. The latter should only be performed once * every 2 seconds. */ if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE) rt2x00lib_evaluate_antenna_sample(rt2x00dev); else if (rt2x00dev->link.count & 1) rt2x00lib_evaluate_antenna_eval(rt2x00dev); } static void rt2x00lib_update_link_stats(struct link *link, int rssi) { int avg_rssi = rssi; /* * Update global RSSI */ if (link->qual.avg_rssi) avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8); link->qual.avg_rssi = avg_rssi; /* * Update antenna RSSI */ if (link->ant.rssi_ant) rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8); link->ant.rssi_ant = rssi; } static void rt2x00lib_precalculate_link_signal(struct link_qual *qual) { if (qual->rx_failed || qual->rx_success) qual->rx_percentage = (qual->rx_success * 100) / (qual->rx_failed + qual->rx_success); else qual->rx_percentage = 50; if (qual->tx_failed || qual->tx_success) qual->tx_percentage = (qual->tx_success * 100) / (qual->tx_failed + qual->tx_success); else qual->tx_percentage = 50; qual->rx_success = 0; qual->rx_failed = 0; qual->tx_success = 0; qual->tx_failed = 0; } static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev, int rssi) { int rssi_percentage = 0; int signal; /* * We need a positive value for the RSSI. */ if (rssi < 0) rssi += rt2x00dev->rssi_offset; /* * Calculate the different percentages, * which will be used for the signal. */ if (rt2x00dev->rssi_offset) rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset; /* * Add the individual percentages and use the WEIGHT * defines to calculate the current link signal. */ signal = ((WEIGHT_RSSI * rssi_percentage) + (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) + (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100; return (signal > 100) ? 100 : signal; } static void rt2x00lib_link_tuner(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, link.work.work); /* * When the radio is shutting down we should * immediately cease all link tuning. */ if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Update statistics. */ rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual); rt2x00dev->low_level_stats.dot11FCSErrorCount += rt2x00dev->link.qual.rx_failed; /* * Only perform the link tuning when Link tuning * has been enabled (This could have been disabled from the EEPROM). */ if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) rt2x00dev->ops->lib->link_tuner(rt2x00dev); /* * Evaluate antenna setup. */ rt2x00lib_evaluate_antenna(rt2x00dev); /* * Precalculate a portion of the link signal which is * in based on the tx/rx success/failure counters. */ rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual); /* * Increase tuner counter, and reschedule the next link tuner run. */ rt2x00dev->link.count++; queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, LINK_TUNE_INTERVAL); } static void rt2x00lib_packetfilter_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, filter_work); unsigned int filter = rt2x00dev->packet_filter; /* * Since we had stored the filter inside interface.filter, * we should now clear that field. Otherwise the driver will * assume nothing has changed (*total_flags will be compared * to interface.filter to determine if any action is required). */ rt2x00dev->packet_filter = 0; rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw, filter, &filter, 0, NULL); } static void rt2x00lib_configuration_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, config_work); struct ieee80211_bss_conf bss_conf; bss_conf.use_short_preamble = test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags); /* * FIXME: shouldn't invoke it this way because all other contents * of bss_conf is invalid. */ rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id, &bss_conf, BSS_CHANGED_ERP_PREAMBLE); } /* * Interrupt context handlers. */ static void rt2x00lib_beacondone_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, beacon_work); struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); struct data_entry *entry = rt2x00_get_data_entry(ring); struct sk_buff *skb; skb = ieee80211_beacon_get(rt2x00dev->hw, rt2x00dev->interface.id, &entry->tx_status.control); if (!skb) return; rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb, &entry->tx_status.control); dev_kfree_skb(skb); } void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work); } EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); void rt2x00lib_txdone(struct data_entry *entry, const int status, const int retry) { struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; struct ieee80211_tx_status *tx_status = &entry->tx_status; struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats; int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY); int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID || status == TX_FAIL_OTHER); /* * Update TX statistics. */ tx_status->flags = 0; tx_status->ack_signal = 0; tx_status->excessive_retries = (status == TX_FAIL_RETRY); tx_status->retry_count = retry; rt2x00dev->link.qual.tx_success += success; rt2x00dev->link.qual.tx_failed += retry + fail; if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) { if (success) tx_status->flags |= IEEE80211_TX_STATUS_ACK; else stats->dot11ACKFailureCount++; } tx_status->queue_length = entry->ring->stats.limit; tx_status->queue_number = tx_status->control.queue; if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { if (success) stats->dot11RTSSuccessCount++; else stats->dot11RTSFailureCount++; } /* * Send the tx_status to mac80211 & debugfs. * mac80211 will clean up the skb structure. */ get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE; rt2x00debug_dump_frame(rt2x00dev, entry->skb); ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status); entry->skb = NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_txdone); void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb, struct rxdata_entry_desc *desc) { struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; struct ieee80211_hw_mode *mode; struct ieee80211_rate *rate; struct ieee80211_hdr *hdr; unsigned int i; int val = 0; u16 fc; /* * Update RX statistics. */ mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; for (i = 0; i < mode->num_rates; i++) { rate = &mode->rates[i]; /* * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 0.5kbit/s. */ if (!desc->ofdm) val = DEVICE_GET_RATE_FIELD(rate->val, RATE); else val = DEVICE_GET_RATE_FIELD(rate->val, PLCP); if (val == desc->signal) { val = rate->val; break; } } /* * Only update link status if this is a beacon frame carrying our bssid. */ hdr = (struct ieee80211_hdr*)skb->data; fc = le16_to_cpu(hdr->frame_control); if (is_beacon(fc) && desc->my_bss) rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi); rt2x00dev->link.qual.rx_success++; rx_status->rate = val; rx_status->signal = rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi); rx_status->ssi = desc->rssi; rx_status->flag = desc->flags; rx_status->antenna = rt2x00dev->link.ant.active.rx; /* * Send frame to mac80211 & debugfs */ get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE; rt2x00debug_dump_frame(rt2x00dev, skb); ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status); } EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); /* * TX descriptor initializer */ void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct ieee80211_tx_control *control) { struct txdata_entry_desc desc; struct skb_desc *skbdesc = get_skb_desc(skb); struct ieee80211_hdr *ieee80211hdr = skbdesc->data; int tx_rate; int bitrate; int length; int duration; int residual; u16 frame_control; u16 seq_ctrl; memset(&desc, 0, sizeof(desc)); desc.cw_min = skbdesc->ring->tx_params.cw_min; desc.cw_max = skbdesc->ring->tx_params.cw_max; desc.aifs = skbdesc->ring->tx_params.aifs; /* * Identify queue */ if (control->queue < rt2x00dev->hw->queues) desc.queue = control->queue; else if (control->queue == IEEE80211_TX_QUEUE_BEACON || control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON) desc.queue = QUEUE_MGMT; else desc.queue = QUEUE_OTHER; /* * Read required fields from ieee80211 header. */ frame_control = le16_to_cpu(ieee80211hdr->frame_control); seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl); tx_rate = control->tx_rate; /* * Check whether this frame is to be acked */ if (!(control->flags & IEEE80211_TXCTL_NO_ACK)) __set_bit(ENTRY_TXD_ACK, &desc.flags); /* * Check if this is a RTS/CTS frame */ if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) { __set_bit(ENTRY_TXD_BURST, &desc.flags); if (is_rts_frame(frame_control)) { __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags); __set_bit(ENTRY_TXD_ACK, &desc.flags); } else __clear_bit(ENTRY_TXD_ACK, &desc.flags); if (control->rts_cts_rate) tx_rate = control->rts_cts_rate; } /* * Check for OFDM */ if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK) __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags); /* * Check if more fragments are pending */ if (ieee80211_get_morefrag(ieee80211hdr)) { __set_bit(ENTRY_TXD_BURST, &desc.flags); __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags); } /* * Beacons and probe responses require the tsf timestamp * to be inserted into the frame. */ if (control->queue == IEEE80211_TX_QUEUE_BEACON || is_probe_resp(frame_control)) __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags); /* * Determine with what IFS priority this frame should be send. * Set ifs to IFS_SIFS when the this is not the first fragment, * or this fragment came after RTS/CTS. */ if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags)) desc.ifs = IFS_SIFS; else desc.ifs = IFS_BACKOFF; /* * PLCP setup * Length calculation depends on OFDM/CCK rate. */ desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP); desc.service = 0x04; length = skbdesc->data_len + FCS_LEN; if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) { desc.length_high = (length >> 6) & 0x3f; desc.length_low = length & 0x3f; } else { bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE); /* * Convert length to microseconds. */ residual = get_duration_res(length, bitrate); duration = get_duration(length, bitrate); if (residual != 0) { duration++; /* * Check if we need to set the Length Extension */ if (bitrate == 110 && residual <= 30) desc.service |= 0x80; } desc.length_high = (duration >> 8) & 0xff; desc.length_low = duration & 0xff; /* * When preamble is enabled we should set the * preamble bit for the signal. */ if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE)) desc.signal |= 0x08; } rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control); /* * Update ring entry. */ skbdesc->entry->skb = skb; memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control)); /* * The frame has been completely initialized and ready * for sending to the device. The caller will push the * frame to the device, but we are going to push the * frame to debugfs here. */ skbdesc->frame_type = DUMP_FRAME_TX; rt2x00debug_dump_frame(rt2x00dev, skb); } EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); /* * Driver initialization handlers. */ static void rt2x00lib_channel(struct ieee80211_channel *entry, const int channel, const int tx_power, const int value) { entry->chan = channel; if (channel <= 14) entry->freq = 2407 + (5 * channel); else entry->freq = 5000 + (5 * channel); entry->val = value; entry->flag = IEEE80211_CHAN_W_IBSS | IEEE80211_CHAN_W_ACTIVE_SCAN | IEEE80211_CHAN_W_SCAN; entry->power_level = tx_power; entry->antenna_max = 0xff; } static void rt2x00lib_rate(struct ieee80211_rate *entry, const int rate, const int mask, const int plcp, const int flags) { entry->rate = rate; entry->val = DEVICE_SET_RATE_FIELD(rate, RATE) | DEVICE_SET_RATE_FIELD(mask, RATEMASK) | DEVICE_SET_RATE_FIELD(plcp, PLCP); entry->flags = flags; entry->val2 = entry->val; if (entry->flags & IEEE80211_RATE_PREAMBLE2) entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE); entry->min_rssi_ack = 0; entry->min_rssi_ack_delta = 0; } static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, struct hw_mode_spec *spec) { struct ieee80211_hw *hw = rt2x00dev->hw; struct ieee80211_hw_mode *hwmodes; struct ieee80211_channel *channels; struct ieee80211_rate *rates; unsigned int i; unsigned char tx_power; hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL); if (!hwmodes) goto exit; channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); if (!channels) goto exit_free_modes; rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL); if (!rates) goto exit_free_channels; /* * Initialize Rate list. */ rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB, 0x00, IEEE80211_RATE_CCK); rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB, 0x01, IEEE80211_RATE_CCK_2); rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB, 0x02, IEEE80211_RATE_CCK_2); rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB, 0x03, IEEE80211_RATE_CCK_2); if (spec->num_rates > 4) { rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB, 0x0b, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB, 0x0f, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB, 0x0a, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB, 0x0e, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB, 0x09, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB, 0x0d, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB, 0x08, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB, 0x0c, IEEE80211_RATE_OFDM); } /* * Initialize Channel list. */ for (i = 0; i < spec->num_channels; i++) { if (spec->channels[i].channel <= 14) tx_power = spec->tx_power_bg[i]; else if (spec->tx_power_a) tx_power = spec->tx_power_a[i]; else tx_power = spec->tx_power_default; rt2x00lib_channel(&channels[i], spec->channels[i].channel, tx_power, i); } /* * Intitialize 802.11b * Rates: CCK. * Channels: OFDM. */ if (spec->num_modes > HWMODE_B) { hwmodes[HWMODE_B].mode = MODE_IEEE80211B; hwmodes[HWMODE_B].num_channels = 14; hwmodes[HWMODE_B].num_rates = 4; hwmodes[HWMODE_B].channels = channels; hwmodes[HWMODE_B].rates = rates; } /* * Intitialize 802.11g * Rates: CCK, OFDM. * Channels: OFDM. */ if (spec->num_modes > HWMODE_G) { hwmodes[HWMODE_G].mode = MODE_IEEE80211G; hwmodes[HWMODE_G].num_channels = 14; hwmodes[HWMODE_G].num_rates = spec->num_rates; hwmodes[HWMODE_G].channels = channels; hwmodes[HWMODE_G].rates = rates; } /* * Intitialize 802.11a * Rates: OFDM. * Channels: OFDM, UNII, HiperLAN2. */ if (spec->num_modes > HWMODE_A) { hwmodes[HWMODE_A].mode = MODE_IEEE80211A; hwmodes[HWMODE_A].num_channels = spec->num_channels - 14; hwmodes[HWMODE_A].num_rates = spec->num_rates - 4; hwmodes[HWMODE_A].channels = &channels[14]; hwmodes[HWMODE_A].rates = &rates[4]; } if (spec->num_modes > HWMODE_G && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G])) goto