#include <linux/gfp.h> #include <linux/initrd.h> #include <linux/ioport.h> #include <linux/swap.h> #include <linux/memblock.h> #include <linux/bootmem.h> /* for max_low_pfn */ #include <asm/cacheflush.h> #include <asm/e820.h> #include <asm/init.h> #include <asm/page.h> #include <asm/page_types.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/tlbflush.h> #include <asm/tlb.h> #include <asm/proto.h> #include <asm/dma.h> /* for MAX_DMA_PFN */ unsigned long __initdata pgt_buf_start; unsigned long __meminitdata pgt_buf_end; unsigned long __meminitdata pgt_buf_top; int after_bootmem; int direct_gbpages #ifdef CONFIG_DIRECT_GBPAGES = 1 #endif ; struct map_range { unsigned long start; unsigned long end; unsigned page_size_mask; }; /* * First calculate space needed for kernel direct mapping page tables to cover * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB * pages. Then find enough contiguous space for those page tables. */ static void __init find_early_table_space(struct map_range *mr, int nr_range) { int i; unsigned long puds = 0, pmds = 0, ptes = 0, tables; unsigned long start = 0, good_end; phys_addr_t base; for (i = 0; i < nr_range; i++) { unsigned long range, extra; range = mr[i].end - mr[i].start; puds += (range + PUD_SIZE - 1) >> PUD_SHIFT; if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) { extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT); pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT; } else { pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT; } if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) { extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT); #ifdef CONFIG_X86_32 extra += PMD_SIZE; #endif ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; } else { ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT; } } tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); #ifdef CONFIG_X86_32 /* for fixmap */ tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE); #endif good_end = max_pfn_mapped << PAGE_SHIFT; base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE); if (!base) panic("Cannot find space for the kernel page tables"); pgt_buf_start = base >> PAGE_SHIFT; pgt_buf_end = pgt_buf_start; pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n", mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT, (pgt_buf_top << PAGE_SHIFT) - 1); } void __init native_pagetable_reserve(u64 start, u64 end) { memblock_reserve(start, end - start); } #ifdef CONFIG_X86_32 #define NR_RANGE_MR 3 #else /* CONFIG_X86_64 */ #define NR_RANGE_MR 5 #endif static int __meminit save_mr(struct map_range *mr, int nr_range, unsigned long start_pfn, unsigned long end_pfn, unsigned long page_size_mask) { if (start_pfn < end_pfn) { if (nr_range >= NR_RANGE_MR) panic("run out of range for init_memory_mapping\n"); mr[nr_range].start = start_pfn<<PAGE_SHIFT; mr[nr_range].end = end_pfn<<PAGE_SHIFT; mr[nr_range].page_size_mask = page_size_mask; nr_range++; } return nr_range; } /* * Setup the direct mapping of the physical memory at PAGE_OFFSET. * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end) { unsigned long page_size_mask = 0; unsigned long start_pfn, end_pfn; unsigned long ret = 0; unsigned long pos; struct map_range mr[NR_RANGE_MR]; int nr_range, i; int use_pse, use_gbpages; printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n", start, end - 1); #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK) /* * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. * This will simplify cpa(), which otherwise needs to support splitting * large pages into small in interrupt context, etc. */ use_pse = use_gbpages = 0; #else use_pse = cpu_has_pse; use_gbpages = direct_gbpages; #endif /* Enable PSE if available */ if (cpu_has_pse) set_in_cr4(X86_CR4_PSE); /* Enable PGE if available */ if (cpu_has_pge) { set_in_cr4(X86_CR4_PGE); __supported_pte_mask |= _PAGE_GLOBAL; } if (use_gbpages) page_size_mask |= 1 << PG_LEVEL_1G; if (use_pse) page_size_mask |= 1 << PG_LEVEL_2M; memset(mr, 0, sizeof(mr)); nr_range = 0; /* head if not big page alignment ? */ start_pfn = start >> PAGE_SHIFT; pos = start_pfn << PAGE_SHIFT; #ifdef CONFIG_X86_32 /* * Don't use a large page for the first 2/4MB of memory * because there are often fixed size MTRRs in there * and overlapping MTRRs into large pages can cause * slowdowns. */ if (pos == 0) end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT); else end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #else /* CONFIG_X86_64 */ end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #endif if (end_pfn > (end >> PAGE_SHIFT)) end_pfn = end >> PAGE_SHIFT; if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); pos = end_pfn << PAGE_SHIFT; } /* big page (2M) range */ start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #ifdef CONFIG_X86_32 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #else /* CONFIG_X86_64 */ end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); #endif if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<<PG_LEVEL_2M)); pos = end_pfn << PAGE_SHIFT; } #ifdef CONFIG_X86_64 /* big page (1G) range */ start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); pos = end_pfn << PAGE_SHIFT; } /* tail is not big page (1G) alignment */ start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<<PG_LEVEL_2M)); pos = end_pfn << PAGE_SHIFT; } #endif /* tail is not big page (2M) alignment */ start_pfn = pos>>PAGE_SHIFT; end_pfn = end>>PAGE_SHIFT; nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); /* try to merge same page size and continuous */ for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { unsigned long old_start; if (mr[i].end != mr[i+1].start || mr[i].page_size_mask != mr[i+1].page_size_mask) continue; /* move it */ old_start = mr[i].start; memmove(&mr[i], &mr[i+1], (nr_range - 1 - i) * sizeof(struct map_range)); mr[i--].start = old_start; nr_range--; } for (i = 0; i < nr_range; i++) printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", mr[i].start, mr[i].end - 1, (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); /* * Find space for the kernel direct mapping tables. * * Later we should allocate these tables in the local node of the * memory mapped. Unfortunately this is done currently before the * nodes are discovered. */ if (!after_bootmem) find_early_table_space(mr, nr_range); for (i = 0; i < nr_range; i++) ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, mr[i].page_size_mask); #ifdef CONFIG_X86_32 early_ioremap_page_table_range_init(); load_cr3(swapper_pg_dir); #endif __flush_tlb_all(); /* * Reserve the kernel pagetable pages we used (pgt_buf_start - * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top) * so that they can be reused for other purposes. * * On native it just means calling memblock_reserve, on Xen it also * means marking RW the pagetable pages that we allocated before * but that haven't been used. * * In fact on xen we mark RO the whole range pgt_buf_start - * pgt_buf_top, because we have to make sure that when * init_memory_mapping reaches the pagetable pages area, it maps * RO all the pagetable pages, including the ones that are beyond * pgt_buf_end at that time. */ if (!after_bootmem && pgt_buf_end > pgt_buf_start) x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start), PFN_PHYS(pgt_buf_end)); if (!after_bootmem) early_memtest(start, end); return ret >> PAGE_SHIFT; } /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * * On x86, access has to be given to the first megabyte of ram because that area * contains bios code and data regions used by X and dosemu and similar apps. * Access has to be given to non-kernel-ram areas as well, these contain the PCI * mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (pagenr < 256) return 1; if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) return 0; if (!page_is_ram(pagenr)) return 1; return 0; } void free_init_pages(char *what, unsigned long begin, unsigned long end) { unsigned long addr; unsigned long begin_aligned, end_aligned; /* Make sure boundaries are page aligned */ begin_aligned = PAGE_ALIGN(begin); end_aligned = end & PAGE_MASK; if (WARN_ON(begin_aligned != begin || end_aligned != end)) { begin = begin_aligned; end = end_aligned; } if (begin >= end) return; addr = begin; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ #ifdef CONFIG_DEBUG_PAGEALLOC printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", begin, end - 1); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); #else /* * We just marked the kernel text read only above, now that * we are going to free part of that, we need to make that * writeable and non-executable first. */ set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); for (; addr < end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); free_page(addr); totalram_pages++; } #endif } void free_initmem(void) { free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { /* * end could be not aligned, and We can not align that, * decompresser could be confused by aligned initrd_end * We already reserve the end partial page before in * - i386_start_kernel() * - x86_64_start_kernel() * - relocate_initrd() * So here We can do PAGE_ALIGN() safely to get partial page to be freed */ free_init_pages("initrd memory", start, PAGE_ALIGN(end)); } #endif void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif free_area_init_nodes(max_zone_pfns); }