/******************************************************************************* Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The full GNU General Public License is included in this distribution in the file called LICENSE. Contact Information: Linux NICS e1000-devel Mailing List Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ /* ethtool support for e1000 */ #include "e1000.h" #include struct e1000_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; }; #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ offsetof(struct e1000_adapter, m) static const struct e1000_stats e1000_gstrings_stats[] = { { "rx_packets", E1000_STAT(net_stats.rx_packets) }, { "tx_packets", E1000_STAT(net_stats.tx_packets) }, { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, { "rx_errors", E1000_STAT(net_stats.rx_errors) }, { "tx_errors", E1000_STAT(net_stats.tx_errors) }, { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, { "multicast", E1000_STAT(net_stats.multicast) }, { "collisions", E1000_STAT(net_stats.collisions) }, { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, { "tx_deferred_ok", E1000_STAT(stats.dc) }, { "tx_single_coll_ok", E1000_STAT(stats.scc) }, { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, { "rx_long_length_errors", E1000_STAT(stats.roc) }, { "rx_short_length_errors", E1000_STAT(stats.ruc) }, { "rx_align_errors", E1000_STAT(stats.algnerrc) }, { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, { "rx_header_split", E1000_STAT(rx_hdr_split) }, { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, }; #define E1000_QUEUE_STATS_LEN 0 #define E1000_GLOBAL_STATS_LEN \ sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { "Register test (offline)", "Eeprom test (offline)", "Interrupt test (offline)", "Loopback test (offline)", "Link test (on/offline)" }; #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN static int e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; if (hw->media_type == e1000_media_type_copper) { ecmd->supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full| SUPPORTED_Autoneg | SUPPORTED_TP); ecmd->advertising = ADVERTISED_TP; if (hw->autoneg == 1) { ecmd->advertising |= ADVERTISED_Autoneg; /* the e1000 autoneg seems to match ethtool nicely */ ecmd->advertising |= hw->autoneg_advertised; } ecmd->port = PORT_TP; ecmd->phy_address = hw->phy_addr; if (hw->mac_type == e1000_82543) ecmd->transceiver = XCVR_EXTERNAL; else ecmd->transceiver = XCVR_INTERNAL; } else { ecmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE | SUPPORTED_Autoneg); ecmd->advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg); ecmd->port = PORT_FIBRE; if (hw->mac_type >= e1000_82545) ecmd->transceiver = XCVR_INTERNAL; else ecmd->transceiver = XCVR_EXTERNAL; } if (netif_carrier_ok(adapter->netdev)) { e1000_get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); ecmd->speed = adapter->link_speed; /* unfortunatly FULL_DUPLEX != DUPLEX_FULL * and HALF_DUPLEX != DUPLEX_HALF */ if (adapter->link_duplex == FULL_DUPLEX) ecmd->duplex = DUPLEX_FULL; else ecmd->duplex = DUPLEX_HALF; } else { ecmd->speed = -1; ecmd->duplex = -1; } ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; return 0; } static int e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* When SoL/IDER sessions are active, autoneg/speed/duplex * cannot be changed */ if (e1000_check_phy_reset_block(hw)) { DPRINTK(DRV, ERR, "Cannot change link characteristics " "when SoL/IDER is active.\n"); return -EINVAL; } if (ecmd->autoneg == AUTONEG_ENABLE) { hw->autoneg = 1; if (hw->media_type == e1000_media_type_fiber) hw->autoneg_advertised = ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg; else hw->autoneg_advertised = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| ADVERTISED_Autoneg | ADVERTISED_TP; ecmd->advertising = hw->autoneg_advertised; } else if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) return -EINVAL; /* reset the link */ if (netif_running(adapter->netdev)) { e1000_down(adapter); e1000_reset(adapter); e1000_up(adapter); } else e1000_reset(adapter); return 0; } static void e1000_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pause->autoneg = (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); if (hw->fc == e1000_fc_rx_pause) pause->rx_pause = 1; else if (hw->fc == e1000_fc_tx_pause) pause->tx_pause = 1; else if (hw->fc == e1000_fc_full) { pause->rx_pause = 1; pause->tx_pause = 1; } } static int e1000_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; adapter->fc_autoneg = pause->autoneg; if (pause->rx_pause && pause->tx_pause) hw->fc = e1000_fc_full; else if (pause->rx_pause && !pause->tx_pause) hw->fc = e1000_fc_rx_pause; else if (!pause->rx_pause && pause->tx_pause) hw->fc = e1000_fc_tx_pause; else if (!pause->rx_pause && !pause->tx_pause) hw->fc = e1000_fc_none; hw->original_fc = hw->fc; if (adapter->fc_autoneg == AUTONEG_ENABLE) { if (netif_running(adapter->netdev)) { e1000_down(adapter); e1000_up(adapter); } else e1000_reset(adapter); } else return ((hw->media_type == e1000_media_type_fiber) ? e1000_setup_link(hw) : e1000_force_mac_fc(hw)); return 0; } static uint32_t e1000_get_rx_csum(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->rx_csum; } static