/* * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). * * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #include #include #include #include #include "dvb_math.h" #include "dvb_frontend.h" #include "dib8000.h" #define LAYER_ALL -1 #define LAYER_A 1 #define LAYER_B 2 #define LAYER_C 3 #define FE_CALLBACK_TIME_NEVER 0xffffffff #define MAX_NUMBER_OF_FRONTENDS 6 static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0) #define FE_STATUS_TUNE_FAILED 0 struct i2c_device { struct i2c_adapter *adap; u8 addr; u8 *i2c_write_buffer; u8 *i2c_read_buffer; struct mutex *i2c_buffer_lock; }; struct dib8000_state { struct dib8000_config cfg; struct i2c_device i2c; struct dibx000_i2c_master i2c_master; u16 wbd_ref; u8 current_band; u32 current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u32 timf_default; u8 div_force_off:1; u8 div_state:1; u16 div_sync_wait; u8 agc_state; u8 differential_constellation; u8 diversity_onoff; s16 ber_monitored_layer; u16 gpio_dir; u16 gpio_val; u16 revision; u8 isdbt_cfg_loaded; enum frontend_tune_state tune_state; u32 status; struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[4]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; u8 input_mode_mpeg; u16 tuner_enable; struct i2c_adapter dib8096p_tuner_adap; }; enum dib8000_power_mode { DIB8000_POWER_ALL = 0, DIB8000_POWER_INTERFACE_ONLY, }; static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) { u16 ret; struct i2c_msg msg[2] = { {.addr = i2c->addr >> 1, .flags = 0, .len = 2}, {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, }; if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return 0; } msg[0].buf = i2c->i2c_write_buffer; msg[0].buf[0] = reg >> 8; msg[0].buf[1] = reg & 0xff; msg[1].buf = i2c->i2c_read_buffer; if (i2c_transfer(i2c->adap, msg, 2) != 2) dprintk("i2c read error on %d", reg); ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; mutex_unlock(i2c->i2c_buffer_lock); return ret; } static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return 0; } state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c.addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) dprintk("i2c read error on %d", reg); ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static u32 dib8000_read32(struct dib8000_state *state, u16 reg) { u16 rw[2]; rw[0] = dib8000_read_word(state, reg + 0); rw[1] = dib8000_read_word(state, reg + 1); return ((rw[0] << 16) | (rw[1])); } static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) { struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; int ret = 0; if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } msg.buf = i2c->i2c_write_buffer; msg.buf[0] = (reg >> 8) & 0xff; msg.buf[1] = reg & 0xff; msg.buf[2] = (val >> 8) & 0xff; msg.buf[3] = val & 0xff; ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; mutex_unlock(i2c->i2c_buffer_lock); return ret; } static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = reg & 0xff; state->i2c_write_buffer[2] = (val >> 8) & 0xff; state->i2c_write_buffer[3] = val & 0xff; memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c.addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 4; ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? -EREMOTEIO : 0); mutex_unlock(&state->i2c_buffer_lock); return ret; } static const s16 coeff_2k_sb_1seg_dqpsk[8] = { (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, (920 << 5) | 0x09 }; static const s16 coeff_2k_sb_1seg[8] = { (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f }; static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, (-931 << 5) | 0x0f }; static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, (982 << 5) | 0x0c }; static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, (-720 << 5) | 0x0d }; static const s16 coeff_2k_sb_3seg[8] = { (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, (-610 << 5) | 0x0a }; static const s16 coeff_4k_sb_1seg_dqpsk[8] = { (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, (-922 << 5) | 0x0d }; static const s16 coeff_4k_sb_1seg[8] = { (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, (-655 << 5) | 0x0a }; static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, (-958 << 5) | 0x13 }; static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, (-568 << 5) | 0x0f }; static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, (-848 << 5) | 0x13 }; static const s16 coeff_4k_sb_3seg[8] = { (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, (-869 << 5) | 0x13 }; static const s16 coeff_8k_sb_1seg_dqpsk[8] = { (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, (-598 << 5) | 0x10 }; static const s16 coeff_8k_sb_1seg[8] = { (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, (585 << 5) | 0x0f }; static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, (0 << 5) | 0x14 }; static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, (-877 << 5) | 0x15 }; static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, (-921 << 5) | 0x14 }; static const s16 coeff_8k_sb_3seg[8] = { (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, (690 << 5) | 0x14 }; static const s16 ana_fe_coeff_3seg[24] = { 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 }; static const s16 ana_fe_coeff_1seg[24] = { 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 }; static const s16 ana_fe_coeff_13seg[24] = { 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 }; static u16 fft_to_mode(struct dib8000_state *state) { u16 mode; switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: mode = 1; break; case TRANSMISSION_MODE_4K: mode = 2; break; default: case TRANSMISSION_MODE_AUTO: case TRANSMISSION_MODE_8K: mode = 3; break; } return mode; } static void dib8000_set_acquisition_mode(struct dib8000_state *state) { u16 nud = dib8000_read_word(state, 298); nud |= (1 << 3) | (1 << 0); dprintk("acquisition mode activated"); dib8000_write_word(state, 298, nud); } static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib8000_state *state = fe->demodulator_priv; u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */ outreg = 