// SPDX-License-Identifier: GPL-2.0 /* net/sched/sch_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(taprio_list); static DEFINE_SPINLOCK(taprio_list_lock); #define TAPRIO_ALL_GATES_OPEN -1 struct sched_entry { struct list_head list; /* The instant that this entry "closes" and the next one * should open, the qdisc will make some effort so that no * packet leaves after this time. */ ktime_t close_time; atomic_t budget; int index; u32 gate_mask; u32 interval; u8 command; }; struct sched_gate_list { struct rcu_head rcu; struct list_head entries; size_t num_entries; ktime_t cycle_close_time; s64 cycle_time; s64 cycle_time_extension; s64 base_time; }; struct taprio_sched { struct Qdisc **qdiscs; struct Qdisc *root; int clockid; atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ * speeds it's sub-nanoseconds per byte */ /* Protects the update side of the RCU protected current_entry */ spinlock_t current_entry_lock; struct sched_entry __rcu *current_entry; struct sched_gate_list __rcu *oper_sched; struct sched_gate_list __rcu *admin_sched; ktime_t (*get_time)(void); struct hrtimer advance_timer; struct list_head taprio_list; }; static ktime_t sched_base_time(const struct sched_gate_list *sched) { if (!sched) return KTIME_MAX; return ns_to_ktime(sched->base_time); } static void taprio_free_sched_cb(struct rcu_head *head) { struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); struct sched_entry *entry, *n; if (!sched) return; list_for_each_entry_safe(entry, n, &sched->entries, list) { list_del(&entry->list); kfree(entry); } kfree(sched); } static void switch_schedules(struct taprio_sched *q, struct sched_gate_list **admin, struct sched_gate_list **oper) { rcu_assign_pointer(q->oper_sched, *admin); rcu_assign_pointer(q->admin_sched, NULL); if (*oper) call_rcu(&(*oper)->rcu, taprio_free_sched_cb); *oper = *admin; *admin = NULL; } static ktime_t get_cycle_time(struct sched_gate_list *sched) { struct sched_entry *entry; ktime_t cycle = 0; if (sched->cycle_time != 0) return sched->cycle_time; list_for_each_entry(entry, &sched->entries, list) cycle = ktime_add_ns(cycle, entry->interval); sched->cycle_time = cycle; return cycle; } static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); struct Qdisc *child; int queue; queue = skb_get_queue_mapping(skb); child = q->qdiscs[queue]; if (unlikely(!child)) return qdisc_drop(skb, sch, to_free); qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; return qdisc_enqueue(skb, child, to_free); } static struct sk_buff *taprio_peek(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_entry *entry; struct sk_buff *skb; u32 gate_mask; int i; rcu_read_lock(); entry = rcu_dereference(q->current_entry); gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; rcu_read_unlock(); if (!gate_mask) return NULL; for (i = 0; i < dev->num_tx_queues; i++) { struct Qdisc *child = q->qdiscs[i]; int prio; u8 tc; if (unlikely(!child)) continue; skb = child->ops->peek(child); if (!skb) continue; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) continue; return skb; } return NULL; } static inline int length_to_duration(struct taprio_sched *q, int len) { return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); } static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) { atomic_set(&entry->budget, div64_u64((u64)entry->interval * 1000, atomic64_read(&q->picos_per_byte))); } static struct sk_buff *taprio_dequeue(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sk_buff *skb = NULL; struct sched_entry *entry; u32 gate_mask; int i; if (atomic64_read(&q->picos_per_byte) == -1) { WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte."); return NULL; } rcu_read_lock(); entry = rcu_dereference(q->current_entry); /* if there's no entry, it means that the schedule didn't * start yet, so force all gates to be open, this is in * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 * "AdminGateSates" */ gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; if (!gate_mask) goto done; for (i = 0; i < dev->num_tx_queues; i++) { struct Qdisc *child = q->qdiscs[i]; ktime_t guard; int prio; int len; u8 tc; if (unlikely(!child)) continue; skb = child->ops->peek(child); if (!skb) continue; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) continue; len = qdisc_pkt_len(skb); guard = ktime_add_ns(q->get_time(), length_to_duration(q, len)); /* In the case that there's no gate entry, there's no * guard band ... */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && ktime_after(guard, entry->close_time)) continue; /* ... and no budget. */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && atomic_sub_return(len, &entry->budget) < 0) continue; skb = child->ops->dequeue(child); if (unlikely(!skb)) goto done; qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; goto done; } done: rcu_read_unlock(); return skb; } static bool should_restart_cycle(const struct sched_gate_list *oper, const struct sched_entry *entry) { if (list_is_last(&entry->list, &oper->entries)) return true; if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) return true; return false; } static bool should_change_schedules(const struct sched_gate_list *admin, const struct sched_gate_list *oper, ktime_t close_time) { ktime_t next_base_time, extension_time; if (!admin) return false; next_base_time = sched_base_time(admin); /* This is the simple case, the close_time would fall after * the next schedule base_time. */ if (ktime_compare(next_base_time, close_time) <= 0) return true; /* This is the cycle_time_extension case, if the close_time * plus the amount that can be extended would fall after the * next schedule base_time, we can extend the current schedule * for that amount. */ extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about * how precisely the extension should be made. So after * conformance testing, this logic may change. */ if (ktime_compare(next_base_time, extension_time) <= 0) return true; return false; } static enum hrtimer_restart advance_sched(struct hrtimer *timer) { struct taprio_sched *q = container_of(timer, struct taprio_sched, advance_timer); struct sched_gate_list *oper, *admin; struct sched_entry *entry, *next; struct Qdisc *sch = q->root; ktime_t close_time; spin_lock(&q->current_entry_lock); entry = rcu_dereference_protected(q->current_entry, lockdep_is_held(&q->current_entry_lock)); oper = rcu_dereference_protected(q->oper_sched, lockdep_is_held(&q->current_entry_lock)); admin = rcu_dereference_protected(q->admin_sched, lockdep_is_held(&q->current_entry_lock)); if (!oper) switch_schedules(q, &admin, &oper); /* This can happen in two cases: 1. this is the very first run * of this function (i.e. we weren't running any schedule * previously); 2. The previous schedule just ended. The first * entry of all schedules are pre-calculated during the * schedule initialization. */ if (unlikely(!entry || entry->close_time == oper->base_time)) { next = list_first_entry(&oper->entries, struct sched_entry, list); close_time = next->close_time; goto first_run; } if (should_restart_cycle(oper, entry)) { next = list_first_entry(&oper->entries, struct sched_entry, list); oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, oper->cycle_time); } else { next = list_next_entry(entry, list); } close_time = ktime_add_ns(entry->close_time, next->interval); close_time = min_t(ktime_t, close_time, oper->cycle_close_time); if (should_change_schedules(admin, oper, close_time)) { /* Set things so the next time this runs, the new * schedule runs. */ close_time = sched_base_time(admin); switch_schedules(q, &admin, &oper); } next->close_time = close_time; taprio_set_budget(q, next); first_run: rcu_assign_pointer(q->current_entry, next); spin_unlock(&q->current_entry_lock); hrtimer_set_expires(&q->advance_timer, close_time); rcu_read_lock(); __netif_schedule(sch); rcu_read_unlock(); return HRTIMER_RESTART; } static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, }; static const struct nla_policy entry_list_policy[TCA_TAPRIO_SCHED_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY] = { .type = NLA_NESTED }, }; static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { [TCA_TAPRIO_ATTR_PRIOMAP] = { .len = sizeof(struct tc_mqprio_qopt) }, [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, }; static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, struct netlink_ext_ack *extack) { u32 interval = 0; if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) entry->command = nla_get_u8( tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) entry->gate_mask = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) interval = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); if (interval == 0) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; return 0; } static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_sched_entry(tb, entry, extack); } static int parse_sched_list(struct nlattr *list, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { struct nlattr *n; int err, rem; int i = 0; if (!list) return -EINVAL; nla_for_each_nested(n, list, rem) { struct sched_entry *entry; if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); return -ENOMEM; } err = parse_sched_entry(n, entry, i, extack); if (err < 0) { kfree(entry); return err; } list_add_tail(&entry->list, &sched->entries); i++; } sched->num_entries = i; return