/* * PPC64 (POWER4) Huge TLB Page Support for Kernel. * * Copyright (C) 2003 David Gibson, IBM Corporation. * * Based on the IA-32 version: * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> */ #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/sysctl.h> #include <asm/mman.h> #include <asm/pgalloc.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> #include <asm/machdep.h> #include <asm/cputable.h> #include <asm/tlb.h> #include <asm/spu.h> #include <linux/sysctl.h> #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT) #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT) #ifdef CONFIG_PPC_64K_PAGES #define HUGEPTE_INDEX_SIZE (PMD_SHIFT-HPAGE_SHIFT) #else #define HUGEPTE_INDEX_SIZE (PUD_SHIFT-HPAGE_SHIFT) #endif #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE) #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << HUGEPTE_INDEX_SIZE) #define HUGEPD_SHIFT (HPAGE_SHIFT + HUGEPTE_INDEX_SIZE) #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT) #define HUGEPD_MASK (~(HUGEPD_SIZE-1)) #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM]) /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad() * will choke on pointers to hugepte tables, which is handy for * catching screwups early. */ #define HUGEPD_OK 0x1 typedef struct { unsigned long pd; } hugepd_t; #define hugepd_none(hpd) ((hpd).pd == 0) static inline pte_t *hugepd_page(hugepd_t hpd) { BUG_ON(!(hpd.pd & HUGEPD_OK)); return (pte_t *)(hpd.pd & ~HUGEPD_OK); } static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr) { unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1)); pte_t *dir = hugepd_page(*hpdp); return dir + idx; } static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, unsigned long address) { pte_t *new = kmem_cache_alloc(huge_pgtable_cache, GFP_KERNEL|__GFP_REPEAT); if (! new) return -ENOMEM; spin_lock(&mm->page_table_lock); if (!hugepd_none(*hpdp)) kmem_cache_free(huge_pgtable_cache, new); else hpdp->pd = (unsigned long)new | HUGEPD_OK; spin_unlock(&mm->page_table_lock); return 0; } /* Modelled after find_linux_pte() */ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { pgd_t *pg; pud_t *pu; BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize); addr &= HPAGE_MASK; pg = pgd_offset(mm, addr); if (!pgd_none(*pg)) { pu = pud_offset(pg, addr); if (!pud_none(*pu)) { #ifdef CONFIG_PPC_64K_PAGES pmd_t *pm; pm = pmd_offset(pu, addr); if (!pmd_none(*pm)) return hugepte_offset((hugepd_t *)pm, addr); #else return hugepte_offset((hugepd_t *)pu, addr); #endif } } return NULL; } pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) { pgd_t *pg; pud_t *pu; hugepd_t *hpdp = NULL; BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize); addr &= HPAGE_MASK; pg = pgd_offset(mm, addr); pu = pud_alloc(mm, pg, addr); if (pu) { #ifdef CONFIG_PPC_64K_PAGES pmd_t *pm; pm = pmd_alloc(mm, pu, addr); if (pm) hpdp = (hugepd_t *)pm; #else hpdp = (hugepd_t *)pu; #endif } if (! hpdp) return NULL; if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr)) return NULL; return hugepte_offset(hpdp, addr); } int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) { return 0; } static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp) { pte_t *hugepte = hugepd_page(*hpdp); hpdp->pd = 0; tlb->need_flush = 1; pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM, PGF_CACHENUM_MASK)); } #ifdef CONFIG_PPC_64K_PAGES static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none(*pmd)) continue; free_hugepte_range(tlb, (hugepd_t *)pmd); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd); } #endif static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); #ifdef CONFIG_PPC_64K_PAGES if (pud_none_or_clear_bad(pud)) continue; hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling); #else if (pud_none(*pud)) continue; free_hugepte_range(tlb, (hugepd_t *)pud); #endif } while (pud++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(pgd, start); pgd_clear(pgd); pud_free_tlb(tlb, pud); } /* * This function frees user-level page tables of a process. * * Must be called with pagetable lock held. */ void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; unsigned long start; /* * Comments below take from the normal free_pgd_range(). They * apply here too. The tests against HUGEPD_MASK below are * essential, because we *don't* test for this at the bottom * level. Without them we'll attempt to free a hugepte table * when we unmap just part of it, even if there are other * active mappings using it. * * The next few lines have given us lots of grief... * * Why are we testing HUGEPD* at this top level? Because * often there will be no work to do at all, and we'd prefer * not to go all the way down to the bottom just to discover * that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we * must be careful to reject "the opposite 0" before it * confuses the subsequent tests. But what about where end is * brought down by HUGEPD_SIZE below? no, end can't go down to * 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= HUGEPD_MASK; if (addr < floor) { addr += HUGEPD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= HUGEPD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= HUGEPD_SIZE; if (addr > end - 1) return; start = addr; pgd = pgd_offset((*tlb)->mm, addr); do { BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize); next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { if (pte_present(*ptep)) { /* We open-code pte_clear because we need to pass the right * argument to hpte_need_flush (huge / !huge). Might not be * necessary anymore if we make hpte_need_flush() get the * page size from the slices */ pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1); } *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); } pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1); return __pte(old); } struct page * follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { pte_t *ptep; struct page *page; if (get_slice_psize(mm, address) != mmu_huge_psize) return ERR_PTR(-EINVAL); ptep = huge_pte_offset(mm, address); page = pte_page(*ptep); if (page) page += (address % HPAGE_SIZE) / PAGE_SIZE; return page; } int pmd_huge(pmd_t pmd) { return 0; } struct page * follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) { BUG(); return NULL; } unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { return slice_get_unmapped_area(addr, len, flags, mmu_huge_psize, 1, 0); } /* * Called by asm hashtable.S for doing lazy icache flush */ static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, pte_t pte, int trap) { struct page *page; int i; if (!pfn_valid(pte_pfn(pte))) return rflags; page = pte_page(pte); /* page is dirty */ if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { if (trap == 0x400) { for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) __flush_dcache_icache(page_address(page+i)); set_bit(PG_arch_1, &page->flags); } else { rflags |= HPTE_R_N; } } return rflags; } int hash_huge_page(struct mm_struct *mm, unsigned long access, unsigned long ea, unsigned long vsid, int local, unsigned long trap) { pte_t *ptep; unsigned long old_pte, new_pte; unsigned long va, rflags, pa; long slot; int err = 1; ptep = huge_pte_offset(mm, ea); /* Search the Linux page table for a match with va */ va = (vsid << 28) | (ea & 0x0fffffff); /* * If no pte found or not present, send the problem up to * do_page_fault */ if (unlikely(!ptep || pte_none(*ptep))) goto out; /* * Check the user's access rights to the page. If access should be * prevented then send the problem up to do_page_fault. */ if (unlikely(access & ~pte_val(*ptep))) goto out; /* * At this point, we have a pte (old_pte) which can be used to build * or update an HPTE. There are 2 cases: * * 1. There is a valid (present) pte with no associated HPTE (this is * the most common case) * 2. There is a valid (present) pte with an associated HPTE. The * current values of the pp bits in the HPTE prevent access * because we are doing software DIRTY bit management and the * page is currently not DIRTY. */ do { old_pte = pte_val(*ptep); if (old_pte & _PAGE_BUSY) goto out; new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED | _PAGE_HASHPTE; } while(old_pte != __cmpxchg_u64((unsigned long *)ptep, old_pte, new_pte)); rflags = 0x2 | (!(new_pte & _PAGE_RW)); /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) /* No CPU has hugepages but lacks no execute, so we * don't need to worry about that case */ rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), trap); /* Check if pte already has an hpte (case 2) */ if (unlikely(old_pte & _PAGE_HASHPTE)) { /* There MIGHT be an HPTE for this pte */ unsigned long hash, slot; hash = hpt_hash(va, HPAGE_SHIFT); if (old_pte & _PAGE_F_SECOND) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += (old_pte & _PAGE_F_GIX) >> 12; if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize, local) == -1) old_pte &= ~_PAGE_HPTEFLAGS; } if (likely(!(old_pte & _PAGE_HASHPTE))) { unsigned long hash = hpt_hash(va, HPAGE_SHIFT); unsigned long hpte_group; pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; repeat: hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; /* clear HPTE slot informations in new PTE */ new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; /* Add in WIMG bits */ /* XXX We should store these in the pte */ /* --BenH: I think they are ... */ rflags |= _PAGE_COHERENT; /* Insert into the hash table, primary slot */ slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, mmu_huge_psize); /* Primary is full, try the secondary */ if (unlikely(slot == -1)) { hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, HPTE_V_SECONDARY, mmu_huge_psize); if (slot == -1) { if (mftb() & 0x1) hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP)&~0x7UL; ppc_md.hpte_remove(hpte_group); goto repeat; } } if (unlikely(slot == -2)) panic("hash_huge_page: pte_insert failed\n"); new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); } /* * No need to use ldarx/stdcx here */ *ptep = __pte(new_pte & ~_PAGE_BUSY); err = 0; out: return err; } static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags) { memset(addr, 0, kmem_cache_size(cache)); } static int __init hugetlbpage_init(void) { if (!cpu_has_feature(CPU_FTR_16M_PAGE)) return -ENODEV; huge_pgtable_cache = kmem_cache_create("hugepte_cache", HUGEPTE_TABLE_SIZE, HUGEPTE_TABLE_SIZE, 0, zero_ctor, NULL); if (! huge_pgtable_cache) panic("hugetlbpage_init(): could not create hugepte cache\n"); return 0; } module_init(hugetlbpage_init);