0; fifo_threshold = 1792; smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); dprintk("-I- Setting output mode for demod %p to %d", &state->fe[0], mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) { outreg = (1 << 10) | (4 << 6); /* 0x0500 */ sram &= 0xfdff; } else sram |= 0x0c00; break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: // disable outreg = 0; break; case OUTMODE_ANALOG_ADC: outreg = (1 << 10) | (3 << 6); dib8000_set_acquisition_mode(state); break; default: dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]); return -EINVAL; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); dib8000_write_word(state, 299, smo_mode); dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */ dib8000_write_word(state, 1286, outreg); dib8000_write_word(state, 1291, sram); return 0; } static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 sync_wait = dib8000_read_word(state, 273) & 0xfff0; if (!state->differential_constellation) { dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1 dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2 } else { dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0 dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0 } state->diversity_onoff = onoff; switch (onoff) { case 0: /* only use the internal way - not the diversity input */ dib8000_write_word(state, 270, 1); dib8000_write_word(state, 271, 0); break; case 1: /* both ways */ dib8000_write_word(state, 270, 6); dib8000_write_word(state, 271, 6); break; case 2: /* only the diversity input */ dib8000_write_word(state, 270, 0); dib8000_write_word(state, 271, 1); break; } return 0; } static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) { /* by default everything is going to be powered off */ u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280; if (state->revision != 0x8090) reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; else reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB8000_POWER_ALL: reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0000; reg_900 &= 0xfffc; if (state->revision != 0x8090) reg_1280 &= 0x00ff; else reg_1280 &= 0x707f; break; case DIB8000_POWER_INTERFACE_ONLY: if (state->revision != 0x8090) reg_1280 &= 0x00ff; else reg_1280 &= 0xfa7b; break; } dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280); dib8000_write_word(state, 774, reg_774); dib8000_write_word(state, 775, reg_775); dib8000_write_word(state, 776, reg_776); dib8000_write_word(state, 900, reg_900); dib8000_write_word(state, 1280, reg_1280); } static int dib8000_init_sdram(struct dib8000_state *state) { u16 reg = 0; dprintk("Init sdram"); reg = dib8000_read_word(state, 274)&0xfff0; /* P_dintlv_delay_ram = 7 because of MobileSdram */ dib8000_write_word(state, 274, reg | 0x7); dib8000_write_word(state, 1803, (7<<2)); reg = dib8000_read_word(state, 1280); /* force restart P_restart_sdram */ dib8000_write_word(state, 1280, reg | (1<<2)); /* release restart P_restart_sdram */ dib8000_write_word(state, 1280, reg); return 0; } static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) { int ret = 0; u16 reg, reg_907 = dib8000_read_word(state, 907); u16 reg_908 = dib8000_read_word(state, 908); switch (no) { case DIBX000_SLOW_ADC_ON: if (state->revision != 0x8090) { reg_908 |= (1 << 1) | (1 << 0); ret |= dib8000_write_word(state, 908, reg_908); reg_908 &= ~(1 << 1); } else { reg = dib8000_read_word(state, 1925); /* en_slowAdc = 1 & reset_sladc = 1 */ dib8000_write_word(state, 1925, reg | (1<<4) | (1<<2)); /* read acces to make it works... strange ... */ reg = dib8000_read_word(state, 1925); msleep(20); /* en_slowAdc = 1 & reset_sladc = 0 */ dib8000_write_word(state, 1925, reg & ~(1<<4)); reg = dib8000_read_word(state, 921) & ~((0x3 << 14) | (0x3 << 12)); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ dib8000_write_word(state, 921, reg | (1 << 14) | (3 << 12)); } break; case DIBX000_SLOW_ADC_OFF: if (state->revision == 0x8090) { reg = dib8000_read_word(state, 1925); /* reset_sladc = 1 en_slowAdc = 0 */ dib8000_write_word(state, 1925, (reg & ~(1<<2)) | (1<<4)); } reg_908 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: reg_907 &= 0x0fff; reg_908 &= 0x0003; break; case DIBX000_ADC_OFF: // leave the VBG voltage on reg_907 |= (1 << 14) | (1 << 13) | (1 << 12); reg_908 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); break; case DIBX000_VBG_ENABLE: reg_907 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_907 |= (1 << 15); break; default: break; } ret |= dib8000_write_word(state, 907, reg_907); ret |= dib8000_write_word(state, 908, reg_908); return ret; } static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) { struct dib8000_state *state = fe->demodulator_priv; u32 timf; if (bw == 0) bw = 6000; if (state->timf == 0) { dprintk("using default timf"); timf = state->timf_default; } else { dprintk("using updated timf"); timf = state->timf; } dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); return 0; } static int dib8000_sad_calib(struct dib8000_state *state) { if (state->revision == 0x8090) { dprintk("%s: the sad calibration is not needed for the dib8096P", __func__); return 0; } /* internal */ dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); dib8000_write_word(state, 924, 776); // 0.625*3.3 / 4096 /* do the calibration */ dib8000_write_word(state, 923, (1 << 0)); dib8000_write_word(state, 923, (0 << 0)); msleep(1); return 0; } int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) { struct dib8000_state *state = fe->demodulator_priv; if (value > 4095) value = 4095; state->wbd_ref = value; return dib8000_write_word(state, 106, value); } EXPORT_SYMBOL(dib8000_set_wbd_ref); static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) { dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25); if (state->revision != 0x8090) { dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff)); } else { dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((bw->internal / 2 * 1000) & 0xffff)); } dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); if (state->revision != 0x8090) dib8000_write_word(state, 