/* * sound/soc/omap/mcbsp.c * * Copyright (C) 2004 Nokia Corporation * Author: Samuel Ortiz <samuel.ortiz@nokia.com> * * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com> * Peter Ujfalusi <peter.ujfalusi@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Multichannel mode not supported. */ #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/pm_runtime.h> #include <linux/platform_data/asoc-ti-mcbsp.h> #include "mcbsp.h" static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val) { void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step; if (mcbsp->pdata->reg_size == 2) { ((u16 *)mcbsp->reg_cache)[reg] = (u16)val; __raw_writew((u16)val, addr); } else { ((u32 *)mcbsp->reg_cache)[reg] = val; __raw_writel(val, addr); } } static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache) { void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step; if (mcbsp->pdata->reg_size == 2) { return !from_cache ? __raw_readw(addr) : ((u16 *)mcbsp->reg_cache)[reg]; } else { return !from_cache ? __raw_readl(addr) : ((u32 *)mcbsp->reg_cache)[reg]; } } static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val) { __raw_writel(val, mcbsp->st_data->io_base_st + reg); } static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg) { return __raw_readl(mcbsp->st_data->io_base_st + reg); } #define MCBSP_READ(mcbsp, reg) \ omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0) #define MCBSP_WRITE(mcbsp, reg, val) \ omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val) #define MCBSP_READ_CACHE(mcbsp, reg) \ omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1) #define MCBSP_ST_READ(mcbsp, reg) \ omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg) #define MCBSP_ST_WRITE(mcbsp, reg, val) \ omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val) static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp) { dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id); dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2)); dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1)); dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2)); dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1)); dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2)); dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1)); dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2)); dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1)); dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2)); dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1)); dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2)); dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1)); dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0)); dev_dbg(mcbsp->dev, "***********************\n"); } static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id) { struct omap_mcbsp *mcbsp = dev_id; u16 irqst; irqst = MCBSP_READ(mcbsp, IRQST); dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst); if (irqst & RSYNCERREN) dev_err(mcbsp->dev, "RX Frame Sync Error!\n"); if (irqst & RFSREN) dev_dbg(mcbsp->dev, "RX Frame Sync\n"); if (irqst & REOFEN) dev_dbg(mcbsp->dev, "RX End Of Frame\n"); if (irqst & RRDYEN) dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n"); if (irqst & RUNDFLEN) dev_err(mcbsp->dev, "RX Buffer Underflow!\n"); if (irqst & ROVFLEN) dev_err(mcbsp->dev, "RX Buffer Overflow!\n"); if (irqst & XSYNCERREN) dev_err(mcbsp->dev, "TX Frame Sync Error!\n"); if (irqst & XFSXEN) dev_dbg(mcbsp->dev, "TX Frame Sync\n"); if (irqst & XEOFEN) dev_dbg(mcbsp->dev, "TX End Of Frame\n"); if (irqst & XRDYEN) dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n"); if (irqst & XUNDFLEN) dev_err(mcbsp->dev, "TX Buffer Underflow!\n"); if (irqst & XOVFLEN) dev_err(mcbsp->dev, "TX Buffer Overflow!\n"); if (irqst & XEMPTYEOFEN) dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n"); MCBSP_WRITE(mcbsp, IRQST, irqst); return IRQ_HANDLED; } static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id) { struct omap_mcbsp *mcbsp_tx = dev_id; u16 irqst_spcr2; irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2); dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2); if (irqst_spcr2 & XSYNC_ERR) { dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n", irqst_spcr2); /* Writing zero to XSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2)); } return IRQ_HANDLED; } static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id) { struct omap_mcbsp *mcbsp_rx = dev_id; u16 irqst_spcr1; irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1); dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1); if (irqst_spcr1 & RSYNC_ERR) { dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n", irqst_spcr1); /* Writing zero to RSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1)); } return IRQ_HANDLED; } /* * omap_mcbsp_config