// SPDX-License-Identifier: GPL-2.0 /* * Filesystem-level keyring for fscrypt * * Copyright 2019 Google LLC */ /* * This file implements management of fscrypt master keys in the * filesystem-level keyring, including the ioctls: * * - FS_IOC_ADD_ENCRYPTION_KEY * - FS_IOC_REMOVE_ENCRYPTION_KEY * * See the "User API" section of Documentation/filesystems/fscrypt.rst for more * information about these ioctls. */ #include #include #include "fscrypt_private.h" static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) { memzero_explicit(secret, sizeof(*secret)); } static void move_master_key_secret(struct fscrypt_master_key_secret *dst, struct fscrypt_master_key_secret *src) { memcpy(dst, src, sizeof(*dst)); memzero_explicit(src, sizeof(*src)); } static void free_master_key(struct fscrypt_master_key *mk) { wipe_master_key_secret(&mk->mk_secret); kzfree(mk); } static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) { if (spec->__reserved) return false; return master_key_spec_len(spec) != 0; } static int fscrypt_key_instantiate(struct key *key, struct key_preparsed_payload *prep) { key->payload.data[0] = (struct fscrypt_master_key *)prep->data; return 0; } static void fscrypt_key_destroy(struct key *key) { free_master_key(key->payload.data[0]); } static void fscrypt_key_describe(const struct key *key, struct seq_file *m) { seq_puts(m, key->description); if (key_is_positive(key)) { const struct fscrypt_master_key *mk = key->payload.data[0]; if (!is_master_key_secret_present(&mk->mk_secret)) seq_puts(m, ": secret removed"); } } /* * Type of key in ->s_master_keys. Each key of this type represents a master * key which has been added to the filesystem. Its payload is a * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents * users from adding keys of this type via the keyrings syscalls rather than via * the intended method of FS_IOC_ADD_ENCRYPTION_KEY. */ static struct key_type key_type_fscrypt = { .name = "._fscrypt", .instantiate = fscrypt_key_instantiate, .destroy = fscrypt_key_destroy, .describe = fscrypt_key_describe, }; /* Search ->s_master_keys */ static struct key *search_fscrypt_keyring(struct key *keyring, struct key_type *type, const char *description) { /* * We need to mark the keyring reference as "possessed" so that we * acquire permission to search it, via the KEY_POS_SEARCH permission. */ key_ref_t keyref = make_key_ref(keyring, true /* possessed */); keyref = keyring_search(keyref, type, description, false); if (IS_ERR(keyref)) { if (PTR_ERR(keyref) == -EAGAIN || /* not found */ PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ keyref = ERR_PTR(-ENOKEY); return ERR_CAST(keyref); } return key_ref_to_ptr(keyref); } #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \ (CONST_STRLEN("fscrypt-") + FIELD_SIZEOF(struct super_block, s_id)) #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_DESCRIPTOR_SIZE + 1) static void format_fs_keyring_description( char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE], const struct super_block *sb) { sprintf(description, "fscrypt-%s", sb->s_id); } static void format_mk_description( char description[FSCRYPT_MK_DESCRIPTION_SIZE], const struct fscrypt_key_specifier *mk_spec) { sprintf(description, "%*phN", master_key_spec_len(mk_spec), (u8 *)&mk_spec->u); } /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ static int allocate_filesystem_keyring(struct super_block *sb) { char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE]; struct key *keyring; if (sb->s_master_keys) return 0; format_fs_keyring_description(description, sb); keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); if (IS_ERR(keyring)) return PTR_ERR(keyring); /* Pairs with READ_ONCE() in fscrypt_find_master_key() */ smp_store_release(&sb->s_master_keys, keyring); return 0; } void fscrypt_sb_free(struct super_block *sb) { key_put(sb->s_master_keys); sb->s_master_keys = NULL; } /* * Find the specified master key in ->s_master_keys. * Returns ERR_PTR(-ENOKEY) if not found. */ struct key *fscrypt_find_master_key(struct super_block *sb, const struct fscrypt_key_specifier *mk_spec) { struct key *keyring; char description[FSCRYPT_MK_DESCRIPTION_SIZE]; /* pairs with smp_store_release() in allocate_filesystem_keyring() */ keyring = READ_ONCE(sb->s_master_keys); if (keyring == NULL) return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */ format_mk_description(description, mk_spec); return search_fscrypt_keyring(keyring, &key_type_fscrypt, description); } /* * Allocate a new fscrypt_master_key which contains the given secret, set it as * the payload of a new 'struct