/* * TI EDMA DMA engine driver * * Copyright 2012 Texas Instruments * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "virt-dma.h" /* * This will go away when the private EDMA API is folded * into this driver and the platform device(s) are * instantiated in the arch code. We can only get away * with this simplification because DA8XX may not be built * in the same kernel image with other DaVinci parts. This * avoids having to sprinkle dmaengine driver platform devices * and data throughout all the existing board files. */ #ifdef CONFIG_ARCH_DAVINCI_DA8XX #define EDMA_CTLRS 2 #define EDMA_CHANS 32 #else #define EDMA_CTLRS 1 #define EDMA_CHANS 64 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ /* Max of 16 segments per channel to conserve PaRAM slots */ #define MAX_NR_SG 16 #define EDMA_MAX_SLOTS MAX_NR_SG #define EDMA_DESCRIPTORS 16 struct edma_desc { struct virt_dma_desc vdesc; struct list_head node; int absync; int pset_nr; int processed; struct edmacc_param pset[0]; }; struct edma_cc; struct edma_chan { struct virt_dma_chan vchan; struct list_head node; struct edma_desc *edesc; struct edma_cc *ecc; int ch_num; bool alloced; int slot[EDMA_MAX_SLOTS]; int missed; struct dma_slave_config cfg; }; struct edma_cc { int ctlr; struct dma_device dma_slave; struct edma_chan slave_chans[EDMA_CHANS]; int num_slave_chans; int dummy_slot; }; static inline struct edma_cc *to_edma_cc(struct dma_device *d) { return container_of(d, struct edma_cc, dma_slave); } static inline struct edma_chan *to_edma_chan(struct dma_chan *c) { return container_of(c, struct edma_chan, vchan.chan); } static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct edma_desc, vdesc.tx); } static void edma_desc_free(struct virt_dma_desc *vdesc) { kfree(container_of(vdesc, struct edma_desc, vdesc)); } /* Dispatch a queued descriptor to the controller (caller holds lock) */ static void edma_execute(struct edma_chan *echan) { struct virt_dma_desc *vdesc; struct edma_desc *edesc; struct device *dev = echan->vchan.chan.device->dev; int i, j, left, nslots; /* If either we processed all psets or we're still not started */ if (!echan->edesc || echan->edesc->pset_nr == echan->edesc->processed) { /* Get next vdesc */ vdesc = vchan_next_desc(&echan->vchan); if (!vdesc) { echan->edesc = NULL; return; } list_del(&vdesc->node); echan->edesc = to_edma_desc(&vdesc->tx); } edesc = echan->edesc; /* Find out how many left */ left = edesc->pset_nr - edesc->processed; nslots = min(MAX_NR_SG, left); /* Write descriptor PaRAM set(s) */ for (i = 0; i < nslots; i++) { j = i + edesc->processed; edma_write_slot(echan->slot[i], &edesc->pset[j]); dev_dbg(echan->vchan.chan.device->dev, "\n pset[%d]:\n" " chnum\t%d\n" " slot\t%d\n" " opt\t%08x\n" " src\t%08x\n" " dst\t%08x\n" " abcnt\t%08x\n" " ccnt\t%08x\n" " bidx\t%08x\n" " cidx\t%08x\n" " lkrld\t%08x\n", j, echan->ch_num, echan->slot[i], edesc->pset[j].opt, edesc->pset[j].src, edesc->pset[j].dst, edesc->pset[j].a_b_cnt, edesc->pset[j].ccnt, edesc->pset[j].src_dst_bidx, edesc->pset[j].src_dst_cidx, edesc->pset[j].link_bcntrld); /* Link to the previous slot if not the last set */ if (i != (nslots - 1)) edma_link(echan->slot[i], echan->slot[i+1]); } edesc->processed += nslots; /* * If this is either the last set in a set of SG-list transactions * then setup a link to the dummy slot, this results in all future * events being absorbed and that's OK because we're done */ if (edesc->processed == edesc->pset_nr) edma_link(echan->slot[nslots-1], echan->ecc->dummy_slot); edma_resume(echan->ch_num); if (edesc->processed <= MAX_NR_SG) { dev_dbg(dev, "first transfer starting %d\n", echan->ch_num); edma_start(echan->ch_num); } /* * This happens due to setup times between intermediate transfers * in long SG lists which have to be broken up into transfers of * MAX_NR_SG */ if (echan->missed) { dev_dbg(dev, "missed event in execute detected\n"); edma_clean_channel(echan->ch_num); edma_stop(echan->ch_num); edma_start(echan->ch_num); edma_trigger_channel(echan->ch_num); echan->missed = 0; } } static int edma_terminate_all(struct edma_chan *echan) { unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&echan->vchan.lock, flags); /* * Stop DMA activity: we assume the callback will not be called * after edma_dma() returns (even if it does, it will see * echan->edesc is NULL and exit.) */ if (echan->edesc) { echan->edesc = NULL; edma_stop(echan->ch_num); } vchan_get_all_descriptors(&echan->vchan, &head); spin_unlock_irqrestore(&echan->vchan.lock, flags); vchan_dma_desc_free_list(&echan->vchan, &head); return 0; } static int edma_slave_config(struct edma_chan *echan, struct dma_slave_config *cfg) { if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); return 0; } static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { int ret = 0; struct dma_slave_config *config; struct edma_chan *echan = to_edma_chan(chan); switch (cmd) { case DMA_TERMINATE_ALL: edma_terminate_all(echan); break; case DMA_SLAVE_CONFIG: config = (struct dma_slave_config *)arg; ret = edma_slave_config(echan, config); break; default: ret = -ENOSYS; } return ret; } static struct dma_async_tx_descriptor *edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long tx_flags, void *context) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edma_desc *edesc; dma_addr_t dev_addr; enum dma_slave_buswidth dev_width; u32 burst; struct scatterlist *sg; int acnt, bcnt, ccnt, src, dst, cidx; int src_bidx, dst_bidx, src_cidx, dst_cidx; int i, nslots; if (unlikely(!echan || !sgl || !sg_len)) return NULL; if (direction == DMA_DEV_TO_MEM) { dev_addr = echan->cfg.src_addr; dev_width = echan->cfg.src_addr_width; burst = echan->cfg.src_maxburst; } else if (direction == DMA_MEM_TO_DEV) { dev_addr = echan->cfg.dst_addr; dev_width = echan->cfg.dst_addr_width; burst = echan->cfg.dst_maxburst; } else { dev_err(dev, "%s: bad direction?\n", __func__); return NULL; } if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { dev_err(dev, "Undefined slave buswidth\n"); return NULL; } if (sg_len > MAX_NR_SG) { dev_err(dev, "Exceeded max SG segments %d > %d\n", sg_len, MAX_NR_SG); return NULL; } edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), GFP_ATOMIC); if (!edesc) { dev_dbg(dev, "Failed to allocate a descriptor\n"); return NULL; } edesc->pset_nr = sg_len; /* Allocate a PaRAM slot, if needed */ nslots = min_t(unsigned, MAX_NR_SG, sg_len); for (i = 0; i < nslots; i++) { if (echan->slot[i] < 0) { echan->slot[i] = edma_alloc_slot(EDMA_CTLR(echan->ch_num), EDMA_SLOT_ANY); if (echan->slot[i] < 0) { dev_err(dev, "Failed to allocate slot\n"); return NULL; } } } /* Configure PaRAM sets for each SG */ for_each_sg(sgl, sg, sg_len, i) { acnt = dev_width; /* * If the maxburst is equal to the fifo width, use * A-synced transfers. This allows for large contiguous * buffer transfers using only one PaRAM set. */ if (burst == 1) { edesc->absync = false; ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1); bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1); if (bcnt) ccnt++; else bcnt = SZ_64K - 1; cidx = acnt; /* * If maxburst is greater than the fifo address_width, * use AB-synced transfers where A count is the fifo * address_width and B count is the maxburst. In this * case, we are limited to transfers of C count frames * of (address_width * maxburst) where C count is limited * to SZ_64K-1. This places an upper bound on the length * of an SG segment that can be handled. */ } else { edesc->absync = true; bcnt = burst; ccnt = sg_dma_len(sg) / (acnt * bcnt); if (ccnt > (SZ_64K - 1)) { dev_err(dev, "Exceeded max SG segment size\n"); return NULL; } cidx = acnt * bcnt; } if (direction == DMA_MEM_TO_DEV) { src = sg_dma_address(sg); dst = dev_addr; src_bidx = acnt; src_cidx = cidx; dst_bidx = 0; dst_cidx = 0; } else { src = dev_addr; dst = sg_dma_address(sg); src_bidx = 0; src_cidx = 0; dst_bidx = acnt; dst_cidx = cidx; } edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); /* Configure A or AB synchronized transfers */ if (edesc->absync) edesc->pset[i].opt |= SYNCDIM; /* If this is the last in a current SG set of transactions, enable interrupts so that next set is processed */ if (!