i; } static int parse_taprio_schedule(struct nlattr **tb, struct sched_gate_list *new, struct netlink_ext_ack *extack) { int err = 0; if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); return -ENOTSUPP; } if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) err = parse_sched_list( tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); if (err < 0) return err; return 0; } static int taprio_parse_mqprio_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt, struct netlink_ext_ack *extack) { int i, j; if (!qopt && !dev->num_tc) { NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); return -EINVAL; } /* If num_tc is already set, it means that the user already * configured the mqprio part */ if (dev->num_tc) return 0; /* Verify num_tc is not out of max range */ if (qopt->num_tc > TC_MAX_QUEUE) { NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); return -EINVAL; } /* taprio imposes that traffic classes map 1:n to tx queues */ if (qopt->num_tc > dev->num_tx_queues) { NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); return -EINVAL; } /* Verify priority mapping uses valid tcs */ for (i = 0; i < TC_BITMASK + 1; i++) { if (qopt->prio_tc_map[i] >= qopt->num_tc) { NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); return -EINVAL; } } for (i = 0; i < qopt->num_tc; i++) { unsigned int last = qopt->offset[i] + qopt->count[i]; /* Verify the queue count is in tx range being equal to the * real_num_tx_queues indicates the last queue is in use. */ if (qopt->offset[i] >= dev->num_tx_queues || !qopt->count[i] || last > dev->real_num_tx_queues) { NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); return -EINVAL; } /* Verify that the offset and counts do not overlap */ for (j = i + 1; j < qopt->num_tc; j++) { if (last > qopt->offset[j]) { NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); return -EINVAL; } } } return 0; } static int taprio_get_start_time(struct Qdisc *sch, struct sched_gate_list *sched, ktime_t *start) { struct taprio_sched *q = qdisc_priv(sch); ktime_t now, base, cycle; s64 n; base = sched_base_time(sched); now = q->get_time(); if (ktime_after(base, now)) { *start = base; return 0; } cycle = get_cycle_time(sched); /* The qdisc is expected to have at least one sched_entry. Moreover, * any entry must have 'interval' > 0. Thus if the cycle time is zero, * something went really wrong. In that case, we should warn about this * inconsistent state and return error. */ if (WARN_ON(!cycle)) return -EFAULT; /* Schedule the start time for the beginning of the next * cycle. */ n = div64_s64(ktime_sub_ns(now, base), cycle); *start = ktime_add_ns(base, (n + 1) * cycle); return 0; } static void setup_first_close_time(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct sched_entry *first; ktime_t cycle; first = list_first_entry(&sched->entries, struct sched_entry, list); cycle = get_cycle_time(sched); /* FIXME: find a better place to do this */ sched->cycle_close_time = ktime_add_ns(base, cycle); first->close_time = ktime_add_ns(base, first->interval); taprio_set_budget(q, first); rcu_assign_pointer(q->current_entry, NULL); } static void taprio_start_sched(struct Qdisc *sch, ktime_t start, struct sched_gate_list *new) { struct taprio_sched *q = qdisc_priv(sch); ktime_t expires; expires = hrtimer_get_expires(&q->advance_timer); if (expires == 0) expires = KTIME_MAX; /* If the new schedule starts before the next expiration, we * reprogram it to the earliest one, so we change the admin * schedule to the operational one at the right time. */ start = min_t(ktime_t, start, expires); hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); } static void taprio_set_picos_per_byte(struct net_device *dev, struct taprio_sched *q) { struct ethtool_link_ksettings ecmd; int picos_per_byte = -1; if (!__ethtool_get_link_ksettings(dev, &ecmd) && ecmd.base.speed != SPEED_UNKNOWN) picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8, ecmd.base.speed * 1000 * 1000); atomic64_set(&q->picos_per_byte, picos_per_byte); netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->picos_per_byte), ecmd.base.speed); } static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net_device *qdev; struct taprio_sched *q; bool found = false; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; spin_lock(&taprio_list_lock); list_for_each_entry(q, &taprio_list, taprio_list) { qdev = qdisc_dev(q->root); if (qdev == dev) { found = true; break; } } spin_unlock(&taprio_list_lock); if (found) taprio_set_picos_per_byte(dev, q); return NOTIFY_DONE; } static int taprio_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; struct sched_gate_list *oper, *admin, *new_admin; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt *mqprio = NULL; int i, err, clockid; unsigned long flags; ktime_t start; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, taprio_policy, extack); if (err < 0) return err; if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); err = taprio_parse_mqprio_opt(dev, mqprio, extack); if (err < 0) return err; new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); if (!new_admin) { NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); return -ENOMEM; } INIT_LIST_HEAD(&new_admin->entries); rcu_read_lock(); oper = rcu_dereference(q->oper_sched); admin = rcu_dereference(q->admin_sched); rcu_read_unlock(); if (mqprio && (oper || admin)) { NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); err = -ENOTSUPP; goto free_sched; } err = parse_taprio_schedule(tb, new_admin, extack); if (err < 0) goto free_sched; if (new_admin->num_entries == 0) { NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); err = -EINVAL; goto free_sched; } if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); /* We only support static clockids and we don't allow * for it to be modified after the first init. */ if (clockid < 0 || (q->clockid != -1 && q->clockid != clockid)) { NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); err = -ENOTSUPP; goto free_sched; } q->clockid = clockid; } if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); err = -EINVAL; goto free_sched; } taprio_set_picos_per_byte(dev, q); /* Protects against enqueue()/dequeue() */ spin_lock_bh(qdisc_lock(sch)); if (!hrtimer_active(&q->advance_timer)) { hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; } if (mqprio) { netdev_set_num_tc(dev, mqprio->num_tc); for (i = 0; i < mqprio->num_tc; i++) netdev_set_tc_queue(dev, i, mqprio->count[i], mqprio->offset[i]); /* Always use supplied priority mappings */ for (i = 0; i < TC_BITMASK + 1; i++) netdev_set_prio_tc_map(dev, i, mqprio->prio_tc_map[i]); } switch (q->clockid) { case CLOCK_REALTIME: q->get_time = ktime_get_real; break; case CLOCK_MONOTONIC: q->get_time = ktime_get; break; case CLOCK_BOOTTIME: q->get_time = ktime_get_boottime; break; case CLOCK_TAI: q->get_time = ktime_get_clocktai; break; default: NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); err = -EINVAL; goto unlock; } err = taprio_get_start_time(sch, new_admin, &start); if (err < 0) { NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); goto unlock; } setup_first_close_time(q, new_admin, start); /* Protects against advance_sched() */ spin_lock_irqsave(&q->current_entry_lock, flags); taprio_start_sched(sch, start, new_admin); rcu_assign_pointer(q->admin_sched, new_admin); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); new_admin = NULL; spin_unlock_irqrestore(&q->current_entry_lock, flags); err = 0; unlock: spin_unlock_bh(qdisc_lock(sch)); free_sched: kfree(new_admin); return err; } static void taprio_destroy(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int i; spin_lock(&taprio_list_lock); list_del(&q->taprio_list); spin_unlock(&taprio_list_lock); hrtimer_cancel(&q->advance_timer); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) qdisc_put(q->qdiscs[i]); kfree(q->qdiscs); } q->qdiscs = NULL; netdev_set_num_tc(dev, 0); if (q->oper_sched) call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); if (q->admin_sched) call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); } static int taprio_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i; spin_lock_init(&q->current_entry_lock); hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; q->root = sch; /* We only support static clockids. Use an invalid value as default * and get the valid one on taprio_change(). */ q->clockid = -1; if (sch->parent != TC_H_ROOT) return -EOPNOTSUPP; if (!netif_is_multiqueue(dev)) return -EOPNOTSUPP; /* pre-allocate qdisc, attachment can't fail */ q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), GFP_KERNEL); if (!q->qdiscs) return -ENOMEM; if (!opt) return -EINVAL; spin_lock(&taprio_list_lock); list_add(&q->taprio_list, &taprio_list); spin_unlock(&taprio_list_lock); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; struct Qdisc *qdisc; dev_queue = netdev_get_tx_queue(dev, i); qdisc = qdisc_create_dflt(dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(TC_H_MAJ(sch->handle), TC_H_MIN(i + 1)), extack); if (!qdisc) return -ENOMEM; if (i < dev->real_num_tx_queues) qdisc_hash_add(qdisc, false); q->qdiscs[i] = qdisc; } return taprio_change(sch, opt, extack); } static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, unsigned long cl) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return netdev_get_tx_queue(dev, ntx); } static int taprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return -EINVAL; if (dev->flags & IFF_UP) dev_deactivate(dev); *old = q->qdiscs[cl - 1]; q->qdiscs[cl - 1] = new; if (new) new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; if (dev->flags & IFF_UP) dev_activate(dev); return 0; } static int dump_entry(struct sk_buff *msg, const struct sched_entry *entry) { struct nlattr *item; item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, entry->gate_mask)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; return nla_nest_end(msg, item); nla_put_failure: nla_nest_cancel(msg, item); return -1; } static int dump_schedule(struct sk_buff *msg, const struct sched_gate_list *root) { struct nlattr *entry_list; struct sched_entry *entry; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, root->base_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, root->cycle_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, root->cycle_time_extension, TCA_TAPRIO_PAD)) return -1; entry_list = nla_nest_start_noflag(msg, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); if (!entry_list) goto error_nest; list_for_each_entry(entry, &root->entries, list) { if (dump_entry(msg, entry) < 0) goto error_nest; } nla_nest_end(msg, entry_list); return 0; error_nest: nla_nest_cancel(msg, entry_list); return -1; } static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; struct tc_mqprio_qopt opt = { 0 }; struct nlattr *nest, *sched_nest; unsigned int i; rcu_read_lock(); oper = rcu_dereference(q->oper_sched); admin = rcu_dereference(q->admin_sched); opt.num_tc = netdev_get_num_tc(dev); memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); for (i = 0; i < netdev_get_num_tc(dev); i++) { opt.count[i] = dev->tc_to_txq[i].count; opt.offset[i] = dev->tc_to_txq[i].offset; } nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!nest) goto start_error; if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) goto options_error; if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) goto options_error; if (oper && dump_schedule(skb, oper)) goto options_error; if (!admin) goto done; sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); if (dump_schedule(skb, admin)) goto admin_error; nla_nest_end(skb, sched_nest); done: rcu_read_unlock(); return nla_nest_end(skb, nest); admin_error: nla_nest_cancel(skb, sched_nest); options_error: nla_nest_cancel(skb, nest); start_error: rcu_read_unlock(); return -ENOSPC; } static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return NULL; return dev_queue->qdisc_sleeping; } static unsigned long taprio_find(struct Qdisc *sch, u32 classid) { unsigned int ntx = TC_H_MIN(classid); if (!taprio_queue_get(sch, ntx)) return 0; return ntx; } static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle |= TC_H_MIN(cl); tcm->tcm_info = dev_queue->qdisc_sleeping->handle; return 0; } static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) __releases(d->lock) __acquires(d->lock) { struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); sch = dev_queue->qdisc_sleeping; if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || qdisc_qstats_copy(d, sch) < 0) return -1; return 0; } static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx; if (arg->stop) return; arg->count = arg->skip; for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { if (arg->fn(sch, ntx + 1, arg) < 0) { arg->stop = 1; break; } arg->count++; } } static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, struct tcmsg *tcm) { return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); } static const struct Qdisc_class_ops taprio_class_ops = { .graft = taprio_graft, .leaf = taprio_leaf, .find = taprio_find, .walk = taprio_walk, .dump = taprio_dump_class, .dump_stats = taprio_dump_class_stats, .select_queue = taprio_select_queue, }; static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { .cl_ops = &taprio_class_ops, .id = "taprio", .priv_size = sizeof(struct taprio_sched), .init = taprio_init, .change = taprio_change, .destroy = taprio_destroy, .peek = taprio_peek, .dequeue = taprio_dequeue, .enqueue = taprio_enqueue, .dump = taprio_dump, .owner = THIS_MODULE, }; static struct notifier_block taprio_device_notifier = { .notifier_call = taprio_dev_notifier, }; static int __init taprio_module_init(void) { int err = register_netdevice_notifier(&taprio_device_notifier); if (err) return err; return register_qdisc(&taprio_qdisc_ops); } static void __exit taprio_module_exit(void) { unregister_qdisc(&taprio_qdisc_ops); unregister_netdevice_notifier(&taprio_device_notifier); } module_init(taprio_module_init); module_exit(taprio_module_exit); MODULE_LICENSE("GPL");