simply write a config to the * appropriate McBSP. * You either call this function or set the McBSP registers * by yourself before calling omap_mcbsp_start(). */ void omap_mcbsp_config(struct omap_mcbsp *mcbsp, const struct omap_mcbsp_reg_cfg *config) { dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n", mcbsp->id, mcbsp->phys_base); /* We write the given config */ MCBSP_WRITE(mcbsp, SPCR2, config->spcr2); MCBSP_WRITE(mcbsp, SPCR1, config->spcr1); MCBSP_WRITE(mcbsp, RCR2, config->rcr2); MCBSP_WRITE(mcbsp, RCR1, config->rcr1); MCBSP_WRITE(mcbsp, XCR2, config->xcr2); MCBSP_WRITE(mcbsp, XCR1, config->xcr1); MCBSP_WRITE(mcbsp, SRGR2, config->srgr2); MCBSP_WRITE(mcbsp, SRGR1, config->srgr1); MCBSP_WRITE(mcbsp, MCR2, config->mcr2); MCBSP_WRITE(mcbsp, MCR1, config->mcr1); MCBSP_WRITE(mcbsp, PCR0, config->pcr0); if (mcbsp->pdata->has_ccr) { MCBSP_WRITE(mcbsp, XCCR, config->xccr); MCBSP_WRITE(mcbsp, RCCR, config->rccr); } /* Enable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN); /* Enable TX/RX sync error interrupts by default */ if (mcbsp->irq) MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN); } /** * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register * @id - mcbsp id * @stream - indicates the direction of data flow (rx or tx) * * Returns the address of mcbsp data transmit register or data receive register * to be used by DMA for transferring/receiving data based on the value of * @stream for the requested mcbsp given by @id */ static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp, unsigned int stream) { int data_reg; if (mcbsp->pdata->reg_size == 2) { if (stream) data_reg = OMAP_MCBSP_REG_DRR1; else data_reg = OMAP_MCBSP_REG_DXR1; } else { if (stream) data_reg = OMAP_MCBSP_REG_DRR; else data_reg = OMAP_MCBSP_REG_DXR; } return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step; } static void omap_st_on(struct omap_mcbsp *mcbsp) { unsigned int w; if (mcbsp->pdata->enable_st_clock) mcbsp->pdata->enable_st_clock(mcbsp->id, 1); /* Enable McBSP Sidetone */ w = MCBSP_READ(mcbsp, SSELCR); MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN); /* Enable Sidetone from Sidetone Core */ w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN); } static void omap_st_off(struct omap_mcbsp *mcbsp) { unsigned int w; w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN)); w = MCBSP_READ(mcbsp, SSELCR); MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN)); if (mcbsp->pdata->enable_st_clock) mcbsp->pdata->enable_st_clock(mcbsp->id, 0); } static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir) { u16 val, i; val = MCBSP_ST_READ(mcbsp, SSELCR); if (val & ST_COEFFWREN) MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN)); MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN); for (i = 0; i < 128; i++) MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]); i = 0; val = MCBSP_ST_READ(mcbsp, SSELCR); while (!(val & ST_COEFFWRDONE) && (++i < 1000)) val = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN)); if (i == 1000) dev_err(mcbsp->dev, "McBSP FIR load error!\n"); } static void omap_st_chgain(struct omap_mcbsp *mcbsp) { u16 w; struct omap_mcbsp_st_data *st_data = mcbsp->st_data; w = MCBSP_ST_READ(mcbsp, SSELCR); MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \ ST_CH1GAIN(st_data->ch1gain)); } int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; int ret = 0; if (!st_data) return -ENOENT; spin_lock_irq(&mcbsp->lock); if (channel == 0) st_data->ch0gain = chgain; else if (channel == 1) st_data->ch1gain = chgain; else ret = -EINVAL; if (st_data->enabled) omap_st_chgain(mcbsp); spin_unlock_irq(&mcbsp->lock); return ret; } int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; int ret = 0; if (!st_data) return -ENOENT; spin_lock_irq(&mcbsp->lock); if (channel == 0) *chgain = st_data->ch0gain; else if (channel == 1) *chgain = st_data->ch1gain; else ret = -EINVAL; spin_unlock_irq(&mcbsp->lock); return ret; } static int omap_st_start(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (st_data->enabled && !st_data->running) { omap_st_fir_write(mcbsp, st_data->taps); omap_st_chgain(mcbsp); if (!mcbsp->free) { omap_st_on(mcbsp); st_data->running = 1; } } return 0; } int omap_st_enable(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (!st_data) return -ENODEV; spin_lock_irq(&mcbsp->lock); st_data->enabled = 1; omap_st_start(mcbsp); spin_unlock_irq(&mcbsp->lock); return 0; } static int omap_st_stop(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (st_data->running) { if (!mcbsp->free) { omap_st_off(mcbsp); st_data->running = 0; } } return 0; } int omap_st_disable(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; int ret = 0; if (!st_data) return -ENODEV; spin_lock_irq(&mcbsp->lock); omap_st_stop(mcbsp); st_data->enabled = 