int e1000_set_rx_csum(struct net_device *netdev, uint32_t data) { struct e1000_adapter *adapter = netdev_priv(netdev); adapter->rx_csum = data; if (netif_running(netdev)) { e1000_down(adapter); e1000_up(adapter); } else e1000_reset(adapter); return 0; } static uint32_t e1000_get_tx_csum(struct net_device *netdev) { return (netdev->features & NETIF_F_HW_CSUM) != 0; } static int e1000_set_tx_csum(struct net_device *netdev, uint32_t data) { struct e1000_adapter *adapter = netdev_priv(netdev); if (adapter->hw.mac_type < e1000_82543) { if (!data) return -EINVAL; return 0; } if (data) netdev->features |= NETIF_F_HW_CSUM; else netdev->features &= ~NETIF_F_HW_CSUM; return 0; } #ifdef NETIF_F_TSO static int e1000_set_tso(struct net_device *netdev, uint32_t data) { struct e1000_adapter *adapter = netdev_priv(netdev); if ((adapter->hw.mac_type < e1000_82544) || (adapter->hw.mac_type == e1000_82547)) return data ? -EINVAL : 0; if (data) netdev->features |= NETIF_F_TSO; else netdev->features &= ~NETIF_F_TSO; DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled"); adapter->tso_force = TRUE; return 0; } #endif /* NETIF_F_TSO */ static uint32_t e1000_get_msglevel(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } static void e1000_set_msglevel(struct net_device *netdev, uint32_t data) { struct e1000_adapter *adapter = netdev_priv(netdev); adapter->msg_enable = data; } static int e1000_get_regs_len(struct net_device *netdev) { #define E1000_REGS_LEN 32 return E1000_REGS_LEN * sizeof(uint32_t); } static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; uint32_t *regs_buff = p; uint16_t phy_data; memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; regs_buff[0] = E1000_READ_REG(hw, CTRL); regs_buff[1] = E1000_READ_REG(hw, STATUS); regs_buff[2] = E1000_READ_REG(hw, RCTL); regs_buff[3] = E1000_READ_REG(hw, RDLEN); regs_buff[4] = E1000_READ_REG(hw, RDH); regs_buff[5] = E1000_READ_REG(hw, RDT); regs_buff[6] = E1000_READ_REG(hw, RDTR); regs_buff[7] = E1000_READ_REG(hw, TCTL); regs_buff[8] = E1000_READ_REG(hw, TDLEN); regs_buff[9] = E1000_READ_REG(hw, TDH); regs_buff[10] = E1000_READ_REG(hw, TDT); regs_buff[11] = E1000_READ_REG(hw, TIDV); regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ if (hw->phy_type == e1000_phy_igp) { e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_A); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[13] = (uint32_t)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_B); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[14] = (uint32_t)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_C); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[15] = (uint32_t)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_D); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[16] = (uint32_t)phy_data; /* cable length */ regs_buff[17] = 0; /* extended 10bt distance (not needed) */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_PCS_INIT_REG); e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ regs_buff[20] = 0; /* polarity correction enabled (always) */ regs_buff[22] = 0; /* phy receive errors (unavailable) */ regs_buff[23] = regs_buff[18]; /* mdix mode */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); } else { e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); regs_buff[13] = (uint32_t)phy_data; /* cable length */ regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ regs_buff[18] = regs_buff[13]; /* cable polarity */ regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[20] = regs_buff[17]; /* polarity correction */ /* phy receive errors */ regs_buff[22] = adapter->phy_stats.receive_errors; regs_buff[23] = regs_buff[13]; /* mdix mode */ } regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ if (hw->mac_type >= e1000_82540 && hw->media_type == e1000_media_type_copper) { regs_buff[26] = E1000_READ_REG(hw, MANC); } } static int e1000_get_eeprom_len(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->hw.eeprom.word_size * 2; } static int e1000_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, uint8_t *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; uint16_t *eeprom_buff; int first_word, last_word; int ret_val = 0; uint16_t i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = hw->vendor_id | (hw->device_id << 16); first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(uint16_t) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; if (hw->eeprom.type == e1000_eeprom_spi) ret_val = e1000_read_eeprom(hw, first_word, last_word - first_word + 1, eeprom_buff); else { for (i = 0; i < last_word - first_word + 1; i++) if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1, &eeprom_buff[i]))) break; } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return ret_val; } static int e1000_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, uint8_t *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; uint16_t *eeprom_buff; void *ptr; int max_len, first_word, last_word, ret_val = 0; uint16_t i; if (eeprom->len == 0) return -EOPNOTSUPP; if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) return -EFAULT; max_len = hw->eeprom.word_size * 2; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = (void *)eeprom_buff; if (eeprom->offset & 1) { /* need read/modify/write of first changed EEPROM word */ /* only the second byte of the word is being modified */ ret_val = e1000_read_eeprom(hw, first_word, 1, &eeprom_buff[0]); ptr++; } if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { /* need read/modify/write of last changed EEPROM word */ /* only the first byte of the word is being modified */ ret_val = e1000_read_eeprom(hw, last_word, 1, &eeprom_buff[last_word - first_word]); } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_word - first_word + 1; i++) eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); ret_val = e1000_write_eeprom(hw, first_word, last_word - first_word + 1, eeprom_buff); /* Update the checksum over the first part of the EEPROM if needed * and flush shadow RAM for 82573 conrollers */ if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || (hw->mac_type == e1000_82573))) e1000_update_eeprom_checksum(hw); kfree(eeprom_buff); return ret_val; } static void e1000_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct e1000_adapter *adapter = netdev_priv(netdev); char firmware_version[32]; uint16_t eeprom_data; strncpy(drvinfo->driver, e1000_driver_name, 32); strncpy(drvinfo->version, e1000_driver_version, 32); /* EEPROM image version # is reported as firmware version # for * 8257{1|2|3} controllers */ e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data); switch (adapter->hw.mac_type) { case e1000_82571: case e1000_82572: case e1000_82573: case e1000_80003es2lan: sprintf(firmware_version, "%d.%d-%d", (eeprom_data & 0xF000) >> 12, (eeprom_data & 0x0FF0) >> 4, eeprom_data & 0x000F); break; default: sprintf(firmware_version, "N/A"); } strncpy(drvinfo->fw_version, firmware_version, 32); strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); drvinfo->n_stats = E1000_STATS_LEN; drvinfo->testinfo_len = E1000_TEST_LEN; drvinfo->regdump_len = e1000_get_regs_len(netdev); drvinfo->eedump_len = e1000_get_eeprom_len(netdev); } static void e1000_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); e1000_mac_type mac_type = adapter->hw.mac_type; struct e1000_tx_ring *txdr = adapter->tx_ring; struct e1000_rx_ring *rxdr = adapter->rx_ring; ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : E1000_MAX_82544_RXD; ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : E1000_MAX_82544_TXD; ring->rx_mini_max_pending = 0; ring->rx_jumbo_max_pending = 0; ring->rx_pending = rxdr->count; ring->tx_pending = txdr->count; ring->rx_mini_pending = 0; ring->rx_jumbo_pending = 0; } static int e1000_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); e1000_mac_type mac_type = adapter->hw.mac_type; struct e1000_tx_ring *txdr, *tx_old, *tx_new; struct e1000_rx_ring *rxdr, *rx_old, *rx_new; int i, err, tx_ring_size, rx_ring_size; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; if (netif_running(adapter->netdev)) e1000_down(adapter); tx_old = adapter->tx_ring; rx_old = adapter->rx_ring; adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL); if (!adapter->tx_ring) { err = -ENOMEM; goto err_setup_rx; } memset(adapter->tx_ring, 0, tx_ring_size); adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL); if (!adapter->rx_ring) { kfree(adapter->tx_ring); err = -ENOMEM; goto err_setup_rx; } memset(adapter->rx_ring, 0, rx_ring_size); txdr = adapter->tx_ring; rxdr = adapter->rx_ring; rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD)); E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD)); E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); for (i = 0; i < adapter->num_tx_queues; i++) txdr[i].count = txdr->count; for (i = 0; i < adapter->num_rx_queues; i++) rxdr[i].count = rxdr->count; if (netif_running(adapter->netdev)) { /* Try to get new resources before deleting old */ if ((err = e1000_setup_all_rx_resources(adapter))) goto err_setup_rx; if ((err = e1000_setup_all_tx_resources(adapter))) goto err_setup_tx; /* save the new, restore the old in order to free it, * then restore the new back again */ rx_new = adapter->rx_ring; tx_new = adapter->tx_ring; adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; e1000_free_all_rx_resources(adapter); e1000_free_all_tx_resources(adapter); kfree(tx_old); kfree(rx_old); adapter->rx_ring = rx_new; adapter->tx_ring = tx_new; if ((err = e1000_up(adapter))) return err; } return 0; err_setup_tx: e1000_free_all_rx_resources(adapter); err_setup_rx: adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; e1000_up(adapter); return err; } #define REG_PATTERN_TEST(R, M, W) \ { \ uint32_t pat, value; \ uint32_t test[] = \ {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ value = E1000_READ_REG(&adapter->hw, R); \ if (value != (test[pat] & W & M)) { \ DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ "0x%08X expected 0x%08X\n", \ E1000_##R, value, (test[pat] & W & M)); \ *data = (adapter->hw.mac_type < e1000_82543) ? \ E1000_82542_##R : E1000_##R; \ return 1; \ } \ } \ } #define REG_SET_AND_CHECK(R, M, W) \ { \ uint32_t value; \ E1000_WRITE_REG(&adapter->hw, R, W & M); \ value = E1000_READ_REG(&adapter->hw, R); \ if ((W & M) != (value & M)) { \ DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ *data = (adapter->hw.mac_type < e1000_82543) ? \ E1000_82542_##R : E1000_##R; \ return 1; \ } \ } static int e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) { uint32_t value, before, after; uint32_t i, toggle; /* The status register is Read Only, so a write should fail. * Some bits that get toggled are ignored. */ switch (adapter->hw.mac_type) { /* there are several bits on newer hardware that are r/w */ case e1000_82571: case e1000_82572: case e1000_80003es2lan: toggle = 0x7FFFF3FF; break; case e1000_82573: toggle = 0x7FFFF033; break; default: toggle = 0xFFFFF833; break; } before = E1000_READ_REG(&adapter->hw, STATUS); value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); E1000_WRITE_REG(&adapter->hw, STATUS, toggle); after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; if (value != after) { DPRINTK(DRV, ERR, "failed STATUS register test got: " "0x%08X expected: 0x%08X\n", after, value); *data = 1; return 1; } /* restore previous status */ E1000_WRITE_REG(&adapter->hw, STATUS, before); REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); if (adapter->hw.mac_type >= e1000_82543) { REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); for (i = 0; i < E1000_RAR_ENTRIES; i++) { REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 0xFFFFFFFF); } } else { REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); } for (i = 0; i < E1000_MC_TBL_SIZE; i++) REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); *data = 0; return 0; } static int e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) { uint16_t temp; uint16_t checksum = 0; uint16_t i; *data = 0; /* Read and add up the contents of the EEPROM */ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { *data = 1; break; } checksum += temp; } /* If Checksum is not Correct return error else test passed */ if ((checksum != (uint16_t) EEPROM_SUM) && !(*data)) *data = 2; return *data; } static irqreturn_t e1000_test_intr(int irq, void *data, struct pt_regs *regs) { struct net_device *netdev = (struct net_device *) data; struct e1000_adapter *adapter = netdev_priv(netdev); adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); return IRQ_HANDLED; } static int e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) { struct net_device *netdev = adapter->netdev; uint32_t mask, i=0, shared_int = TRUE; uint32_t irq = adapter->pdev->irq; *data = 0; /* Hook up test interrupt handler just for this test */ if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name, netdev)) { shared_int = FALSE; } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ, netdev->name, netdev)){ *data = 1; return -1; } DPRINTK(PROBE,INFO, "testing %s interrupt\n", (shared_int ? "shared" : "unshared")); /* Disable all the interrupts */ E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); msec_delay(10); /* Test each interrupt */ for (; i < 10; i++) { /* Interrupt to test */ mask = 1 << i; if (!shared_int) { /* Disable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; E1000_WRITE_REG(&adapter->hw, IMC, mask); E1000_WRITE_REG(&adapter->hw, ICS, mask); msec_delay(10); if (adapter->test_icr & mask) { *data = 3; break; } } /* Enable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was not posted to the bus, the * test failed. */ adapter->test_icr = 0; E1000_WRITE_REG(&adapter->hw, IMS, mask); E1000_WRITE_REG(&adapter->hw, ICS, mask); msec_delay(10); if (!(adapter->test_icr & mask)) { *data = 4; break; } if (!shared_int) { /* Disable the other interrupts to be reported in * the cause register and then force the other * interrupts and see if any get posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); msec_delay(10); if (adapter->test_icr) { *data = 5; break; } } } /* Disable all the interrupts */ E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); msec_delay(10); /* Unhook test interrupt handler */ free_irq(irq, netdev); return *data; } static void e1000_free_desc_rings(struct e1000_adapter *adapter) { struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; int i; if (txdr->desc && txdr->buffer_info) { for (i = 0; i < txdr->count; i++) { if (txdr->buffer_info[i].dma) pci_unmap_single(pdev, txdr->buffer_info[i].dma, txdr->buffer_info[i].length, PCI_DMA_TODEVICE); if (txdr->buffer_info[i].skb) dev_kfree_skb(txdr->buffer_info[i].skb); } } if (rxdr->desc && rxdr->buffer_info) { for (i = 0; i < rxdr->count; i++) { if (rxdr->buffer_info[i].dma) pci_unmap_single(pdev, rxdr->buffer_info[i].dma, rxdr->buffer_info[i].length, PCI_DMA_FROMDEVICE); if (rxdr->buffer_info[i].skb) dev_kfree_skb(rxdr->buffer_info[i].skb); } } if (txdr->desc) { pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); txdr->desc = NULL; } if (rxdr->desc) { pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); rxdr->desc = NULL; } kfree(txdr->buffer_info); txdr->buffer_info = NULL; kfree(rxdr->buffer_info); rxdr->buffer_info = NULL; return; } static int e1000_setup_desc_rings(struct e1000_adapter *adapter) { struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; uint32_t rctl; int size, i, ret_val; /* Setup Tx descriptor ring and Tx buffers */ if (!txdr->count) txdr->count = E1000_DEFAULT_TXD; size = txdr->count * sizeof(struct e1000_buffer); if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { ret_val = 1; goto err_nomem; } memset(txdr->buffer_info, 0, size); txdr->size = txdr->count * sizeof(struct e1000_tx_desc); E1000_ROUNDUP(txdr->size, 4096); if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { ret_val = 2; goto err_nomem; } memset(txdr->desc, 0, txdr->size); txdr->next_to_use = txdr->next_to_clean = 0; E1000_WRITE_REG(&adapter->hw, TDBAL, ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); E1000_WRITE_REG(&adapter->hw, TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); E1000_WRITE_REG(&adapter->hw, TDH, 0); E1000_WRITE_REG(&adapter->hw, TDT, 0); E1000_WRITE_REG(&adapter->hw, TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); for (i = 0; i < txdr->count; i++) { struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); struct sk_buff *skb; unsigned int size = 1024; if (!(skb = alloc_skb(size, GFP_KERNEL))) { ret_val = 3; goto err_nomem; } skb_put(skb, size); txdr->buffer_info[i].skb = skb; txdr->buffer_info[i].length = skb->len; txdr->buffer_info[i].dma = pci_map_single(pdev, skb->data, skb->len, PCI_DMA_TODEVICE); tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); tx_desc->lower.data = cpu_to_le32(skb->len); tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RPS); tx_desc->upper.data = 0; } /* Setup Rx descriptor ring and Rx buffers */ if (!rxdr->count) rxdr->count = E1000_DEFAULT_RXD; size = rxdr->count * sizeof(struct e1000_buffer); if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { ret_val = 4; goto err_nomem; } memset(rxdr->buffer_info, 0, size); rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { ret_val = 5; goto err_nomem; } memset(rxdr->desc, 0, rxdr->size); rxdr->next_to_use = rxdr->next_to_clean = 0; rctl = E1000_READ_REG(&adapter->hw, RCTL); E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); E1000_WRITE_REG(&adapter->hw, RDBAL, ((uint64_t) rxdr->dma & 0xFFFFFFFF)); E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); E1000_WRITE_REG(&adapter->hw, RDH, 0); E1000_WRITE_REG(&adapter->hw, RDT, 0); rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); E1000_WRITE_REG(&adapter->hw, RCTL, rctl); for (i = 0; i < rxdr->count; i++) { struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); struct sk_buff *skb; if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL))) { ret_val = 6; goto err_nomem; } skb_reserve(skb, NET_IP_ALIGN); rxdr->buffer_info[i].skb = skb; rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; rxdr->buffer_info[i].dma = pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, PCI_DMA_FROMDEVICE); rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); memset(skb->data, 0x00, skb->len); } return 0; err_nomem: e1000_free_desc_rings(adapter); return ret_val; } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) { /* Write out to PHY registers 29 and 30 to disable the Receiver. */ e1000_write_phy_reg(&adapter->hw, 29, 0x001F); e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); e1000_write_phy_reg(&adapter->hw, 29, 0x001A); e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); } static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) { uint16_t phy_reg; /* Because we reset the PHY above, we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock. This * value defaults back to a 2.5MHz clock when the PHY is reset. */ e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); phy_reg |= M88E1000_EPSCR_TX_CLK_25; e1000_write_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); /* In addition, because of the s/w reset above, we need to enable * CRS on TX. This must be set for both full and half duplex * operation. */ e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); } static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) { uint32_t ctrl_reg; uint16_t phy_reg; /* Setup the Device Control Register for PHY loopback test. */ ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ E1000_CTRL_FD); /* Force Duplex to FULL */ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); /* Read the PHY Specific Control Register (0x10) */ e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); /* Clear Auto-Crossover bits in PHY Specific Control Register * (bits 6:5). */ phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); /* Perform software reset on the PHY */ e1000_phy_reset(&adapter->hw); /* Have to setup TX_CLK and TX_CRS after software reset */ e1000_phy_reset_clk_and_crs(adapter); e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); /* Wait for reset to complete. */ udelay(500); /* Have to setup TX_CLK and TX_CRS after software reset */ e1000_phy_reset_clk_and_crs(adapter); /* Write out to PHY registers 29 and 30 to disable the Receiver. */ e1000_phy_disable_receiver(adapter); /* Set the loopback bit in the PHY control register. */ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); phy_reg |= MII_CR_LOOPBACK; e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); /* Setup TX_CLK and TX_CRS one more time. */ e1000_phy_reset_clk_and_crs(adapter); /* Check Phy Configuration */ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); if (phy_reg != 0x4100) return 9; e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); if (phy_reg != 0x0070) return 10; e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); if (phy_reg != 0x001A) return 11; return 0; } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) { uint32_t ctrl_reg = 0; uint32_t stat_reg = 0; adapter->hw.autoneg = FALSE; if (adapter->hw.phy_type == e1000_phy_m88) { /* Auto-MDI/MDIX Off */ e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, 0x0808); /* reset to update Auto-MDI/MDIX */ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); /* autoneg off */ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); } else if (adapter->hw.phy_type == e1000_phy_gg82563) { e1000_write_phy_reg(&adapter->hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); } /* force 1000, set loopback */ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); /* Now set up the MAC to the same speed/duplex as the PHY. */ ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ E1000_CTRL_FD); /* Force Duplex to FULL */ if (adapter->hw.media_type == e1000_media_type_copper && adapter->hw.phy_type == e1000_phy_m88) { ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ } else { /* Set the ILOS bit on the fiber Nic is half * duplex link is detected. */ stat_reg = E1000_READ_REG(&adapter->hw, STATUS); if ((stat_reg & E1000_STATUS_FD) == 0) ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); } E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); /* Disable the receiver on the PHY so when a cable is plugged in, the * PHY does not begin to autoneg when a cable is reconnected to the NIC. */ if (adapter->hw.phy_type == e1000_phy_m88) e1000_phy_disable_receiver(adapter); udelay(500); return 0; } static int e1000_set_phy_loopback(struct e1000_adapter *adapter) { uint16_t phy_reg = 0; uint16_t count = 0; switch (adapter->hw.mac_type) { case e1000_82543: if (adapter->hw.media_type == e1000_media_type_copper) { /* Attempt to setup Loopback mode on Non-integrated PHY. * Some PHY registers get corrupted at random, so * attempt this 10 times. */ while (e1000_nonintegrated_phy_loopback(adapter) && count++ < 10); if (count < 11) return 0; } break; case e1000_82544: case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: case e1000_82571: case e1000_82572: case e1000_82573: case e1000_80003es2lan: return e1000_integrated_phy_loopback(adapter); break; default: /* Default PHY loopback work is to read the MII * control register and assert bit 14 (loopback mode). */ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); phy_reg |= MII_CR_LOOPBACK; e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); return 0; break; } return 8; } static int e1000_setup_loopback_test(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; uint32_t rctl; if (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes) { switch (hw->mac_type) { case e1000_82545: case e1000_82546: case e1000_82545_rev_3: case e1000_82546_rev_3: return e1000_set_phy_loopback(adapter); break; case e1000_82571: case e1000_82572: #define E1000_SERDES_LB_ON 0x410 e1000_set_phy_loopback(adapter); E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON); msec_delay(10); return 0; break; default: rctl = E1000_READ_REG(hw, RCTL); rctl |= E1000_RCTL_LBM_TCVR; E1000_WRITE_REG(hw, RCTL, rctl); return 0; } } else if (hw->media_type == e1000_media_type_copper) return e1000_set_phy_loopback(adapter); return 7; } static void e1000_loopback_cleanup(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; uint32_t rctl; uint16_t phy_reg; rctl = E1000_READ_REG(hw, RCTL); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); E1000_WRITE_REG(hw, RCTL, rctl); switch (hw->mac_type) { case e1000_82571: case e1000_82572: if (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes) { #define E1000_SERDES_LB_OFF 0x400 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF); msec_delay(10); break; } /* Fall Through */ case e1000_82545: case e1000_82546: case e1000_82545_rev_3: case e1000_82546_rev_3: default: hw->autoneg = TRUE; if (hw->phy_type == e1000_phy_gg82563) { e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); } e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); if (phy_reg & MII_CR_LOOPBACK) { phy_reg &= ~MII_CR_LOOPBACK; e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); e1000_phy_reset(hw); } break; } } static void e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { memset(skb->data, 0xFF, frame_size); frame_size &= ~1; memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); } static int e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { frame_size &= ~1; if (*(skb->data + 3) == 0xFF) { if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && (*(skb->data + frame_size / 2 + 12) == 0xAF)) { return 0; } } return 13; } static int e1000_run_loopback_test(struct e1000_adapter *adapter) { struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; int i, j, k, l, lc, good_cnt, ret_val=0; unsigned long time; E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); /* Calculate the loop count based on the largest descriptor ring * The idea is to