exit_free_rates; if (spec->num_modes > HWMODE_B && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B])) goto exit_free_rates; if (spec->num_modes > HWMODE_A && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A])) goto exit_free_rates; rt2x00dev->hwmodes = hwmodes; return 0; exit_free_rates: kfree(rates); exit_free_channels: kfree(channels); exit_free_modes: kfree(hwmodes); exit: ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); return -ENOMEM; } static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) { if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags)) ieee80211_unregister_hw(rt2x00dev->hw); if (likely(rt2x00dev->hwmodes)) { kfree(rt2x00dev->hwmodes->channels); kfree(rt2x00dev->hwmodes->rates); kfree(rt2x00dev->hwmodes); rt2x00dev->hwmodes = NULL; } } static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; int status; /* * Initialize HW modes. */ status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); if (status) return status; /* * Register HW. */ status = ieee80211_register_hw(rt2x00dev->hw); if (status) { rt2x00lib_remove_hw(rt2x00dev); return status; } __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags); return 0; } /* * Initialization/uninitialization handlers. */ static int rt2x00lib_alloc_entries(struct data_ring *ring, const u16 max_entries, const u16 data_size, const u16 desc_size) { struct data_entry *entry; unsigned int i; ring->stats.limit = max_entries; ring->data_size = data_size; ring->desc_size = desc_size; /* * Allocate all ring entries. */ entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; for (i = 0; i < ring->stats.limit; i++) { entry[i].flags = 0; entry[i].ring = ring; entry[i].skb = NULL; entry[i].entry_idx = i; } ring->entry = entry; return 0; } static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; /* * Allocate the RX ring. */ if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->rxd_size)) return -ENOMEM; /* * First allocate the TX rings. */ txring_for_each(rt2x00dev, ring) { if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; } if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)) return 0; /* * Allocate the BEACON ring. */ if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES, MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; /* * Allocate the Atim ring. */ if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; return 0; } static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; ring_for_each(rt2x00dev, ring) { kfree(ring->entry); ring->entry = NULL; } } static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return; /* * Unregister rfkill. */ rt2x00rfkill_unregister(rt2x00dev); /* * Allow the HW to uninitialize. */ rt2x00dev->ops->lib->uninitialize(rt2x00dev); /* * Free allocated ring entries. */ rt2x00lib_free_ring_entries(rt2x00dev); } static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) { int status; if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return 0; /* * Allocate all ring entries. */ status = rt2x00lib_alloc_ring_entries(rt2x00dev); if (status) { ERROR(rt2x00dev, "Ring entries allocation failed.\n"); return status; } /* * Initialize the device. */ status = rt2x00dev->ops->lib->initialize(rt2x00dev); if (status) goto exit; __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); /* * Register the rfkill handler. */ status = rt2x00rfkill_register(rt2x00dev); if (status) goto exit_unitialize; return 0; exit_unitialize: rt2x00lib_uninitialize(rt2x00dev); exit: rt2x00lib_free_ring_entries(rt2x00dev); return status; } int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) { int retval; if (test_bit(DEVICE_STARTED, &rt2x00dev->flags)) return 0; /* * If this is the first interface which is added, * we should load the firmware now. */ if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) { retval = rt2x00lib_load_firmware(rt2x00dev); if (retval) return retval; } /* * Initialize the device. */ retval = rt2x00lib_initialize(rt2x00dev); if (retval) return retval; /* * Enable radio. */ retval = rt2x00lib_enable_radio(rt2x00dev); if (retval) { rt2x00lib_uninitialize(rt2x00dev); return retval; } __set_bit(DEVICE_STARTED, &rt2x00dev->flags); return 0; } void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) return; /* * Perhaps we can add something smarter here, * but for now just disabling the radio should do. */ rt2x00lib_disable_radio(rt2x00dev); __clear_bit(DEVICE_STARTED, &rt2x00dev->flags); } /* * driver allocation handlers. */ static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; unsigned int index; /* * We need the following rings: * RX: 1 * TX: hw->queues * Beacon: 1 (if required) * Atim: 1 (if required) */ rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues + (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)); ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL); if (!ring) { ERROR(rt2x00dev, "Ring allocation failed.