/* * Driver for Zarlink DVB-T ZL10353 demodulator * * Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/slab.h> #include <asm/div64.h> #include "dvb_frontend.h" #include "zl10353_priv.h" #include "zl10353.h" struct zl10353_state { struct i2c_adapter *i2c; struct dvb_frontend frontend; struct zl10353_config config; u32 bandwidth; u32 ucblocks; u32 frequency; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "zl10353: " args); \ } while (0) static int debug_regs; static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val) { struct zl10353_state *state = fe->demodulator_priv; u8 buf[2] = { reg, val }; struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, .buf = buf, .len = 2 }; int err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err); return err; } return 0; } static int zl10353_write(struct dvb_frontend *fe, const u8 ibuf[], int ilen) { int err, i; for (i = 0; i < ilen - 1; i++) if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1]))) return err; return 0; } static int zl10353_read_register(struct zl10353_state *state, u8 reg) { int ret; u8 b0[1] = { reg }; u8 b1[1] = { 0 }; struct i2c_msg msg[2] = { { .addr = state->config.demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config.demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk("%s: readreg error (reg=%d, ret==%i)\n", __func__, reg, ret); return ret; } return b1[0]; } static void zl10353_dump_regs(struct dvb_frontend *fe) { struct zl10353_state *state = fe->demodulator_priv; int ret; u8 reg; /* Dump all registers. */ for (reg = 0; ; reg++) { if (reg % 16 == 0) { if (reg) printk(KERN_CONT "\n"); printk(KERN_DEBUG "%02x:", reg); } ret = zl10353_read_register(state, reg); if (ret >= 0) printk(KERN_CONT " %02x", (u8)ret); else printk(KERN_CONT " --"); if (reg == 0xff) break; } printk(KERN_CONT "\n"); } static void zl10353_calc_nominal_rate(struct dvb_frontend *fe, u32 bandwidth, u16 *nominal_rate) { struct zl10353_state *state = fe->demodulator_priv; u32 adc_clock = 450560; /* 45.056 MHz */ u64 value; u8 bw = bandwidth / 1000000; if (state->config.adc_clock) adc_clock = state->config.adc_clock; value = (u64)10 * (1 << 23) / 7 * 125; value = (bw * value) + adc_clock / 2; do_div(value, adc_clock); *nominal_rate = value; dprintk("%s: bw %d, adc_clock %d => 0x%x\n", __func__, bw, adc_clock, *nominal_rate); } static void zl10353_calc_input_freq(struct dvb_frontend *fe, u16 *input_freq) { struct zl10353_state *state = fe->demodulator_priv; u32 adc_clock = 450560; /* 45.056 MHz */ int if2 = 361667; /* 36.1667 MHz */ int ife; u64 value; if (state->config.adc_clock) adc_clock = state->config.adc_clock; if (state->config.if2) if2 = state->config.if2; if (adc_clock >= if2 * 2) ife = if2; else { ife = adc_clock - (if2 % adc_clock); if (ife > adc_clock / 2) ife = adc_clock - ife; } value = (u64)65536 * ife + adc_clock / 2; do_div(value, adc_clock); *input_freq = -value; dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", __func__, if2, ife, adc_clock, -(int)value, *input_freq); } static int zl10353_sleep(struct dvb_frontend *fe) { static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 }; zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown)); return 0; } static int zl10353_set_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct zl10353_state *state = fe->demodulator_priv; u16 nominal_rate, input_freq; u8 pllbuf[6] = { 0x67 }, acq_ctl = 0; u16 tps = 0; state->frequency = c->frequency; zl10353_single_write(fe, RESET, 0x80); udelay(200); zl10353_single_write(fe, 0xEA, 0x01); udelay(200); zl10353_single_write(fe, 0xEA, 0x00); zl10353_single_write(fe, AGC_TARGET, 0x28); if (c->transmission_mode != TRANSMISSION_MODE_AUTO) acq_ctl |= (1 << 0); if (c->guard_interval != GUARD_INTERVAL_AUTO) acq_ctl |= (1 << 1); zl10353_single_write(fe, ACQ_CTL, acq_ctl); switch (c->bandwidth_hz) { case 6000000: /* These are extrapolated from the 7 and 8MHz values */ zl10353_single_write(fe, MCLK_RATIO, 0x97); zl10353_single_write(fe, 0x64, 0x34); zl10353_single_write(fe, 0xcc, 0xdd); break; case 7000000: zl10353_single_write(fe, MCLK_RATIO, 0x86); zl10353_single_write(fe, 0x64, 0x35); zl10353_single_write(fe, 0xcc, 0x73); break; default: c->bandwidth_hz = 8000000; /* fall though */ case 8000000: zl10353_single_write(fe, MCLK_RATIO, 