/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "../i915_selftest.h" #include "i915_random.h" #include "mock_drm.h" static void fake_free_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { sg_free_table(pages); kfree(pages); } static struct sg_table * fake_get_pages(struct drm_i915_gem_object *obj) { #define GFP (GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY) #define PFN_BIAS 0x1000 struct sg_table *pages; struct scatterlist *sg; typeof(obj->base.size) rem; pages = kmalloc(sizeof(*pages), GFP); if (!pages) return ERR_PTR(-ENOMEM); rem = round_up(obj->base.size, BIT(31)) >> 31; if (sg_alloc_table(pages, rem, GFP)) { kfree(pages); return ERR_PTR(-ENOMEM); } rem = obj->base.size; for (sg = pages->sgl; sg; sg = sg_next(sg)) { unsigned long len = min_t(typeof(rem), rem, BIT(31)); sg_set_page(sg, pfn_to_page(PFN_BIAS), len, 0); sg_dma_address(sg) = page_to_phys(sg_page(sg)); sg_dma_len(sg) = len; rem -= len; } obj->mm.madv = I915_MADV_DONTNEED; return pages; #undef GFP } static void fake_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { fake_free_pages(obj, pages); obj->mm.dirty = false; obj->mm.madv = I915_MADV_WILLNEED; } static const struct drm_i915_gem_object_ops fake_ops = { .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = fake_get_pages, .put_pages = fake_put_pages, }; static struct drm_i915_gem_object * fake_dma_object(struct drm_i915_private *i915, u64 size) { struct drm_i915_gem_object *obj; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(i915); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); i915_gem_object_init(obj, &fake_ops); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->cache_level = I915_CACHE_NONE; /* Preallocate the "backing storage" */ if (i915_gem_object_pin_pages(obj)) return ERR_PTR(-ENOMEM); i915_gem_object_unpin_pages(obj); return obj; } static int igt_ppgtt_alloc(void *arg) { struct drm_i915_private *dev_priv = arg; struct i915_hw_ppgtt *ppgtt; u64 size, last; int err; /* Allocate a ppggt and try to fill the entire range */ if (!USES_PPGTT(dev_priv)) return 0; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return -ENOMEM; mutex_lock(&dev_priv->drm.struct_mutex); err = __hw_ppgtt_init(ppgtt, dev_priv); if (err) goto err_ppgtt; if (!ppgtt->base.allocate_va_range) goto err_ppgtt_cleanup; /* Check we can allocate the entire range */ for (size = 4096; size <= ppgtt->base.total; size <<= 2) { err = ppgtt->base.allocate_va_range(&ppgtt->base, 0, size); if (err) { if (err == -ENOMEM) { pr_info("[1] Ran out of memory for va_range [0 + %llx] [bit %d]\n", size, ilog2(size)); err = 0; /* virtual space too large! */ } goto err_ppgtt_cleanup; } ppgtt->base.clear_range(&ppgtt->base, 0, size); } /* Check we can incrementally allocate the entire range */ for (last = 0, size = 4096; size <= ppgtt->base.total; last = size, size <<= 2) { err = ppgtt->base.allocate_va_range(&ppgtt->base, last, size - last); if (err) { if (err == -ENOMEM) { pr_info("[2] Ran out of memory for va_range [%llx + %llx] [bit %d]\n", last, size - last, ilog2(size)); err = 0; /* virtual space too large! */ } goto err_ppgtt_cleanup; } } err_ppgtt_cleanup: ppgtt->base.cleanup(&ppgtt->base); err_ppgtt: mutex_unlock(&dev_priv->drm.struct_mutex); kfree(ppgtt); return err; } static int lowlevel_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { I915_RND_STATE(seed_prng); unsigned int size; /* Keep creating larger objects until one cannot fit into the hole */ for (size = 12; (hole_end - hole_start) >> size; size++) { I915_RND_SUBSTATE(prng, seed_prng); struct drm_i915_gem_object *obj; unsigned int *order, count, n; u64 hole_size; hole_size = (hole_end - hole_start) >> size; if (hole_size > KMALLOC_MAX_SIZE / sizeof(u32)) hole_size = KMALLOC_MAX_SIZE / sizeof(u32); count = hole_size; do { count >>= 1; order = i915_random_order(count, &prng); } while (!order && count); if (!order) break; GEM_BUG_ON(count * BIT_ULL(size) > vm->total); GEM_BUG_ON(hole_start + count * BIT_ULL(size) > hole_end); /* Ignore allocation failures (i.e. don't report them as * a test failure) as we are purposefully allocating very * large objects without checking that we have sufficient * memory. We expect to hit -ENOMEM. */ obj = fake_dma_object(i915, BIT_ULL(size)); if (IS_ERR(obj)) { kfree(order); break; } GEM_BUG_ON(obj->base.size != BIT_ULL(size)); if (i915_gem_object_pin_pages(obj)) { i915_gem_object_put(obj); kfree(order); break; } for (n = 0; n < count; n++) { u64 addr = hole_start + order[n] * BIT_ULL(size); GEM_BUG_ON(addr + BIT_ULL(size) > vm->total); if (vm->allocate_va_range && vm->allocate_va_range(vm, addr, BIT_ULL(size))) break; vm->insert_entries(vm, obj->mm.pages, addr, I915_CACHE_NONE, 0); if (igt_timeout(end_time, "%s timed out after %d/%d\n", __func__, n, count)) { hole_end = hole_start; /* quit */ break; } } count = n; i915_random_reorder(order, count, &prng); for (n = 0; n < count; n++) { u64 addr = hole_start + order[n] * BIT_ULL(size); GEM_BUG_ON(addr + BIT_ULL(size) > vm->total); vm->clear_range(vm, addr, BIT_ULL(size)); } i915_gem_object_unpin_pages(obj); i915_gem_object_put(obj); kfree(order); } return 0; } static void close_object_list(struct list_head *objects, struct i915_address_space *vm) { struct drm_i915_gem_object *obj, *on; int ignored; list_for_each_entry_safe(obj, on, objects, st_link) { struct i915_vma *vma; vma = i915_vma_instance(obj, vm, NULL); if (!IS_ERR(vma)) ignored = i915_vma_unbind(vma); /* Only ppgtt vma may be closed before the object is freed */ if (!IS_ERR(vma) && !i915_vma_is_ggtt(vma)) i915_vma_close(vma); list_del(&obj->st_link); i915_gem_object_put(obj); } } static int fill_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { const u64 hole_size = hole_end - hole_start; struct drm_i915_gem_object *obj; const unsigned long max_pages = min_t(u64, ULONG_MAX - 1, hole_size/2 >> PAGE_SHIFT); const unsigned long max_step = max(int_sqrt(max_pages), 2UL); unsigned long npages, prime, flags; struct i915_vma *vma; LIST_HEAD(objects); int err; /* Try binding many VMA working inwards from either edge */ flags = PIN_OFFSET_FIXED | PIN_USER; if (i915_is_ggtt(vm)) flags |= PIN_GLOBAL; for_each_prime_number_from(prime, 2, max_step) { for (npages = 1; npages <= max_pages; npages *= prime) { const u64 full_size = npages << PAGE_SHIFT; const struct { const char *name; u64 offset; int step; } phases[] = { { "top-down", hole_end, -1, }, { "bottom-up", hole_start, 1, }, { } }, *p; obj = fake_dma_object(i915, full_size); if (IS_ERR(obj)) break; list_add(&obj->st_link, &objects); /* Align differing sized objects against the edges, and * check we don't walk off into the void when binding * them into the GTT. */ for (p = phases; p->name; p++) { u64 offset; offset = p->offset; list_for_each_entry(obj, &objects, st_link) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) continue; if (p->step < 0) { if (offset < hole_start + obj->base.size) break; offset -= obj->base.size; } err = i915_vma_pin(vma, 0, 0, offset | flags); if (err) { pr_err("%s(%s) pin (forward) failed with err=%d on size=%lu pages (prime=%lu), offset=%llx\n", __func__, p->name, err, npages, prime, offset); goto err; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, offset | flags)) { pr_err("%s(%s) (forward) insert failed: vma.node=%llx + %llx [allocated? %d], expected offset %llx\n", __func__, p->name, vma->node.start, vma->node.size, drm_mm_node_allocated(&vma->node), offset); err = -EINVAL; goto err; } i915_vma_unpin(vma); if (p->step > 0) { if (offset + obj->base.size > hole_end) break; offset += obj->base.size; } } offset = p->offset; list_for_each_entry(obj, &objects, st_link) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) continue; if (p->step < 0) { if (offset < hole_start + obj->base.size) break; offset -= obj->base.size; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, offset | flags)) { pr_err("%s(%s) (forward) moved vma.node=%llx + %llx, expected offset %llx\n", __func__, p->name, vma->node.start, vma->node.size, offset); err = -EINVAL; goto err; } err = i915_vma_unbind(vma); if (err) { pr_err("%s(%s) (forward) unbind of vma.node=%llx + %llx failed with err=%d\n", __func__, p->name, vma->node.start, vma->node.size, err); goto err; } if (p->step > 0) { if (offset + obj->base.size > hole_end) break; offset += obj->base.size; } } offset = p->offset; list_for_each_entry_reverse(obj, &objects, st_link) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) continue; if (p->step < 0) { if (offset < hole_start + obj->base.size) break; offset -= obj->base.size; } err = i915_vma_pin(vma, 0, 0, offset | flags); if (err) { pr_err("%s(%s) pin (backward) failed with err=%d on size=%lu pages (prime=%lu), offset=%llx\n", __func__, p->name, err, npages, prime, offset); goto err; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, offset | flags)) { pr_err("%s(%s) (backward) insert failed: vma.node=%llx + %llx [allocated? %d], expected offset %llx\n", __func__, p->name, vma->node.start, vma->node.size, drm_mm_node_allocated(&vma->node), offset); err = -EINVAL; goto err; } i915_vma_unpin(vma); if (p->step > 0) { if (offset + obj->base.size > hole_end) break; offset += obj->base.size; } } offset = p->offset; list_for_each_entry_reverse(obj, &objects, st_link) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) continue; if (p->step < 0) { if (offset < hole_start + obj->base.size) break; offset -= obj->base.size; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, offset | flags)) { pr_err("%s(%s) (backward) moved vma.node=%llx + %llx [allocated? %d], expected offset %llx\n", __func__, p->name, vma->node.start, vma->node.size, drm_mm_node_allocated(&vma->node), offset); err = -EINVAL; goto err; } err = i915_vma_unbind(vma); if (err) { pr_err("%s(%s) (backward) unbind of vma.node=%llx + %llx failed with err=%d\n", __func__, p->name, vma->node.start, vma->node.size, err); goto err; } if (p->step > 0) { if (offset + obj->base.size > hole_end) break; offset += obj->base.size; } } } if (igt_timeout(end_time, "%s timed out (npages=%lu, prime=%lu)\n", __func__, npages, prime)) { err = -EINTR; goto err; } } close_object_list(&objects, vm); } return 0; err: close_object_list(&objects, vm); return err; } static int walk_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { const u64 hole_size = hole_end - hole_start; const unsigned long max_pages = min_t(u64, ULONG_MAX - 1, hole_size >> PAGE_SHIFT); unsigned long flags; u64 size; /* Try binding a single VMA in different positions within the hole */ flags = PIN_OFFSET_FIXED | PIN_USER; if (i915_is_ggtt(vm)) flags |= PIN_GLOBAL; for_each_prime_number_from(size, 1, max_pages) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u64 addr; int err = 0; obj = fake_dma_object(i915, size << PAGE_SHIFT); if (IS_ERR(obj)) break; vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } for (addr = hole_start; addr + obj->base.size < hole_end; addr += obj->base.size) { err = i915_vma_pin(vma, 0, 0, addr | flags); if (err) { pr_err("%s bind failed at %llx + %llx [hole %llx- %llx] with