0; spin_unlock_irq(&mcbsp->lock); return ret; } int omap_st_is_enabled(struct omap_mcbsp *mcbsp) { struct omap_mcbsp_st_data *st_data = mcbsp->st_data; if (!st_data) return -ENODEV; return st_data->enabled; } /* * omap_mcbsp_set_rx_threshold configures the transmit threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH2 register. */ void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) { if (mcbsp->pdata->buffer_size == 0) return; if (threshold && threshold <= mcbsp->max_tx_thres) MCBSP_WRITE(mcbsp, THRSH2, threshold - 1); } /* * omap_mcbsp_set_rx_threshold configures the receive threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH1 register. */ void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) { if (mcbsp->pdata->buffer_size == 0) return; if (threshold && threshold <= mcbsp->max_rx_thres) MCBSP_WRITE(mcbsp, THRSH1, threshold - 1); } /* * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO */ u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp) { u16 buffstat; if (mcbsp->pdata->buffer_size == 0) return 0; /* Returns the number of free locations in the buffer */ buffstat = MCBSP_READ(mcbsp, XBUFFSTAT); /* Number of slots are different in McBSP ports */ return mcbsp->pdata->buffer_size - buffstat; } /* * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO * to reach the threshold value (when the DMA will be triggered to read it) */ u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp) { u16 buffstat, threshold; if (mcbsp->pdata->buffer_size == 0) return 0; /* Returns the number of used locations in the buffer */ buffstat = MCBSP_READ(mcbsp, RBUFFSTAT); /* RX threshold */ threshold = MCBSP_READ(mcbsp, THRSH1); /* Return the number of location till we reach the threshold limit */ if (threshold <= buffstat) return 0; else return threshold - buffstat; } int omap_mcbsp_request(struct omap_mcbsp *mcbsp) { void *reg_cache; int err; reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL); if (!reg_cache) { return -ENOMEM; } spin_lock(&mcbsp->lock); if (!mcbsp->free) { dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); err = -EBUSY; goto err_kfree; } mcbsp->free = false; mcbsp->reg_cache = reg_cache; spin_unlock(&mcbsp->lock); if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request) mcbsp->pdata->ops->request(mcbsp->id - 1); /* * Make sure that transmitter, receiver and sample-rate generator are * not running before activating IRQs. */ MCBSP_WRITE(mcbsp, SPCR1, 0); MCBSP_WRITE(mcbsp, SPCR2, 0); if (mcbsp->irq) { err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0, "McBSP", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request IRQ\n"); goto err_clk_disable; } } else { err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0, "McBSP TX", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request TX IRQ\n"); goto err_clk_disable; } err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0, "McBSP RX", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request RX IRQ\n"); goto err_free_irq; } } return 0; err_free_irq: free_irq(mcbsp->tx_irq, (void *)mcbsp); err_clk_disable: if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id - 1); /* Disable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, 0); spin_lock(&mcbsp->lock); mcbsp->free = true; mcbsp->reg_cache = NULL; err_kfree: spin_unlock(&mcbsp->lock); kfree(reg_cache); return err; } void omap_mcbsp_free(struct omap_mcbsp *mcbsp) { void *reg_cache; if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id - 1); /* Disable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, 0); /* Disable interrupt requests */ if (mcbsp->irq) MCBSP_WRITE(mcbsp, IRQEN, 0); if (mcbsp->irq) { free_irq(mcbsp->irq, (void *)mcbsp); } else { free_irq(mcbsp->rx_irq, (void *)mcbsp); free_irq(mcbsp->tx_irq, (void *)mcbsp); } reg_cache = mcbsp->reg_cache; /* * Select CLKS source from internal source unconditionally before * marking the McBSP port as free. * If the external clock source via MCBSP_CLKS pin has been selected the * system will refuse to enter idle if the CLKS pin source is not reset * back to internal source. */ if (!mcbsp_omap1()) omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC); spin_lock(&mcbsp->lock); if (mcbsp->free) dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id); else mcbsp->free = true; mcbsp->reg_cache = NULL; spin_unlock(&mcbsp->lock); if (reg_cache) kfree(reg_cache); } /* * Here we start the McBSP, by enabling transmitter, receiver or both. * If no transmitter or receiver is active prior calling, then sample-rate * generator and frame sync are started. */ void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx) { int enable_srg = 0; u16 w; if (mcbsp->st_data) omap_st_start(mcbsp); /* Only enable SRG, if McBSP is master */ w = MCBSP_READ_CACHE(mcbsp, PCR0); if (w & (FSXM | FSRM | CLKXM | CLKRM)) enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (enable_srg) { /* Start the sample generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6)); } /* Enable transmitter and receiver */ tx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | tx); rx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w | rx); /* * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec * REVISIT: 100us may give enough time for two CLKSRG, however * due to some unknown PM related, clock gating etc. reason it * is now at 500us. */ udelay(500); if (enable_srg) { /* Start frame sync */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7)); } if (mcbsp->pdata->has_ccr) { /* Release the transmitter and receiver */ w = MCBSP_READ_CACHE(mcbsp, XCCR); w &= ~(tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); w = MCBSP_READ_CACHE(mcbsp, RCCR); w &= ~(rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } /* Dump McBSP Regs */ omap_mcbsp_dump_reg(mcbsp); } void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx) { int idle; u16 w; /* Reset transmitter */ tx &= 1; if (mcbsp->pdata->has_ccr) { w = MCBSP_READ_CACHE(mcbsp, XCCR); w |= (tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~tx); /* Reset receiver */ rx &= 1; if (mcbsp->pdata->has_ccr) { w = MCBSP_READ_CACHE(mcbsp, RCCR); w |= (rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w & ~rx); idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (idle) { /* Reset the sample rate generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6)); } if (mcbsp->st_data) omap_st_stop(mcbsp); } int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id) { struct clk *fck_src; const char *src; int r; if (fck_src_id == MCBSP_CLKS_PAD_SRC) src = "pad_fck"; else if (fck_src_id == MCBSP_CLKS_PRCM_SRC) src = "prcm_fck"; else return -EINVAL; fck_src = clk_get(mcbsp->dev, src); if (IS_ERR(fck_src)) { dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src); return -EINVAL; } pm_runtime_put_sync(mcbsp->dev); r = clk_set_parent(mcbsp->fclk, fck_src); if (r) { dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n", src); clk_put(fck_src); return r; } pm_runtime_get_sync(mcbsp->dev); clk_put(fck_src); return 0; } #define max_thres(m) (mcbsp->pdata->buffer_size) #define valid_threshold(m, val) ((val) <= max_thres(m)) #define THRESHOLD_PROP_BUILDER(prop) \ static ssize_t prop##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ \ return sprintf(buf, "%u\n", mcbsp->prop); \ } \ \ static ssize_t prop##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t size) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ unsigned long val; \ int status; \ \ status = strict_strtoul(buf, 0, &val); \ if (status) \ return status; \ \ if (!valid_threshold(mcbsp, val)) \ return -EDOM; \ \ mcbsp->prop = val; \ return size; \ } \ \ static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store); THRESHOLD_PROP_BUILDER(max_tx_thres); THRESHOLD_PROP_BUILDER(max_rx_thres); static const char *dma_op_modes[] = { "element", "threshold", }; static ssize_t dma_op_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); int dma_op_mode, i = 0; ssize_t len = 0; const char * const *s; dma_op_mode = mcbsp->dma_op_mode; for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) { if (dma_op_mode == i) len += sprintf(buf + len, "[%s] ", *s); else len += sprintf(buf + len, "%s ", *s); } len += sprintf(buf + len, "\n"); return len; } static ssize_t dma_op_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); const char * const *s; int i = 0; for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) if (sysfs_streq(buf, *s)) break; if (i == ARRAY_SIZE(dma_op_modes)) return -EINVAL; spin_lock_irq(&mcbsp->lock); if (!mcbsp->free) { size = -EBUSY; goto unlock; } mcbsp->dma_op_mode = i; unlock: spin_unlock_irq(&mcbsp->lock); return size; } static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store); static const struct attribute *additional_attrs[] = { &dev_attr_max_tx_thres.attr, &dev_attr_max_rx_thres.attr, &dev_attr_dma_op_mode.attr, NULL, }; static const struct attribute_group additional_attr_group = { .attrs = (struct attribute **)additional_attrs, }; static ssize_t st_taps_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); struct omap_mcbsp_st_data *st_data = mcbsp->st_data; ssize_t status = 0; int i; spin_lock_irq(&mcbsp->lock); for (i = 0; i < st_data->nr_taps; i++) status += sprintf(&buf[status], (i ? ", %d" : "%d"), st_data->taps[i]); if (i) status += sprintf(&buf[status], "\n"); spin_unlock_irq(&mcbsp->lock); return status; } static ssize_t st_taps_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); struct omap_mcbsp_st_data *st_data = mcbsp->st_data; int val, tmp, status, i = 0; spin_lock_irq(&mcbsp->lock); memset(st_data->taps, 0, sizeof(st_data->taps)); st_data->nr_taps = 0; do { status = sscanf(buf, "%d%n", &val, &tmp); if (status < 0 || status == 0) { size = -EINVAL; goto out; } if (val < -32768 || val > 32767) { size = -EINVAL; goto out; } st_data->taps[i++] = val; buf += tmp; if (*buf != ',') break; buf++; } while (1); st_data->nr_taps = i; out: spin_unlock_irq(&mcbsp->lock); return size; } static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store); static const struct attribute *sidetone_attrs[] = { &dev_attr_st_taps.attr, NULL, }; static const struct attribute_group sidetone_attr_group = { .attrs = (struct attribute **)sidetone_attrs, }; static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res) { struct omap_mcbsp_st_data *st_data; int err; st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL); if (!st_data) return -ENOMEM; st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start, resource_size(res)); if (!st_data->io_base_st) return -ENOMEM; err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group); if (err) return err; mcbsp->st_data = st_data; return 0; } /* * McBSP1 and McBSP3 are directly mapped on 1610 and 1510. * 730 has only 2 McBSP, and both of them are MPU peripherals. */ int omap_mcbsp_init(struct platform_device *pdev) { struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); struct resource *res; int ret = 0; spin_lock_init(&mcbsp->lock); mcbsp->free = true; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); if (!res) { res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(mcbsp->dev, "invalid memory resource\n"); return -ENOMEM; } } if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res), dev_name(&pdev->dev))) { dev_err(mcbsp->dev, "memory region already claimed\n"); return -ENODEV; } mcbsp->phys_base = res->start; mcbsp->reg_cache_size = resource_size(res); mcbsp->io_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!mcbsp->io_base) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); if (!res) mcbsp->phys_dma_base = mcbsp->phys_base; else mcbsp->phys_dma_base = res->start; /* * OMAP1, 2 uses two interrupt lines: TX, RX * OMAP2430, OMAP3 SoC have combined IRQ line as well. * OMAP4 and newer SoC only have the combined IRQ line. * Use the combined IRQ if available since it gives better debugging * possibilities. */ mcbsp->irq = platform_get_irq_byname(pdev, "common"); if (mcbsp->irq == -ENXIO) { mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx"); if (mcbsp->tx_irq == -ENXIO) { mcbsp->irq = platform_get_irq(pdev, 0); mcbsp->tx_irq = 0; } else { mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx"); mcbsp->irq = 0; } } res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); if (!res) { dev_err(&pdev->dev, "invalid rx DMA channel\n"); return -ENODEV; } /* RX DMA request number, and port address configuration */ mcbsp->dma_data[1].name = "Audio Capture"; mcbsp->dma_data[1].dma_req = res->start; mcbsp->dma_data[1].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 1); res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); if (!res) { dev_err(&pdev->dev, "invalid tx DMA channel\n"); return -ENODEV; } /* TX DMA request number, and port address configuration */ mcbsp->dma_data[0].name = "Audio Playback"; mcbsp->dma_data[0].dma_req = res->start; mcbsp->dma_data[0].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 0); mcbsp->fclk = clk_get(&pdev->dev, "fck"); if (IS_ERR(mcbsp->fclk)) { ret = PTR_ERR(mcbsp->fclk); dev_err(mcbsp->dev, "unable to get fck: %d\n", ret); return ret; } mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT; if (mcbsp->pdata->buffer_size) { /* * Initially configure the maximum thresholds to a safe value. * The McBSP FIFO usage with these values should not go under * 16 locations. * If the whole FIFO without safety buffer is used, than there * is a possibility that the DMA will be not able to push the * new data on time, causing channel shifts in runtime. */ mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10; mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10; ret = sysfs_create_group(&mcbsp->dev->kobj, &additional_attr_group); if (ret) { dev_err(mcbsp->dev, "Unable to create additional controls\n"); goto err_thres; } } else { mcbsp->max_tx_thres = -EINVAL; mcbsp->max_rx_thres = -EINVAL; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone"); if (res) { ret = omap_st_add(mcbsp, res); if (ret) { dev_err(mcbsp->dev, "Unable to create sidetone controls\n"); goto err_st; } } return 0; err_st: if (mcbsp->pdata->buffer_size) sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group); err_thres: clk_put(mcbsp->fclk); return ret; } void omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp) { if (mcbsp->pdata->buffer_size) sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group); if (mcbsp->st_data) sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group); }