0x75); zl10353_single_write(fe, 0x64, 0x36); zl10353_single_write(fe, 0xcc, 0x73); } zl10353_calc_nominal_rate(fe, c->bandwidth_hz, &nominal_rate); zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate)); zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate)); state->bandwidth = c->bandwidth_hz; zl10353_calc_input_freq(fe, &input_freq); zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq)); zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq)); /* Hint at TPS settings */ switch (c->code_rate_HP) { case FEC_2_3: tps |= (1 << 7); break; case FEC_3_4: tps |= (2 << 7); break; case FEC_5_6: tps |= (3 << 7); break; case FEC_7_8: tps |= (4 << 7); break; case FEC_1_2: case FEC_AUTO: break; default: return -EINVAL; } switch (c->code_rate_LP) { case FEC_2_3: tps |= (1 << 4); break; case FEC_3_4: tps |= (2 << 4); break; case FEC_5_6: tps |= (3 << 4); break; case FEC_7_8: tps |= (4 << 4); break; case FEC_1_2: case FEC_AUTO: break; case FEC_NONE: if (c->hierarchy == HIERARCHY_AUTO || c->hierarchy == HIERARCHY_NONE) break; default: return -EINVAL; } switch (c->modulation) { case QPSK: break; case QAM_AUTO: case QAM_16: tps |= (1 << 13); break; case QAM_64: tps |= (2 << 13); break; default: return -EINVAL; } switch (c->transmission_mode) { case TRANSMISSION_MODE_2K: case TRANSMISSION_MODE_AUTO: break; case TRANSMISSION_MODE_8K: tps |= (1 << 0); break; default: return -EINVAL; } switch (c->guard_interval) { case GUARD_INTERVAL_1_32: case GUARD_INTERVAL_AUTO: break; case GUARD_INTERVAL_1_16: tps |= (1 << 2); break; case GUARD_INTERVAL_1_8: tps |= (2 << 2); break; case GUARD_INTERVAL_1_4: tps |= (3 << 2); break; default: return -EINVAL; } switch (c->hierarchy) { case HIERARCHY_AUTO: case HIERARCHY_NONE: break; case HIERARCHY_1: tps |= (1 << 10); break; case HIERARCHY_2: tps |= (2 << 10); break; case HIERARCHY_4: tps |= (3 << 10); break; default: return -EINVAL; } zl10353_single_write(fe, TPS_GIVEN_1, msb(tps)); zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps)); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* * If there is no tuner attached to the secondary I2C bus, we call * set_params to program a potential tuner attached somewhere else. * Otherwise, we update the PLL registers via calc_regs. */ if (state->config.no_tuner) { if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } } else if (fe->ops.tuner_ops.calc_regs) { fe->ops.tuner_ops.calc_regs(fe, pllbuf + 1, 5); pllbuf[1] <<= 1; zl10353_write(fe, pllbuf, sizeof(pllbuf)); } zl10353_single_write(fe, 0x5F, 0x13); /* If no attached tuner or invalid PLL registers, just start the FSM. */ if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL) zl10353_single_write(fe, FSM_GO, 0x01); else zl10353_single_write(fe, TUNER_GO, 0x01); return 0; } static int zl10353_get_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct zl10353_state *state = fe->demodulator_priv; int s6, s9; u16 tps; static const u8 tps_fec_to_api[8] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, FEC_AUTO, FEC_AUTO, FEC_AUTO }; s6 = zl10353_read_register(state, STATUS_6); s9 = zl10353_read_register(state, STATUS_9); if (s6 < 0 || s9 < 0) return -EREMOTEIO; if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0) return -EINVAL; /* no FE or TPS lock */ tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 | zl10353_read_register(state, TPS_RECEIVED_0); c->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; c->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; switch ((tps >> 13) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; default: c->modulation = QAM_AUTO; break; } c->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K; switch ((tps >> 2) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; default: c->guard_interval = GUARD_INTERVAL_AUTO; break; } switch ((tps >> 10) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; default: c->hierarchy = HIERARCHY_AUTO; break; } c->frequency = state->frequency; c->bandwidth_hz = state->bandwidth; c->inversion = INVERSION_AUTO; return 0; } static int zl10353_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct zl10353_state *state = fe->demodulator_priv; int s6, s7, s8; if ((s6 = zl10353_read_register(state, STATUS_6)) < 0) return -EREMOTEIO; if ((s7 = zl10353_read_register(state, STATUS_7)) < 0) return -EREMOTEIO; if ((s8 = zl10353_read_register(state, STATUS_8)) < 0) return -EREMOTEIO; *status = 0; if (s6 & (1 << 2)) *status |= FE_HAS_CARRIER; if (s6 & (1 << 1)) *status |= FE_HAS_VITERBI; if (s6 & (1 << 5)) *status |= FE_HAS_LOCK; if (s7 & (1 << 4)) *status |= FE_HAS_SYNC; if (s8 & (1 << 6)) *status |= FE_HAS_SIGNAL; if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) *status &= ~FE_HAS_LOCK; return 0; } static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber) { struct zl10353_state *state = fe->demodulator_priv; *ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 | zl10353_read_register(state, RS_ERR_CNT_1) << 8 | zl10353_read_register(state, RS_ERR_CNT_0); return 0; } static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct zl10353_state *state = fe->demodulator_priv; u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 | zl10353_read_register(state, AGC_GAIN_0) << 2 | 3; *strength = ~signal; return 0; } static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr) { struct zl10353_state *state = fe->demodulator_priv; u8 _snr; if (debug_regs) zl10353_dump_regs(fe); _snr = zl10353_read_register(state, SNR); *snr = 10 * _snr / 8; return 0; } static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct zl10353_state *state = fe->demodulator_priv; u32 ubl = 0; ubl = zl10353_read_register(state, RS_UBC_1) << 8 | zl10353_read_register(state, RS_UBC_0); state->ucblocks += ubl; *ucblocks = state->ucblocks; return 0; } static int zl10353_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fe_tune_settings) { fe_tune_settings->min_delay_ms = 1000; fe_tune_settings->step_size = 0; fe_tune_settings->max_drift = 0; return 0; } static int zl10353_init(struct dvb_frontend *fe) { struct zl10353_state *state = fe->demodulator_priv; u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F }; if (debug_regs) zl10353_dump_regs(fe); if (state->config.parallel_ts) zl10353_reset_attach[2] &= ~0x20; if (state->config.clock_ctl_1) zl10353_reset_attach[3] = state->config.clock_ctl_1; if (state->config.pll_0) zl10353_reset_attach[4] = state->config.pll_0; /* Do a "hard" reset if not already done */ if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] || zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) { zl10353_write(fe, zl10353_reset_attach, sizeof(zl10353_reset_attach)); if (debug_regs) zl10353_dump_regs(fe); } return 0; } static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct zl10353_state *state = fe->demodulator_priv; u8 val = 0x0a; if (state->config.disable_i2c_gate_ctrl) { /* No tuner attached to the internal I2C bus */ /* If set enable I2C bridge, the main I2C bus stopped hardly */ return 0; } if (enable) val |= 0x10; return zl10353_single_write(fe, 0x62, val); } static void zl10353_release(struct dvb_frontend *fe) { struct zl10353_state *state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops zl10353_ops; struct dvb_frontend *zl10353_attach(const struct zl10353_config *config, struct i2c_adapter *i2c) { struct zl10353_state *state = NULL; int id; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->i2c = i2c; memcpy(&state->config, config, sizeof(struct zl10353_config)); /* check if the demod is there */ id = zl10353_read_register(state, CHIP_ID); if ((id != ID_ZL10353) && (id != ID_CE6230) && (id != ID_CE6231)) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops zl10353_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Zarlink ZL10353 DVB-T", .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 166667, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = zl10353_release, .init = zl10353_init, .sleep = zl10353_sleep, .i2c_gate_ctrl = zl10353_i2c_gate_ctrl, .write = zl10353_write, .set_frontend = zl10353_set_parameters, .get_frontend = zl10353_get_parameters, .get_tune_settings = zl10353_get_tune_settings, .read_status = zl10353_read_status, .read_ber = zl10353_read_ber, .read_signal_strength = zl10353_read_signal_strength, .read_snr = zl10353_read_snr, .read_ucblocks = zl10353_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); module_param(debug_regs, int, 0644); MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off)."); MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver"); MODULE_AUTHOR("Chris Pascoe"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(zl10353_attach);