922, bw->sad_cfg); } static void dib8000_reset_pll(struct dib8000_state *state) { const struct dibx000_bandwidth_config *pll = state->cfg.pll; u16 clk_cfg1, reg; if (state->revision != 0x8090) { dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0)); clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0); dib8000_write_word(state, 902, clk_cfg1); clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); dib8000_write_word(state, 902, clk_cfg1); dprintk("clk_cfg1: 0x%04x", clk_cfg1); /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ if (state->cfg.pll->ADClkSrc == 0) dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); else if (state->cfg.refclksel != 0) dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); else dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1)); } else { dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | (pll->pll_range<<12) | (pll->pll_ratio<<6) | (pll->pll_prediv)); reg = dib8000_read_word(state, 1857); dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ dib8000_write_word(state, 1858, reg | 1); dib8000_write_word(state, 904, (pll->modulo << 8)); } dib8000_reset_pll_common(state, pll); } int dib8000_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *pll) { struct dib8000_state *state = fe->demodulator_priv; u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); u8 loopdiv, prediv; u32 internal, xtal; /* get back old values */ prediv = reg_1856 & 0x3f; loopdiv = (reg_1856 >> 6) & 0x3f; if ((pll != NULL) && (pll->pll_prediv != prediv || pll->pll_ratio != loopdiv)) { dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); reg_1856 &= 0xf000; reg_1857 = dib8000_read_word(state, 1857); /* disable PLL */ dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); dib8000_write_word(state, 1856, reg_1856 | ((pll->pll_ratio & 0x3f) << 6) | (pll->pll_prediv & 0x3f)); /* write new system clk into P_sec_len */ internal = dib8000_read32(state, 23) / 1000; dprintk("Old Internal = %d", internal); xtal = 2 * (internal / loopdiv) * prediv; internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d", xtal, internal/1000, internal/2000, internal/8000); dprintk("New Internal = %d", internal); dib8000_write_word(state, 23, (u16) (((internal / 2) >> 16) & 0xffff)); dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); /* enable PLL */ dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) dprintk("Waiting for PLL to lock"); /* verify */ reg_1856 = dib8000_read_word(state, 1856); dprintk("PLL Updated with prediv = %d and loopdiv = %d", reg_1856&0x3f, (reg_1856>>6)&0x3f); return 0; } return -EINVAL; } EXPORT_SYMBOL(dib8000_update_pll); static int dib8000_reset_gpio(struct dib8000_state *st) { /* reset the GPIOs */ dib8000_write_word(st, 1029, st->cfg.gpio_dir); dib8000_write_word(st, 1030, st->cfg.gpio_val); /* TODO 782 is P_gpio_od */ dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); return 0; } static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) { st->cfg.gpio_dir = dib8000_read_word(st, 1029); st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */ st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib8000_write_word(st, 1029, st->cfg.gpio_dir); st->cfg.gpio_val = dib8000_read_word(st, 1030); st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */ st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */ dib8000_write_word(st, 1030, st->cfg.gpio_val); dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val); return 0; } int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) { struct dib8000_state *state = fe->demodulator_priv; return dib8000_cfg_gpio(state, num, dir, val); } EXPORT_SYMBOL(dib8000_set_gpio); static const u16 dib8000_defaults[] = { /* auto search configuration - lock0 by default waiting * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ 3, 7, 0x0004, 0x0400, 0x0814, 12, 11, 0x001b, 0x7740, 0x005b, 0x8d80, 0x01c9, 0xc380, 0x0000, 0x0080, 0x0000, 0x0090, 0x0001, 0xd4c0, /*1, 32, 0x6680 // P_corm_thres Lock algorithms configuration */ 11, 80, /* set ADC level to -16 */ (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117, 4, 108, 0, 0, 0, 0, 1, 175, 0x0410, 1, 179, 8192, // P_fft_nb_to_cut 6, 181, 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800 0x2800, 0x2800, 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 0x2800, 0x2800, 2, 193, 0x0666, // P_pha3_thres 0x0000, // P_cti_use_cpe, P_cti_use_prog 2, 205, 0x200f, // P_cspu_regul, P_cspu_win_cut 0x000f, // P_des_shift_work 5, 215, 0x023d, // P_adp_regul_cnt 0x00a4, // P_adp_noise_cnt 0x00a4, // P_adp_regul_ext 0x7ff0, // P_adp_noise_ext 0x3ccc, // P_adp_fil 1, 230, 0x0000, // P_2d_byp_ti_num 1, 263, 0x800, //P_equal_thres_wgn 1, 268, (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode 1, 270, 0x0001, // P_div_lock0_wait 1, 285, 0x0020, //p_fec_ 1, 299, 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ 1, 338, (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1 (1 << 10) | (0 << 9) | /* P_ctrl_pre_freq_inh=0 */ (3 << 5) | /* P_ctrl_pre_freq_step=3 */ (1 << 0), /* P_pre_freq_win_len=1 */ 0, }; static u16 dib8000_identify(struct i2c_device *client) { u16 value; //because of glitches sometimes value = dib8000_i2c_read16(client, 896); if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { dprintk("wrong Vendor ID (read=0x%x)", value); return 0; } value = dib8000_i2c_read16(client, 897); if (value != 0x8000 && value != 0x8001 && value != 0x8002 && value != 0x8090) { dprintk("wrong Device ID (%x)", value); return 0; } switch (value) { case 0x8000: dprintk("found DiB8000A"); break; case 0x8001: dprintk("found DiB8000B"); break; case 0x8002: dprintk("found DiB8000C"); break; case 0x8090: dprintk("found DiB8096P"); break; } return value; } static int dib8000_reset(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; if ((state->revision = dib8000_identify(&state->i2c)) == 0) return -EINVAL; /* sram lead in, rdy */ if (state->revision != 0x8090) dib8000_write_word(state, 1287, 0x0003); if (state->revision == 0x8000) dprintk("error : dib8000 MA not