((i+1) % MAX_NR_SG)) edesc->pset[i].opt |= TCINTEN; /* If this is the last set, enable completion interrupt flag */ if (i == sg_len - 1) edesc->pset[i].opt |= TCINTEN; edesc->pset[i].src = src; edesc->pset[i].dst = dst; edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx; edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx; edesc->pset[i].a_b_cnt = bcnt << 16 | acnt; edesc->pset[i].ccnt = ccnt; edesc->pset[i].link_bcntrld = 0xffffffff; } return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static void edma_callback(unsigned ch_num, u16 ch_status, void *data) { struct edma_chan *echan = data; struct device *dev = echan->vchan.chan.device->dev; struct edma_desc *edesc; unsigned long flags; struct edmacc_param p; /* Pause the channel */ edma_pause(echan->ch_num); switch (ch_status) { case DMA_COMPLETE: spin_lock_irqsave(&echan->vchan.lock, flags); edesc = echan->edesc; if (edesc) { if (edesc->processed == edesc->pset_nr) { dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); edma_stop(echan->ch_num); vchan_cookie_complete(&edesc->vdesc); } else { dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); } edma_execute(echan); } spin_unlock_irqrestore(&echan->vchan.lock, flags); break; case DMA_CC_ERROR: spin_lock_irqsave(&echan->vchan.lock, flags); edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); /* * Issue later based on missed flag which will be sure * to happen as: * (1) we finished transmitting an intermediate slot and * edma_execute is coming up. * (2) or we finished current transfer and issue will * call edma_execute. * * Important note: issuing can be dangerous here and * lead to some nasty recursion when we are in a NULL * slot. So we avoid doing so and set the missed flag. */ if (p.a_b_cnt == 0 && p.ccnt == 0) { dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); echan->missed = 1; } else { /* * The slot is already programmed but the event got * missed, so its safe to issue it here. */ dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); edma_clean_channel(echan->ch_num); edma_stop(echan->ch_num); edma_start(echan->ch_num); edma_trigger_channel(echan->ch_num); } spin_unlock_irqrestore(&echan->vchan.lock, flags); break; default: break; } } /* Alloc channel resources */ static int edma_alloc_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; int ret; int a_ch_num; LIST_HEAD(descs); a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, chan, EVENTQ_DEFAULT); if (a_ch_num < 0) { ret = -ENODEV; goto err_no_chan; } if (a_ch_num != echan->ch_num) { dev_err(dev, "failed to allocate requested channel %u:%u\n", EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); ret = -ENODEV; goto err_wrong_chan; } echan->alloced = true; echan->slot[0] = echan->ch_num; dev_info(dev, "allocated channel for %u:%u\n", EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); return 0; err_wrong_chan: edma_free_channel(a_ch_num); err_no_chan: return ret; } /* Free channel resources */ static void edma_free_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; int i; /* Terminate transfers */ edma_stop(echan->ch_num); vchan_free_chan_resources(&echan->vchan); /* Free EDMA PaRAM slots */ for (i = 1; i < EDMA_MAX_SLOTS; i++) { if (echan->slot[i] >= 0) { edma_free_slot(echan->slot[i]); echan->slot[i] = -1; } } /* Free EDMA channel */ if (echan->alloced) { edma_free_channel(echan->ch_num); echan->alloced = false; } dev_info(dev, "freeing channel for %u\n", echan->ch_num); } /* Send pending descriptor to hardware */ static void edma_issue_pending(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&echan->vchan.lock, flags); if (vchan_issue_pending(&echan->vchan) && !echan->edesc) edma_execute(echan); spin_unlock_irqrestore(&echan->vchan.lock, flags); } static size_t edma_desc_size(struct edma_desc *edesc) { int i; size_t size; if (edesc->absync) for (size = i = 0; i < edesc->pset_nr; i++) size += (edesc->pset[i].a_b_cnt & 0xffff) * (edesc->pset[i].a_b_cnt >> 16) * edesc->pset[i].ccnt; else size = (edesc->pset[0].a_b_cnt & 0xffff) * (edesc->pset[0].a_b_cnt >> 16) + (edesc->pset[0].a_b_cnt & 0xffff) * (SZ_64K - 1) * edesc->pset[0].ccnt; return size; } /* Check request completion status */ static enum dma_status edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct edma_chan *echan = to_edma_chan(chan); struct virt_dma_desc *vdesc; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_SUCCESS || !txstate) return ret; spin_lock_irqsave(&echan->vchan.lock, flags); vdesc = vchan_find_desc(&echan->vchan, cookie); if (vdesc) { txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx)); } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { struct edma_desc *edesc = echan->edesc; txstate->residue = edma_desc_size(edesc); } spin_unlock_irqrestore(&echan->vchan.lock, flags); return ret; } static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma, struct edma_chan *echans) { int i, j; for (i = 0; i < EDMA_CHANS; i++) { struct edma_chan *echan = &echans[i]; echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); echan->ecc = ecc; echan->vchan.desc_free = edma_desc_free; vchan_init(&echan->vchan, dma); INIT_LIST_HEAD(&echan->node); for (j = 0; j < EDMA_MAX_SLOTS; j++) echan->slot[j] = -1; } } static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, struct device *dev) { dma->device_prep_slave_sg = edma_prep_slave_sg; dma->device_alloc_chan_resources = edma_alloc_chan_resources; dma->device_free_chan_resources = edma_free_chan_resources; dma->device_issue_pending = edma_issue_pending; dma->device_tx_status = edma_tx_status; dma->device_control = edma_control; dma->dev = dev; INIT_LIST_HEAD(&dma->channels); } static int edma_probe(struct platform_device *pdev) { struct edma_cc *ecc; int ret; ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); if (!ecc) { dev_err(&pdev->dev, "Can't allocate controller\n"); return -ENOMEM; } ecc->ctlr = pdev->id; ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); if (ecc->dummy_slot < 0) { dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); return -EIO; } dma_cap_zero(ecc->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); ret = dma_async_device_register(&ecc->dma_slave); if (ret) goto err_reg1; platform_set_drvdata(pdev, ecc); dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); return 0; err_reg1: edma_free_slot(ecc->dummy_slot); return ret; } static int edma_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct edma_cc *ecc = dev_get_drvdata(dev); dma_async_device_unregister(&ecc->dma_slave); edma_free_slot(ecc->dummy_slot); return 0; } static struct platform_driver edma_driver = { .probe = edma_probe, .remove = edma_remove, .driver = { .name = "edma-dma-engine", .owner = THIS_MODULE, }, }; bool edma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &edma_driver.driver) { struct edma_chan *echan = to_edma_chan(chan); unsigned ch_req = *(unsigned *)param; return ch_req == echan->ch_num; } return false; } EXPORT_SYMBOL(edma_filter_fn); static struct platform_device *pdev0, *pdev1; static const struct platform_device_info edma_dev_info0 = { .name = "edma-dma-engine", .id = 0, }; static const struct platform_device_info edma_dev_info1 = { .name = "edma-dma-engine", .id = 1, }; static int edma_init(void) { int ret = platform_driver_register(&edma_driver); if (ret == 0) { pdev0 = platform_device_register_full(&edma_dev_info0); if (IS_ERR(pdev0)) { platform_driver_unregister(&edma_driver); ret = PTR_ERR(pdev0); goto out; } pdev0->dev.dma_mask = &pdev0->dev.coherent_dma_mask; pdev0->dev.coherent_dma_mask = DMA_BIT_MASK(32); } if (EDMA_CTLRS == 2) { pdev1 = platform_device_register_full(&edma_dev_info1); if (IS_ERR(pdev1)) { platform_driver_unregister(&edma_driver); platform_device_unregister(pdev0); ret = PTR_ERR(pdev1); } pdev1->dev.dma_mask = &pdev1->dev.coherent_dma_mask; pdev1->dev.coherent_dma_mask = DMA_BIT_MASK(32); } out: return ret; } subsys_initcall(edma_init); static void __exit edma_exit(void) { platform_device_unregister(pdev0); if (pdev1) platform_device_unregister(pdev1); platform_driver_unregister(&edma_driver); } module_exit(edma_exit); MODULE_AUTHOR("Matt Porter "); MODULE_DESCRIPTION("TI EDMA DMA engine driver"); MODULE_LICENSE("GPL v2");