\n"); return -ENOMEM; } /* * Initialize pointers */ rt2x00dev->rx = ring; rt2x00dev->tx = &rt2x00dev->rx[1]; if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)) rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues]; /* * Initialize ring parameters. * RX: queue_idx = 0 * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index * TX: cw_min: 2^5 = 32. * TX: cw_max: 2^10 = 1024. */ rt2x00dev->rx->rt2x00dev = rt2x00dev; rt2x00dev->rx->queue_idx = 0; index = IEEE80211_TX_QUEUE_DATA0; txring_for_each(rt2x00dev, ring) { ring->rt2x00dev = rt2x00dev; ring->queue_idx = index++; ring->tx_params.aifs = 2; ring->tx_params.cw_min = 5; ring->tx_params.cw_max = 10; } return 0; } static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev) { kfree(rt2x00dev->rx); rt2x00dev->rx = NULL; rt2x00dev->tx = NULL; rt2x00dev->bcn = NULL; } int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) { int retval = -ENOMEM; /* * Let the driver probe the device to detect the capabilities. */ retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to allocate device.\n"); goto exit; } /* * Initialize configuration work. */ INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled); INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled); INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled); INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); /* * Reset current working type. */ rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID; /* * Allocate ring array. */ retval = rt2x00lib_alloc_rings(rt2x00dev); if (retval) goto exit; /* * Initialize ieee80211 structure. */ retval = rt2x00lib_probe_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to initialize hw.\n"); goto exit; } /* * Allocatie rfkill. */ retval = rt2x00rfkill_allocate(rt2x00dev); if (retval) goto exit; /* * Open the debugfs entry. */ rt2x00debug_register(rt2x00dev); __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); return 0; exit: rt2x00lib_remove_dev(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) { __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * Disable radio. */ rt2x00lib_disable_radio(rt2x00dev); /* * Uninitialize device. */ rt2x00lib_uninitialize(rt2x00dev); /* * Close debugfs entry. */ rt2x00debug_deregister(rt2x00dev); /* * Free rfkill */ rt2x00rfkill_free(rt2x00dev); /* * Free ieee80211_hw memory. */ rt2x00lib_remove_hw(rt2x00dev); /* * Free firmware image. */ rt2x00lib_free_firmware(rt2x00dev); /* * Free ring structures. */ rt2x00lib_free_rings(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); /* * Device state handlers */ #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) { int retval; NOTICE(rt2x00dev, "Going to sleep.\n"); __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * Only continue if mac80211 has open interfaces. */ if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) goto exit; __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags); /* * Disable radio and unitialize all items * that must be recreated on resume. */ rt2x00lib_stop(rt2x00dev); rt2x00lib_uninitialize(rt2x00dev); rt2x00debug_deregister(rt2x00dev); exit: /* * Set device mode to sleep for power management. */ retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); if (retval) return retval; return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_suspend); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) { struct interface *intf = &rt2x00dev->interface; int retval; NOTICE(rt2x00dev, "Waking up.\n"); /* * Open the debugfs entry. */ rt2x00debug_register(rt2x00dev); /* * Only continue if mac80211 had open interfaces. */ if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags)) return 0; /* * Reinitialize device and all active interfaces. */ retval = rt2x00lib_start(rt2x00dev); if (retval) goto exit; /* * Reconfigure device. */ rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1); if (!rt2x00dev->hw->conf.radio_enabled) rt2x00lib_disable_radio(rt2x00dev); rt2x00lib_config_mac_addr(rt2x00dev, intf->mac); rt2x00lib_config_bssid(rt2x00dev, intf->bssid); rt2x00lib_config_type(rt2x00dev, intf->type); /* * We are ready again to receive requests from mac80211. */ __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * It is possible that during that mac80211 has attempted * to send frames while we were suspending or resuming. * In that case we have disabled the TX queue and should * now enable it again */ ieee80211_start_queues(rt2x00dev->hw); /* * When in Master or Ad-hoc mode, * restart Beacon transmitting by faking a beacondone event. */ if (intf->type == IEEE80211_IF_TYPE_AP || intf->type == IEEE80211_IF_TYPE_IBSS) rt2x00lib_beacondone(rt2x00dev); return 0; exit: rt2x00lib_disable_radio(rt2x00dev); rt2x00lib_uninitialize(rt2x00dev); rt2x00debug_deregister(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_resume); #endif /* CONFIG_PM */ /* * rt2x00lib module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 library"); MODULE_LICENSE("GPL");