supported"); dibx000_reset_i2c_master(&state->i2c_master); dib8000_set_power_mode(state, DIB8000_POWER_ALL); /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ dib8000_set_adc_state(state, DIBX000_VBG_ENABLE); /* restart all parts */ dib8000_write_word(state, 770, 0xffff); dib8000_write_word(state, 771, 0xffff); dib8000_write_word(state, 772, 0xfffc); if (state->revision == 0x8090) dib8000_write_word(state, 1280, 0x0045); else dib8000_write_word(state, 1280, 0x004d); dib8000_write_word(state, 1281, 0x000c); dib8000_write_word(state, 770, 0x0000); dib8000_write_word(state, 771, 0x0000); dib8000_write_word(state, 772, 0x0000); dib8000_write_word(state, 898, 0x0004); // sad dib8000_write_word(state, 1280, 0x0000); dib8000_write_word(state, 1281, 0x0000); /* drives */ if (state->revision != 0x8090) { if (state->cfg.drives) dib8000_write_word(state, 906, state->cfg.drives); else { dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal."); /* min drive SDRAM - not optimal - adjust */ dib8000_write_word(state, 906, 0x2d98); } } dib8000_reset_pll(state); if (state->revision != 0x8090) dib8000_write_word(state, 898, 0x0004); if (dib8000_reset_gpio(state) != 0) dprintk("GPIO reset was not successful."); if ((state->revision != 0x8090) && (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) dprintk("OUTPUT_MODE could not be resetted."); state->current_agc = NULL; // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ if (state->cfg.pll->ifreq == 0) dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */ else dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */ { u16 l = 0, r; const u16 *n; n = dib8000_defaults; l = *n++; while (l) { r = *n++; do { dib8000_write_word(state, r, *n++); r++; } while (--l); l = *n++; } } if (state->revision != 0x8090) dib8000_write_word(state, 903, (0 << 4) | 2); state->isdbt_cfg_loaded = 0; //div_cfg override for special configs if (state->cfg.div_cfg != 0) dib8000_write_word(state, 903, state->cfg.div_cfg); /* unforce divstr regardless whether i2c enumeration was done or not */ dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); dib8000_set_bandwidth(fe, 6000); dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); if (state->revision != 0x8090) { dib8000_sad_calib(state); dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); } dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); return 0; } static void dib8000_restart_agc(struct dib8000_state *state) { // P_restart_iqc & P_restart_agc dib8000_write_word(state, 770, 0x0a00); dib8000_write_word(state, 770, 0x0000); } static int dib8000_update_lna(struct dib8000_state *state) { u16 dyn_gain; if (state->cfg.update_lna) { // read dyn_gain here (because it is demod-dependent and not tuner) dyn_gain = dib8000_read_word(state, 390); if (state->cfg.update_lna(state->fe[0], dyn_gain)) { dib8000_restart_agc(state); return 1; } } return 0; } static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) { struct dibx000_agc_config *agc = NULL; int i; u16 reg; if (state->current_band == band && state->current_agc != NULL) return 0; state->current_band = band; for (i = 0; i < state->cfg.agc_config_count; i++) if (state->cfg.agc[i].band_caps & band) { agc = &state->cfg.agc[i]; break; } if (agc == NULL) { dprintk("no valid AGC configuration found for band 0x%02x", band); return -EINVAL; } state->current_agc = agc; /* AGC */ dib8000_write_word(state, 76, agc->setup); dib8000_write_word(state, 77, agc->inv_gain); dib8000_write_word(state, 78, agc->time_stabiliz); dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); /* AGC continued */ if (state->wbd_ref != 0) dib8000_write_word(state, 106, state->wbd_ref); else // use default dib8000_write_word(state, 106, agc->wbd_ref); if (state->revision == 0x8090) { reg = dib8000_read_word(state, 922) & (0x3 << 2); dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); } dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); dib8000_write_word(state, 108, agc->agc1_max); dib8000_write_word(state, 109, agc->agc1_min); dib8000_write_word(state, 110, agc->agc2_max); dib8000_write_word(state, 111, agc->agc2_min); dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); dib8000_write_word(state, 75, agc->agc1_pt3); if (state->revision != 0x8090) dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); return 0; } void dib8000_pwm_agc_reset(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; dib8000_set_adc_state(state, DIBX000_ADC_ON); dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); } EXPORT_SYMBOL(dib8000_pwm_agc_reset); static int dib8000_agc_soft_split(struct dib8000_state *state) { u16 agc, split_offset; if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) return FE_CALLBACK_TIME_NEVER; // n_agc_global agc = dib8000_read_word(state, 390); if (agc > state->current_agc->split.min_thres) split_offset = state->current_agc->split.min; else if (agc < state->current_agc->split.max_thres) split_offset = state->current_agc->split.max; else split_offset = state->current_agc->split.max * (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres); dprintk("AGC split_offset: %d", split_offset); // P_agc_force_split and P_agc_split_offset dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); return 5000; } static int dib8000_agc_startup(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; enum frontend_tune_state *tune_state = &state->tune_state; int ret = 0; u16 reg, upd_demod_gain_period = 0x8000; switch (*tune_state) { case CT_AGC_START: // set power-up level: interf+analog+AGC if (state->revision != 0x8090) dib8000_set_adc_state(state, DIBX000_ADC_ON); else { dib8000_set_power_mode(state, DIB8000_POWER_ALL); reg = dib8000_read_word(state, 1947)&0xff00; dib8000_write_word(state, 1946, upd_demod_gain_period & 0xFFFF); /* bit 14 = enDemodGain */ dib8000_write_word(state, 1947, reg | (1<<14) | ((upd_demod_gain_period >> 16) & 0xFF)); /* enable adc i & q */ reg = dib8000_read_word(state, 1920); dib8000_write_word(state, 1920, (reg | 0x3) & (~(1 << 7))); } if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { *tune_state = CT_AGC_STOP; state->status = FE_STATUS_TUNE_FAILED; break; } ret = 70; *tune_state = CT_AGC_STEP_0; break; case CT_AGC_STEP_0: //AGC initialization if (state->cfg.agc_control) state->cfg.agc_control(fe, 1); dib8000_restart_agc(state); // wait AGC rough lock time ret = 50; *tune_state = CT_AGC_STEP_1; break; case CT_AGC_STEP_1: // wait AGC accurate lock time ret = 70; if (dib8000_update_lna(state)) // wait only AGC rough lock time ret = 50; else *tune_state = CT_AGC_STEP_2; break; case CT_AGC_STEP_2: dib8000_agc_soft_split(state); if (state->cfg.agc_control) state->cfg.agc_control(fe, 0); *tune_state = CT_AGC_STOP; break; default: ret = dib8000_agc_soft_split(state); break; } return ret; } static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) { u16 reg; drive &= 0x7; /* drive host bus 2, 3, 4 */ reg = dib8000_read_word(state, 1798) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1798, reg); /* drive host bus 5,6 */ reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive<<8) | (drive<<2); dib8000_write_word(state, 1799, reg); /* drive host bus 7, 8, 9 */ reg = dib8000_read_word(state, 1800) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1800, reg); /* drive host bus 10, 11 */ reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive<<8) | (drive<<2); dib8000_write_word(state, 1801, reg); /* drive host bus 12, 13, 14 */ reg = dib8000_read_word(state, 1802) & ~(0x7 | (0x7 << 6) | (0x7 << 12)); reg |= (drive<<12) | (drive<<6) | drive; dib8000_write_word(state, 1802, reg); } static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) { u32 quantif = 3; u32 nom = (insertExtSynchro * P_Kin+syncSize); u32 denom = P_Kout; u32 syncFreq = ((nom << quantif) / denom); if ((syncFreq & ((1 << quantif) - 1)) != 0) syncFreq = (syncFreq >> quantif) + 1; else syncFreq = (syncFreq >> quantif); if (syncFreq != 0) syncFreq = syncFreq - 1; return syncFreq; } static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) { dprintk("Configure DibStream Tx"); dib8000_write_word(state, 1615, 1); dib8000_write_word(state, 1603, P_Kin); dib8000_write_word(state, 1605, P_Kout); dib8000_write_word(state, 1606, insertExtSynchro); dib8000_write_word(state, 1608, synchroMode); dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); dib8000_write_word(state, 1610, syncWord & 0xffff); dib8000_write_word(state, 1612, syncSize); dib8000_write_word(state, 1615, 0); } static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, u32 dataOutRate) { u32 syncFreq; dprintk("Configure DibStream Rx synchroMode = %d", synchroMode); if ((P_Kin != 0) && (P_Kout != 0)) { syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); dib8000_write_word(state, 1542, syncFreq); } dib8000_write_word(state, 1554, 1); dib8000_write_word(state, 1536, P_Kin); dib8000_write_word(state, 1537, P_Kout); dib8000_write_word(state, 1539, synchroMode); dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); dib8000_write_word(state, 1541, syncWord & 0xffff); dib8000_write_word(state, 1543, syncSize); dib8000_write_word(state, 1544, dataOutRate); dib8000_write_word(state, 1554, 0); } static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) { u16 reg_1287; reg_1287 = dib8000_read_word(state, 1287); switch (onoff) { case 1: reg_1287 &= ~(1 << 8); break; case 0: reg_1287 |= (1 << 8); break; } dib8000_write_word(state, 1287, reg_1287); } static void dib8096p_configMpegMux(struct dib8000_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) { u16 reg_1287; dprintk("Enable Mpeg mux"); dib8096p_enMpegMux(state, 0); /* If the input mode is MPEG do not divide the serial clock */ if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) enSerialClkDiv2 = 0; reg_1287 = ((pulseWidth & 0x1f) << 3) | ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); dib8000_write_word(state, 1287, reg_1287); dib8096p_enMpegMux(state, 1); } static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) { u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); switch (mode) { case MPEG_ON_DIBTX: dprintk("SET MPEG ON DIBSTREAM TX"); dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); reg_1288 |= (1 << 9); break; case DIV_ON_DIBTX: dprintk("SET DIV_OUT ON DIBSTREAM TX"); dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); reg_1288 |= (1 << 8); break; case ADC_ON_DIBTX: dprintk("SET ADC_OUT ON DIBSTREAM TX"); dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); reg_1288 |= (1 << 7); break; default: break; } dib8000_write_word(state, 1288, reg_1288); } static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) { u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); switch (mode) { case DEMOUT_ON_HOSTBUS: dprintk("SET DEM OUT OLD INTERF ON HOST BUS"); dib8096p_enMpegMux(state, 0); reg_1288 |= (1 << 6); break; case DIBTX_ON_HOSTBUS: dprintk("SET DIBSTREAM TX ON HOST BUS"); dib8096p_enMpegMux(state, 0); reg_1288 |= (1 << 5); break; case MPEG_ON_HOSTBUS: dprintk("SET MPEG MUX ON HOST BUS"); reg_1288 |= (1 << 4); break; default: break; } dib8000_write_word(state, 1288, reg_1288); } static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 reg_1287; switch (onoff) { case 0: /* only use the internal way - not the diversity input */ dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__); /* outputRate = 8 */ dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /* Do not divide the serial clock of MPEG MUX in SERIAL MODE in case input mode MPEG is used */ reg_1287 = dib8000_read_word(state, 1287); /* enSerialClkDiv2 == 1 ? */ if ((reg_1287 & 0x1) == 1) { /* force enSerialClkDiv2 = 0 */ reg_1287 &= ~0x1; dib8000_write_word(state, 1287, reg_1287); } state->input_mode_mpeg = 1; break; case 1: /* both ways */ case 2: /* only the diversity input */ dprintk("%s ON : Enable diversity INPUT", __func__); dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); state->input_mode_mpeg = 0; break; } dib8000_set_diversity_in(state->fe[0], onoff); return 0; } static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib8000_state *state = fe->demodulator_priv; u16 outreg, smo_mode, fifo_threshold; u8 prefer_mpeg_mux_use = 1; int ret = 