wrap the largest ring a number of times using 64 * send/receive pairs during each loop */ if (rxdr->count <= txdr->count) lc = ((txdr->count / 64) * 2) + 1; else lc = ((rxdr->count / 64) * 2) + 1; k = l = 0; for (j = 0; j <= lc; j++) { /* loop count loop */ for (i = 0; i < 64; i++) { /* send the packets */ e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); pci_dma_sync_single_for_device(pdev, txdr->buffer_info[k].dma, txdr->buffer_info[k].length, PCI_DMA_TODEVICE); if (unlikely(++k == txdr->count)) k = 0; } E1000_WRITE_REG(&adapter->hw, TDT, k); msec_delay(200); time = jiffies; /* set the start time for the receive */ good_cnt = 0; do { /* receive the sent packets */ pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[l].dma, rxdr->buffer_info[l].length, PCI_DMA_FROMDEVICE); ret_val = e1000_check_lbtest_frame( rxdr->buffer_info[l].skb, 1024); if (!ret_val) good_cnt++; if (unlikely(++l == rxdr->count)) l = 0; /* time + 20 msecs (200 msecs on 2.4) is more than * enough time to complete the receives, if it's * exceeded, break and error off */ } while (good_cnt < 64 && jiffies < (time + 20)); if (good_cnt != 64) { ret_val = 13; /* ret_val is the same as mis-compare */ break; } if (jiffies >= (time + 2)) { ret_val = 14; /* error code for time out error */ break; } } /* end loop count loop */ return ret_val; } static int e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) { /* PHY loopback cannot be performed if SoL/IDER * sessions are active */ if (e1000_check_phy_reset_block(&adapter->hw)) { DPRINTK(DRV, ERR, "Cannot do PHY loopback test " "when SoL/IDER is active.\n"); *data = 0; goto out; } if ((*data = e1000_setup_desc_rings(adapter))) goto out; if ((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; *data = e1000_run_loopback_test(adapter); e1000_loopback_cleanup(adapter); err_loopback: e1000_free_desc_rings(adapter); out: return *data; } static int e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) { *data = 0; if (adapter->hw.media_type == e1000_media_type_internal_serdes) { int i = 0; adapter->hw.serdes_link_down = TRUE; /* On some blade server designs, link establishment * could take as long as 2-3 minutes */ do { e1000_check_for_link(&adapter->hw); if (adapter->hw.serdes_link_down == FALSE) return *data; msec_delay(20); } while (i++ < 3750); *data = 1; } else { e1000_check_for_link(&adapter->hw); if (adapter->hw.autoneg) /* if auto_neg is set wait for it */ msec_delay(4000); if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { *data = 1; } } return *data; } static int e1000_diag_test_count(struct net_device *netdev) { return E1000_TEST_LEN; } static void e1000_diag_test(struct net_device *netdev, struct ethtool_test *eth_test, uint64_t *data) { struct e1000_adapter *adapter = netdev_priv(netdev); boolean_t if_running = netif_running(netdev); if (eth_test->flags == ETH_TEST_FL_OFFLINE) { /* Offline tests */ /* save speed, duplex, autoneg settings */ uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; uint8_t autoneg = adapter->hw.autoneg; /* Link test performed before hardware reset so autoneg doesn't * interfere with test result */ if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; if (if_running) e1000_down(adapter); else e1000_reset(adapter); if (e1000_reg_test(adapter, &data[0])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); if (e1000_eeprom_test(adapter, &data[1])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); if (e1000_intr_test(adapter, &data[2])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); if (e1000_loopback_test(adapter, &data[3])) eth_test->flags |= ETH_TEST_FL_FAILED; /* restore speed, duplex, autoneg settings */ adapter->hw.autoneg_advertised = autoneg_advertised; adapter->hw.forced_speed_duplex = forced_speed_duplex; adapter->hw.autoneg = autoneg; e1000_reset(adapter); if (if_running) e1000_up(adapter); } else { /* Online tests */ if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; /* Offline tests aren't run; pass by default */ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; } msleep_interruptible(4 * 1000); } static void e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; switch (adapter->hw.device_id) { case E1000_DEV_ID_82542: case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: case E1000_DEV_ID_82545EM_FIBER: case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER: wol->supported = 0; wol->wolopts = 0; return; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* device id 10B5 port-A supports wol */ if (!adapter->ksp3_port_a) { wol->supported = 0; return; } /* KSP3 does not suppport UCAST wake-ups for any interface */ wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; if (adapter->wol & E1000_WUFC_EX) DPRINTK(DRV, ERR, "Interface does not support " "directed (unicast) frame wake-up packets\n"); wol->wolopts = 0; goto do_defaults; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82571EB_FIBER: /* Wake events only supported on port A for dual fiber */ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { wol->supported = 0; wol->wolopts = 0; return; } /* Fall Through */ default: wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; wol->wolopts = 0; do_defaults: if (adapter->wol & E1000_WUFC_EX) wol->wolopts |= WAKE_UCAST; if (adapter->wol & E1000_WUFC_MC) wol->wolopts |= WAKE_MCAST; if (adapter->wol & E1000_WUFC_BC) wol->wolopts |= WAKE_BCAST; if (adapter->wol & E1000_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; return; } } static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; switch (adapter->hw.device_id) { case E1000_DEV_ID_82542: case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER: case E1000_DEV_ID_82545EM_FIBER: case E1000_DEV_ID_82545EM_COPPER: return wol->wolopts ? -EOPNOTSUPP : 0; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* device id 10B5 port-A supports wol */ if (!adapter->ksp3_port_a) return wol->wolopts ? -EOPNOTSUPP : 0; if (wol->wolopts & WAKE_UCAST) { DPRINTK(DRV, ERR, "Interface does not support " "directed (unicast) frame wake-up packets\n"); return -EOPNOTSUPP; } case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82571EB_FIBER: /* Wake events only supported on port A for dual fiber */ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) return wol->wolopts ? -EOPNOTSUPP : 0; /* Fall Through */ default: if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) return -EOPNOTSUPP; adapter->wol = 0; if (wol->wolopts & WAKE_UCAST) adapter->wol |= E1000_WUFC_EX; if (wol->wolopts & WAKE_MCAST) adapter->wol |= E1000_WUFC_MC; if (wol->wolopts & WAKE_BCAST) adapter->wol |= E1000_WUFC_BC; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= E1000_WUFC_MAG; } return 0; } /* toggle LED 4 times per second = 2 "blinks" per second */ #define E1000_ID_INTERVAL (HZ/4) /* bit defines for adapter->led_status */ #define E1000_LED_ON 0 static void e1000_led_blink_callback(unsigned long data) { struct e1000_adapter *adapter = (struct e1000_adapter *) data; if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) e1000_led_off(&adapter->hw); else e1000_led_on(&adapter->hw); mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); } static int e1000_phys_id(struct net_device *netdev, uint32_t data) { struct e1000_adapter *adapter = netdev_priv(netdev); if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); if (adapter->hw.mac_type < e1000_82571) { if (!adapter->blink_timer.function) { init_timer(&adapter->blink_timer); adapter->blink_timer.function = e1000_led_blink_callback; adapter->blink_timer.data = (unsigned long) adapter; } e1000_setup_led(&adapter->hw); mod_timer(&adapter->blink_timer, jiffies); msleep_interruptible(data * 1000); del_timer_sync(&adapter->blink_timer); } else if (adapter->hw.mac_type < e1000_82573) { E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT))); msleep_interruptible(data * 1000); } else { E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE | E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); msleep_interruptible(data * 1000); } e1000_led_off(&adapter->hw); clear_bit(E1000_LED_ON, &adapter->led_status); e1000_cleanup_led(&adapter->hw); return 0; } static int e1000_nway_reset(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { e1000_down(adapter); e1000_up(adapter); } return 0; } static int e1000_get_stats_count(struct net_device *netdev) { return E1000_STATS_LEN; } static void e1000_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, uint64_t *data) { struct e1000_adapter *adapter = netdev_priv(netdev); int i; e1000_update_stats(adapter); for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; data[i] = (e1000_gstrings_stats[i].sizeof_stat == sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; } /* BUG_ON(i != E1000_STATS_LEN); */ } static void e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) { uint8_t *p = data; int i; switch (stringset) { case ETH_SS_TEST: memcpy(data, *e1000_gstrings_test, E1000_TEST_LEN*ETH_GSTRING_LEN); break; case ETH_SS_STATS: for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { memcpy(p, e1000_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ break; } } static struct ethtool_ops e1000_ethtool_ops = { .get_settings = e1000_get_settings, .set_settings = e1000_set_settings, .get_drvinfo = e1000_get_drvinfo, .get_regs_len = e1000_get_regs_len, .get_regs = e1000_get_regs, .get_wol = e1000_get_wol, .set_wol = e1000_set_wol, .get_msglevel = e1000_get_msglevel, .set_msglevel = e1000_set_msglevel, .nway_reset = e1000_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = e1000_get_eeprom_len, .get_eeprom = e1000_get_eeprom, .set_eeprom = e1000_set_eeprom, .get_ringparam = e1000_get_ringparam, .set_ringparam = e1000_set_ringparam, .get_pauseparam = e1000_get_pauseparam, .set_pauseparam = e1000_set_pauseparam, .get_rx_csum = e1000_get_rx_csum, .set_rx_csum = e1000_set_rx_csum, .get_tx_csum = e1000_get_tx_csum, .set_tx_csum = e1000_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = e1000_set_tso, #endif .self_test_count = e1000_diag_test_count, .self_test = e1000_diag_test, .get_strings = e1000_get_strings, .phys_id = e1000_phys_id, .get_stats_count = e1000_get_stats_count, .get_ethtool_stats = e1000_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, }; void e1000_set_ethtool_ops(struct net_device *netdev) { SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); }