key' of type fscrypt, and link the 'struct key' * into the given keyring. Synchronized by fscrypt_add_key_mutex. */ static int add_new_master_key(struct fscrypt_master_key_secret *secret, const struct fscrypt_key_specifier *mk_spec, struct key *keyring) { struct fscrypt_master_key *mk; char description[FSCRYPT_MK_DESCRIPTION_SIZE]; struct key *key; int err; mk = kzalloc(sizeof(*mk), GFP_KERNEL); if (!mk) return -ENOMEM; mk->mk_spec = *mk_spec; move_master_key_secret(&mk->mk_secret, secret); refcount_set(&mk->mk_refcount, 1); /* secret is present */ INIT_LIST_HEAD(&mk->mk_decrypted_inodes); spin_lock_init(&mk->mk_decrypted_inodes_lock); format_mk_description(description, mk_spec); key = key_alloc(&key_type_fscrypt, description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA, NULL); if (IS_ERR(key)) { err = PTR_ERR(key); goto out_free_mk; } err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL); key_put(key); if (err) goto out_free_mk; return 0; out_free_mk: free_master_key(mk); return err; } #define KEY_DEAD 1 static int add_existing_master_key(struct fscrypt_master_key *mk, struct fscrypt_master_key_secret *secret) { if (is_master_key_secret_present(&mk->mk_secret)) return 0; if (!refcount_inc_not_zero(&mk->mk_refcount)) return KEY_DEAD; move_master_key_secret(&mk->mk_secret, secret); return 0; } static int add_master_key(struct super_block *sb, struct fscrypt_master_key_secret *secret, const struct fscrypt_key_specifier *mk_spec) { static DEFINE_MUTEX(fscrypt_add_key_mutex); struct key *key; int err; mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ retry: key = fscrypt_find_master_key(sb, mk_spec); if (IS_ERR(key)) { err = PTR_ERR(key); if (err != -ENOKEY) goto out_unlock; /* Didn't find the key in ->s_master_keys. Add it. */ err = allocate_filesystem_keyring(sb); if (err) goto out_unlock; err = add_new_master_key(secret, mk_spec, sb->s_master_keys); } else { /* * Found the key in ->s_master_keys. Re-add the secret if * needed. */ down_write(&key->sem); err = add_existing_master_key(key->payload.data[0], secret); up_write(&key->sem); if (err == KEY_DEAD) { /* Key being removed or needs to be removed */ key_invalidate(key); key_put(key); goto retry; } key_put(key); } out_unlock: mutex_unlock(&fscrypt_add_key_mutex); return err; } /* * Add a master encryption key to the filesystem, causing all files which were * encrypted with it to appear "unlocked" (decrypted) when accessed. * * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of * Documentation/filesystems/fscrypt.rst. */ int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) { struct super_block *sb = file_inode(filp)->i_sb; struct fscrypt_add_key_arg __user *uarg = _uarg; struct fscrypt_add_key_arg arg; struct fscrypt_master_key_secret secret; int err; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (!valid_key_spec(&arg.key_spec)) return -EINVAL; if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || arg.raw_size > FSCRYPT_MAX_KEY_SIZE) return -EINVAL; if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) return -EINVAL; memset(&secret, 0, sizeof(secret)); secret.size = arg.raw_size; err = -EFAULT; if (copy_from_user(secret.raw, uarg->raw, secret.size)) goto out_wipe_secret; err = -EACCES; if (!capable(CAP_SYS_ADMIN)) goto out_wipe_secret; err = add_master_key(sb, &secret, &arg.key_spec); out_wipe_secret: wipe_master_key_secret(&secret); return err; } EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); /* * Try to evict the inode's dentries from the dentry cache. If the inode is a * directory, then it can have at most one dentry; however, that dentry may be * pinned by child dentries, so first try to evict the children too. */ static void shrink_dcache_inode(struct inode *inode) { struct dentry *dentry; if (S_ISDIR(inode->i_mode)) { dentry = d_find_any_alias(inode); if (dentry) { shrink_dcache_parent(dentry); dput(dentry); } } d_prune_aliases(inode); } static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) { struct fscrypt_info *ci; struct inode *inode; struct inode *toput_inode = NULL; spin_lock(&mk->mk_decrypted_inodes_lock); list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { inode = ci->ci_inode; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&mk->mk_decrypted_inodes_lock); shrink_dcache_inode(inode); iput(toput_inode); toput_inode = inode; spin_lock(&mk->mk_decrypted_inodes_lock); } spin_unlock(&mk->mk_decrypted_inodes_lock); iput(toput_inode); } static int check_for_busy_inodes(struct super_block *sb, struct fscrypt_master_key *mk) { struct list_head *pos; size_t busy_count = 0; unsigned