err=%d\n", __func__, addr, vma->size, hole_start, hole_end, err); goto err; } i915_vma_unpin(vma); if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, addr | flags)) { pr_err("%s incorrect at %llx + %llx\n", __func__, addr, vma->size); err = -EINVAL; goto err; } err = i915_vma_unbind(vma); if (err) { pr_err("%s unbind failed at %llx + %llx with err=%d\n", __func__, addr, vma->size, err); goto err; } GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); if (igt_timeout(end_time, "%s timed out at %llx\n", __func__, addr)) { err = -EINTR; goto err; } } err: if (!i915_vma_is_ggtt(vma)) i915_vma_close(vma); i915_gem_object_put(obj); if (err) return err; } return 0; } static int drunk_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { I915_RND_STATE(prng); unsigned int size; unsigned long flags; flags = PIN_OFFSET_FIXED | PIN_USER; if (i915_is_ggtt(vm)) flags |= PIN_GLOBAL; /* Keep creating larger objects until one cannot fit into the hole */ for (size = 12; (hole_end - hole_start) >> size; size++) { struct drm_i915_gem_object *obj; unsigned int *order, count, n; struct i915_vma *vma; u64 hole_size; int err; hole_size = (hole_end - hole_start) >> size; if (hole_size > KMALLOC_MAX_SIZE / sizeof(u32)) hole_size = KMALLOC_MAX_SIZE / sizeof(u32); count = hole_size; do { count >>= 1; order = i915_random_order(count, &prng); } while (!order && count); if (!order) break; /* Ignore allocation failures (i.e. don't report them as * a test failure) as we are purposefully allocating very * large objects without checking that we have sufficient * memory. We expect to hit -ENOMEM. */ obj = fake_dma_object(i915, BIT_ULL(size)); if (IS_ERR(obj)) { kfree(order); break; } vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } GEM_BUG_ON(vma->size != BIT_ULL(size)); for (n = 0; n < count; n++) { u64 addr = hole_start + order[n] * BIT_ULL(size); err = i915_vma_pin(vma, 0, 0, addr | flags); if (err) { pr_err("%s failed to pin object at %llx + %llx in hole [%llx - %llx], with err=%d\n", __func__, addr, BIT_ULL(size), hole_start, hole_end, err); goto err; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, addr | flags)) { pr_err("%s incorrect at %llx + %llx\n", __func__, addr, BIT_ULL(size)); i915_vma_unpin(vma); err = i915_vma_unbind(vma); err = -EINVAL; goto err; } i915_vma_unpin(vma); err = i915_vma_unbind(vma); GEM_BUG_ON(err); if (igt_timeout(end_time, "%s timed out after %d/%d\n", __func__, n, count)) { err = -EINTR; goto err; } } err: if (!i915_vma_is_ggtt(vma)) i915_vma_close(vma); err_obj: i915_gem_object_put(obj); kfree(order); if (err) return err; } return 0; } static int __shrink_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { struct drm_i915_gem_object *obj; unsigned long flags = PIN_OFFSET_FIXED | PIN_USER; unsigned int order = 12; LIST_HEAD(objects); int err = 0; u64 addr; /* Keep creating larger objects until one cannot fit into the hole */ for (addr = hole_start; addr < hole_end; ) { struct i915_vma *vma; u64 size = BIT_ULL(order++); size = min(size, hole_end - addr); obj = fake_dma_object(i915, size); if (IS_ERR(obj)) { err = PTR_ERR(obj); break; } list_add(&obj->st_link, &objects); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); break; } GEM_BUG_ON(vma->size != size); err = i915_vma_pin(vma, 0, 0, addr | flags); if (err) { pr_err("%s failed to pin object at %llx + %llx in hole [%llx - %llx], with err=%d\n", __func__, addr, size, hole_start, hole_end, err); break; } if (!drm_mm_node_allocated(&vma->node) || i915_vma_misplaced(vma, 0, 0, addr | flags)) { pr_err("%s incorrect at %llx + %llx\n", __func__, addr, size); i915_vma_unpin(vma); err = i915_vma_unbind(vma); err = -EINVAL; break; } i915_vma_unpin(vma); addr += size; if (igt_timeout(end_time, "%s timed out at ofset %llx [%llx - %llx]\n", __func__, addr, hole_start, hole_end)) { err = -EINTR; break; } } close_object_list(&objects, vm); return err; } static int shrink_hole(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time) { unsigned long prime; int err; i915->vm_fault.probability = 999; atomic_set(&i915->vm_fault.times, -1); for_each_prime_number_from(prime, 0, ULONG_MAX - 1) { i915->vm_fault.interval = prime; err = __shrink_hole(i915, vm, hole_start, hole_end, end_time); if (err) break; } memset(&i915->vm_fault, 0, sizeof(i915->vm_fault)); return err; } static int exercise_ppgtt(struct drm_i915_private *dev_priv, int (*func)(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time)) { struct drm_file *file; struct i915_hw_ppgtt *ppgtt; IGT_TIMEOUT(end_time); int err; if (!USES_FULL_PPGTT(dev_priv)) return 0; file = mock_file(dev_priv); if (IS_ERR(file)) return PTR_ERR(file); mutex_lock(&dev_priv->drm.struct_mutex); ppgtt = i915_ppgtt_create(dev_priv, file->driver_priv, "mock"); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_unlock; } GEM_BUG_ON(offset_in_page(ppgtt->base.total)); GEM_BUG_ON(ppgtt->base.closed); err = func(dev_priv, &ppgtt->base, 0, ppgtt->base.total, end_time); i915_ppgtt_close(&ppgtt->base); i915_ppgtt_put(ppgtt); out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); mock_file_free(dev_priv, file); return err; } static int igt_ppgtt_fill(void *arg) { return exercise_ppgtt(arg, fill_hole); } static int igt_ppgtt_walk(void *arg) { return exercise_ppgtt(arg, walk_hole); } static int igt_ppgtt_drunk(void *arg) { return exercise_ppgtt(arg, drunk_hole); } static int igt_ppgtt_lowlevel(void *arg) { return exercise_ppgtt(arg, lowlevel_hole); } static int igt_ppgtt_shrink(void *arg) { return exercise_ppgtt(arg, shrink_hole); } static int sort_holes(void *priv, struct list_head *A, struct list_head *B) { struct drm_mm_node *a = list_entry(A, typeof(*a), hole_stack); struct drm_mm_node *b = list_entry(B, typeof(*b), hole_stack); if (a->start < b->start) return -1; else return 1; } static int exercise_ggtt(struct drm_i915_private *i915, int (*func)(struct drm_i915_private *i915, struct i915_address_space *vm, u64 hole_start, u64 hole_end, unsigned long end_time)) { struct i915_ggtt *ggtt = &i915->ggtt; u64 hole_start, hole_end, last = 0; struct drm_mm_node *node; IGT_TIMEOUT(end_time); int err; mutex_lock(&i915->drm.struct_mutex); restart: list_sort(NULL, &ggtt->base.mm.hole_stack, sort_holes); drm_mm_for_each_hole(node, &ggtt->base.mm, hole_start, hole_end) { if (hole_start < last) continue; if (ggtt->base.mm.color_adjust) ggtt->base.mm.color_adjust(node, 0, &hole_start, &hole_end); if (hole_start >= hole_end) continue; err = func(i915, &ggtt->base, hole_start, hole_end, end_time); if (err) break; /* As we have manipulated the drm_mm, the list may be corrupt */ last = hole_end; goto restart; } mutex_unlock(&i915->drm.struct_mutex); return err; } static int igt_ggtt_fill(void *arg) { return exercise_ggtt(arg, fill_hole); } static int igt_ggtt_walk(void *arg) { return exercise_ggtt(arg, walk_hole); } static int igt_ggtt_drunk(void *arg) { return exercise_ggtt(arg, drunk_hole); } static int igt_ggtt_lowlevel(void *arg) { return exercise_ggtt(arg, lowlevel_hole); } int i915_gem_gtt_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_ppgtt_alloc), SUBTEST(igt_ppgtt_lowlevel), SUBTEST(igt_ppgtt_drunk), SUBTEST(igt_ppgtt_walk), SUBTEST(igt_ppgtt_fill), SUBTEST(igt_ppgtt_shrink), SUBTEST(igt_ggtt_lowlevel), SUBTEST(igt_ggtt_drunk), SUBTEST(igt_ggtt_walk), SUBTEST(igt_ggtt_fill), }; GEM_BUG_ON(offset_in_page(i915->ggtt.base.total)); return i915_subtests(tests, i915); }