long ino; struct dentry *dentry; char _path[256]; char *path = NULL; spin_lock(&mk->mk_decrypted_inodes_lock); list_for_each(pos, &mk->mk_decrypted_inodes) busy_count++; if (busy_count == 0) { spin_unlock(&mk->mk_decrypted_inodes_lock); return 0; } { /* select an example file to show for debugging purposes */ struct inode *inode = list_first_entry(&mk->mk_decrypted_inodes, struct fscrypt_info, ci_master_key_link)->ci_inode; ino = inode->i_ino; dentry = d_find_alias(inode); } spin_unlock(&mk->mk_decrypted_inodes_lock); if (dentry) { path = dentry_path(dentry, _path, sizeof(_path)); dput(dentry); } if (IS_ERR_OR_NULL(path)) path = "(unknown)"; fscrypt_warn(NULL, "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)", sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, ino, path); return -EBUSY; } static int try_to_lock_encrypted_files(struct super_block *sb, struct fscrypt_master_key *mk) { int err1; int err2; /* * An inode can't be evicted while it is dirty or has dirty pages. * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. * * Just do it the easy way: call sync_filesystem(). It's overkill, but * it works, and it's more important to minimize the amount of caches we * drop than the amount of data we sync. Also, unprivileged users can * already call sync_filesystem() via sys_syncfs() or sys_sync(). */ down_read(&sb->s_umount); err1 = sync_filesystem(sb); up_read(&sb->s_umount); /* If a sync error occurs, still try to evict as much as possible. */ /* * Inodes are pinned by their dentries, so we have to evict their * dentries. shrink_dcache_sb() would suffice, but would be overkill * and inappropriate for use by unprivileged users. So instead go * through the inodes' alias lists and try to evict each dentry. */ evict_dentries_for_decrypted_inodes(mk); /* * evict_dentries_for_decrypted_inodes() already iput() each inode in * the list; any inodes for which that dropped the last reference will * have been evicted due to fscrypt_drop_inode() detecting the key * removal and telling the VFS to evict the inode. So to finish, we * just need to check whether any inodes couldn't be evicted. */ err2 = check_for_busy_inodes(sb, mk); return err1 ?: err2; } /* * Try to remove an fscrypt master encryption key. * * First we wipe the actual master key secret, so that no more inodes can be * unlocked with it. Then we try to evict all cached inodes that had been * unlocked with the key. * * If all inodes were evicted, then we unlink the fscrypt_master_key from the * keyring. Otherwise it remains in the keyring in the "incompletely removed" * state (without the actual secret key) where it tracks the list of remaining * inodes. Userspace can execute the ioctl again later to retry eviction, or * alternatively can re-add the secret key again. * * For more details, see the "Removing keys" section of * Documentation/filesystems/fscrypt.rst. */ int fscrypt_ioctl_remove_key(struct file *filp, void __user *_uarg) { struct super_block *sb = file_inode(filp)->i_sb; struct fscrypt_remove_key_arg __user *uarg = _uarg; struct fscrypt_remove_key_arg arg; struct key *key; struct fscrypt_master_key *mk; u32 status_flags = 0; int err; bool dead; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (!valid_key_spec(&arg.key_spec)) return -EINVAL; if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EACCES; /* Find the key being removed. */ key = fscrypt_find_master_key(sb, &arg.key_spec); if (IS_ERR(key)) return PTR_ERR(key); mk = key->payload.data[0]; down_write(&key->sem); /* Wipe the secret. */ dead = false; if (is_master_key_secret_present(&mk->mk_secret)) { wipe_master_key_secret(&mk->mk_secret); dead = refcount_dec_and_test(&mk->mk_refcount); } up_write(&key->sem); if (dead) { /* * No inodes reference the key, and we wiped the secret, so the * key object is free to be removed from the keyring. */ key_invalidate(key); err = 0; } else { /* Some inodes still reference this key; try to evict them. */ err = try_to_lock_encrypted_files(sb, mk); if (err == -EBUSY) { status_flags |= FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; err = 0; } } /* * We return 0 if we successfully did something: wiped the secret, or * tried locking the files again. Users need to check the informational * status flags if they care whether the key has been fully removed * including all files locked. */ key_put(key); if (err == 0) err = put_user(status_flags, &uarg->removal_status_flags); return err; } EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); int __init fscrypt_init_keyring(void) { return register_key_type(&key_type_fscrypt); }