0; dib8096p_host_bus_drive(state, 1); fifo_threshold = 1792; smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); outreg = dib8000_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); switch (mode) { case OUTMODE_HIGH_Z: outreg = 0; break; case OUTMODE_MPEG2_SERIAL: if (prefer_mpeg_mux_use) { dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux"); dib8096p_configMpegMux(state, 3, 1, 1); dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); } else {/* Use Smooth block */ dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (2 << 6) | (0 << 1); } break; case OUTMODE_MPEG2_PAR_GATED_CLK: if (prefer_mpeg_mux_use) { dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux"); dib8096p_configMpegMux(state, 2, 0, 0); dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); } else { /* Use Smooth block */ dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (0 << 6); } break; case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (1 << 6); break; case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ dprintk("dib8096P setting output mode TS_FIFO using Smooth block"); dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (5 << 6); smo_mode |= (3 << 1); fifo_threshold = 512; break; case OUTMODE_DIVERSITY: dprintk("dib8096P setting output mode MODE_DIVERSITY"); dib8096p_setDibTxMux(state, DIV_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; case OUTMODE_ANALOG_ADC: dprintk("dib8096P setting output mode MODE_ANALOG_ADC"); dib8096p_setDibTxMux(state, ADC_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; } if (mode != OUTMODE_HIGH_Z) outreg |= (1<<10); dprintk("output_mpeg2_in_188_bytes = %d", state->cfg.output_mpeg2_in_188_bytes); if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); ret |= dib8000_write_word(state, 299, smo_mode); /* synchronous fread */ ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); ret |= dib8000_write_word(state, 1286, outreg); return ret; } static int map_addr_to_serpar_number(struct i2c_msg *msg) { if (msg->buf[0] <= 15) msg->buf[0] -= 1; else if (msg->buf[0] == 17) msg->buf[0] = 15; else if (msg->buf[0] == 16) msg->buf[0] = 17; else if (msg->buf[0] == 19) msg->buf[0] = 16; else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) msg->buf[0] -= 3; else if (msg->buf[0] == 28) msg->buf[0] = 23; else if (msg->buf[0] == 99) msg->buf[0] = 99; else return -EINVAL; return 0; } static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; while (n_overflow == 1 && i) { n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("Tuner ITF: write busy (overflow)"); } dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); return num; } static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1, n_empty = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; u16 read_word; while (n_overflow == 1 && i) { n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("TunerITF: read busy (overflow)"); } dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); i = 1000; while (n_empty == 1 && i) { n_empty = dib8000_read_word(state, 1984)&0x1; i--; if (i == 0) dprintk("TunerITF: read busy (empty)"); } read_word = dib8000_read_word(state, 1987); msg[1].buf[0] = (read_word >> 8) & 0xff; msg[1].buf[1] = (read_word) & 0xff; return num; } static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { if (map_addr_to_serpar_number(&msg[0]) == 0) { if (num == 1) /* write */ return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); else /* read */ return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); } return num; } static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u16 word; if (num == 1) { /* write */ dib8000_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); } else { word = dib8000_read_word(state, apb_address); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; } return num; } static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib8000_state *state = i2c_get_adapdata(i2c_adap); u16 apb_address = 0, word; int i = 0; switch (msg[0].buf[0]) { case 0x12: apb_address = 1920; break; case 0x14: apb_address = 1921; break; case 0x24: apb_address = 1922; break; case 0x1a: apb_address = 1923; break; case 0x22: apb_address = 1924; break; case 0x33: apb_address = 1926; break; case 0x34: apb_address = 1927; break; case 0x35: apb_address = 1928; break; case 0x36: apb_address = 1929; break; case 0x37: apb_address = 1930; break; case 0x38: apb_address = 1931; break; case 0x39: apb_address = 1932; break; case 0x2a: apb_address = 1935; break; case 0x2b: apb_address = 1936; break; case 0x2c: apb_address = 1937; break; case 0x2d: apb_address = 1938; break; case 0x2e: apb_address = 1939; break; case 0x2f: apb_address = 1940; break; case 0x30: apb_address = 1941; break; case 0x31: apb_address = 1942; break; case 0x32: apb_address = 1943; break; case 0x3e: apb_address = 1944; break; case 0x3f: apb_address = 1945; break; case 0x40: apb_address = 1948; break; case 0x25: apb_address = 936; break; case 0x26: apb_address = 937; break; case 0x27: apb_address = 938; break; case 0x28: apb_address = 939; break; case 0x1d: /* get sad sel request */ i = ((dib8000_read_word(state, 921) >> 12)&0x3); word = dib8000_read_word(state, 924+i); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; return num; case 0x1f: if (num == 1) { /* write */ word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); /* in the VGAMODE Sel are located on bit 0/1 */ word &= 0x3; word = (dib8000_read_word(state, 921) & ~(3<<12)) | (word<<12); /* Set the proper input */ dib8000_write_word(state, 921, word); return num; } } if (apb_address != 0) /* R/W acces via APB */ return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); else /* R/W access via SERPAR */ return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); return 0; } static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm dib8096p_tuner_xfer_algo = { .master_xfer = dib8096p_tuner_xfer, .functionality = dib8096p_i2c_func, }; struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) { struct dib8000_state *st = fe->demodulator_priv; return &st->dib8096p_tuner_adap; } EXPORT_SYMBOL(dib8096p_get_i2c_tuner); int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) { struct dib8000_state *state = fe->demodulator_priv; u16 en_cur_state; dprintk("sleep dib8096p: %d", onoff); en_cur_state = dib8000_read_word(state, 1922); /* LNAs and MIX are ON and therefore it is a valid configuration */ if (en_cur_state > 0xff) state->tuner_enable = en_cur_state ; if (onoff) en_cur_state &= 0x00ff; else { if (state->tuner_enable != 0) en_cur_state = state->tuner_enable; } dib8000_write_word(state, 1922, en_cur_state); return 0; } EXPORT_SYMBOL(dib8096p_tuner_sleep); static const s32 lut_1000ln_mant[] = { 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 }; s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) { struct dib8000_state *state = fe->demodulator_priv; u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; s32 val; val = dib8000_read32(state, 384); if (mode) { tmp_val = val; while (tmp_val >>= 1) exp++; mant = (val * 1000 / (1<demodulator_priv; int val = 0; switch (IQ) { case 1: val = dib8000_read_word(state, 403); break; case 0: val = dib8000_read_word(state, 404); break; } if (val & 0x200) val -= 1024; return val; } EXPORT_SYMBOL(dib8090p_get_dc_power); static void dib8000_update_timf(struct dib8000_state *state) { u32 timf = state->timf = dib8000_read32(state, 435); dib8000_write_word(state, 29, (u16) (timf >> 16)); dib8000_write_word(state, 30, (u16) (timf & 0xffff)); dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default); } u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) { struct dib8000_state *state = fe->demodulator_priv; switch (op) { case DEMOD_TIMF_SET: state->timf = timf; break; case DEMOD_TIMF_UPDATE: dib8000_update_timf(state); break; case DEMOD_TIMF_GET: break; } dib8000_set_bandwidth(state->fe[0], 6000); return state->timf; } EXPORT_SYMBOL(dib8000_ctrl_timf); static const u16 adc_target_16dB[11] = { (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117 }; static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosearching) { u16 mode, max_constellation, seg_diff_mask = 0, nbseg_diff = 0; u8 guard, crate, constellation, timeI; u16 i, coeff[4], P_cfr_left_edge = 0, P_cfr_right_edge = 0, seg_mask13 = 0x1fff; // All 13 segments enabled const s16 *ncoeff = NULL, *ana_fe; u16 tmcc_pow = 0; u16 coff_pow = 0x2800; u16 init_prbs = 0xfff; u16 ana_gain = 0; if (state->revision == 0x8090) dib8000_init_sdram(state); if (state->ber_monitored_layer != LAYER_ALL) dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & 0x60) | state->ber_monitored_layer); else dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); i = dib8000_read_word(state, 26) & 1; // P_dds_invspec dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion^i); if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) { //compute new dds_freq for the seg and adjust prbs int seg_offset = state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx - (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) - (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2); int clk = state->cfg.pll->internal; u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26) int dds_offset = seg_offset * segtodds; int new_dds, sub_channel; if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) dds_offset -= (int)(segtodds / 2); if (state->cfg.pll->ifreq == 0) { if ((state->fe[0]->dtv_property_cache.inversion ^ i) == 0) { dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); new_dds = dds_offset; } else new_dds = dds_offset; // We shift tuning frequency if the wanted segment is : // - the segment of center frequency with an odd total number of segments // - the segment to the left of center frequency with an even total number of segments // - the segment to the right of center frequency with an even total number of segments if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) && (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) && (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))) || (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) && (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx == (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2))) || (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) && (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))) )) { new_dds -= ((u32) (850 << 22) / clk) << 4; // new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26) } } else { if ((state->fe[0]->dtv_property_cache.inversion ^ i) == 0) new_dds = state->cfg.pll->ifreq - dds_offset; else new_dds = state->cfg.pll->ifreq + dds_offset; } dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff)); dib8000_write_word(state, 28, (u16) (new_dds & 0xffff)); if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3; else sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3; sub_channel -= 6; if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K || state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_4K) { dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); //adp_pass =1 dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); //pha3_force_pha_shift = 1 } else { dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); //adp_pass =0 dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); //pha3_force_pha_shift = 0 } switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: switch (sub_channel) { case -6: init_prbs = 0x0; break; // 41, 0, 1 case -5: init_prbs = 0x423; break; // 02~04 case -4: init_prbs = 0x9; break; // 05~07 case -3: init_prbs = 0x5C7; break; // 08~10 case -2: init_prbs = 0x7A6; break; // 11~13 case -1: init_prbs = 0x3D8; break; // 14~16 case 0: init_prbs = 0x527; break; // 17~19 case 1: init_prbs = 0x7FF; break; // 20~22 case 2: init_prbs = 0x79B; break; // 23~25 case 3: init_prbs = 0x3D6; break; // 26~28 case 4: init_prbs = 0x3A2; break; // 29~31 case 5: init_prbs = 0x53B; break; // 32~34 case 6: init_prbs = 0x2F4; break; // 35~37 default: case 7: init_prbs = 0x213; break; // 38~40 } break; case TRANSMISSION_MODE_4K: switch (sub_channel) { case -6: init_prbs = 0x0; break; // 41, 0, 1 case -5: init_prbs = 0x208; break; // 02~04 case -4: init_prbs = 0xC3; break; // 05~07 case -3: init_prbs = 0x7B9; break; // 08~10 case -2: init_prbs = 0x423; break; // 11~13 case -1: init_prbs = 0x5C7; break; // 14~16 case 0: init_prbs = 0x3D8; break; // 17~19 case 1: init_prbs = 0x7FF; break; // 20~22 case 2: init_prbs = 0x3D6; break; // 23~25 case 3: init_prbs = 0x53B; break; // 26~28 case 4: init_prbs = 0x213; break; // 29~31 case 5: init_prbs = 0x29; break; // 32~34 case 6: init_prbs = 0xD0; break; // 35~37 default: case 7: init_prbs = 0x48E; break; // 38~40 } break; default: case TRANSMISSION_MODE_8K: switch (sub_channel) { case -6: init_prbs = 0x0; break; // 41, 0, 1 case -5: init_prbs = 0x740; break; // 02~04 case -4: init_prbs = 0x069; break; // 05~07 case -3: init_prbs = 0x7DD; break; // 08~10 case -2: init_prbs = 0x208; break; // 11~13 case -1: init_prbs = 0x7B9; break; // 14~16 case 0: init_prbs = 0x5C7; break; // 17~19 case 1: init_prbs = 0x7FF; break; // 20~22 case 2: init_prbs = 0x53B; break; // 23~25 case 3: init_prbs = 0x29; break; // 26~28 case 4: init_prbs = 0x48E; break; // 29~31 case 5: init_prbs = 0x4C4; break; // 32~34 case 6: init_prbs = 0x367; break; // 33~37 default: case 7: init_prbs = 0x684; break; // 38~40 } break; } } else { dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff)); dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff)); dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003)); } /*P_mode == ?? */ dib8000_write_word(state, 10, (seq << 4)); // dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000); switch (state->fe[0]->dtv_property_cache.guard_interval) { case GUARD_INTERVAL_1_32: guard = 0; break; case GUARD_INTERVAL_1_16: guard = 1; break; case GUARD_INTERVAL_1_8: guard = 2; break; case GUARD_INTERVAL_1_4: default: guard = 3; break; } dib8000_write_word(state, 1, (init_prbs << 2) | (guard & 0x3)); // ADDR 1 max_constellation = DQPSK; for (i = 0; i < 3; i++) { switch (state->fe[0]->dtv_property_cache.layer[i].modulation) { case DQPSK: constellation = 0; break; case QPSK: constellation = 1; break; case QAM_16: constellation = 2; break; case QAM_64: default: constellation = 3; break; } switch (state->fe[0]->dtv_property_cache.layer[i].fec) { case FEC_1_2: crate = 1; break; case FEC_2_3: crate = 2; break; case FEC_3_4: crate = 3; break; case FEC_5_6: crate = 5; break; case FEC_7_8: default: crate = 7; break; } if ((state->fe[0]->dtv_property_cache.layer[i].interleaving > 0) && ((state->fe[0]->dtv_property_cache.layer[i].interleaving <= 3) || (state->fe[0]->dtv_property_cache.layer[i].interleaving == 4 && state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)) ) timeI = state->fe[0]->dtv_property_cache.layer[i].interleaving; else timeI = 0; dib8000_write_word(state, 2 + i, (constellation << 10) | ((state->fe[0]->dtv_property_cache.layer[i].segment_count & 0xf) << 6) | (crate << 3) | timeI); if (state->fe[0]->dtv_property_cache.layer[i].segment_count > 0) { switch (max_constellation) { case DQPSK: case QPSK: if (state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_16 || state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_64) max_constellation = state->fe[0]->dtv_property_cache.layer[i].modulation; break; case QAM_16: if (state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_64) max_constellation = state->fe[0]->dtv_property_cache.layer[i].modulation; break; } } } mode = fft_to_mode(state); //dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/ dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((state->fe[0]->dtv_property_cache.isdbt_partial_reception & 1) << 5) | ((state->fe[0]->dtv_property_cache. isdbt_sb_mode & 1) << 4)); dprintk("mode = %d ; guard = %d", mode, state->fe[0]->dtv_property_cache.guard_interval); /* signal optimization parameter */ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception) { seg_diff_mask = (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) << permu_seg[0]; for (i = 1; i < 3; i++) nbseg_diff += (state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * state->fe[0]->dtv_property_cache.layer[i].segment_count; for (i = 0; i < nbseg_diff; i++) seg_diff_mask |= 1 << permu_seg[i + 1]; } else { for (i = 0; i < 3; i++) nbseg_diff += (state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * state->fe[0]->dtv_property_cache.layer[i].segment_count; for (i = 0; i < nbseg_diff; i++) seg_diff_mask |= 1 << permu_seg[i]; } dprintk("nbseg_diff = %X (%d)", seg_diff_mask, seg_diff_mask); state->differential_constellation = (seg_diff_mask != 0); if (state->revision != 0x8090) dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); else dib8096p_set_diversity_in(state->fe[0], state->diversity_onoff); if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) seg_mask13 = 0x00E0; else // 1-segment seg_mask13 = 0x0040; } else seg_mask13 = 0x1fff; // WRITE: Mode & Diff mask dib8000_write_word(state, 0, (mode << 13) | seg_diff_mask); if ((seg_diff_mask) || (state->fe[0]->dtv_property_cache.isdbt_sb_mode)) dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); else dib8000_write_word(state, 268, (2 << 9) | 39); //init value // ---- SMALL ---- // P_small_seg_diff dib8000_write_word(state, 352, seg_diff_mask); // ADDR 352 dib8000_write_word(state, 353, seg_mask13); // ADDR 353 /* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */ // ---- SMALL ---- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_2K: if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) ncoeff = coeff_2k_sb_1seg_dqpsk; else // QPSK or QAM ncoeff = coeff_2k_sb_1seg; } else { // 3-segments if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; else // QPSK or QAM on external segments ncoeff = coeff_2k_sb_3seg_0dqpsk; } else { // QPSK or QAM on central segment if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) ncoeff = coeff_2k_sb_3seg_1dqpsk; else // QPSK or QAM on external segments ncoeff = coeff_2k_sb_3seg; } } break; case TRANSMISSION_MODE_4K: if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) ncoeff = coeff_4k_sb_1seg_dqpsk; else // QPSK or QAM ncoeff = coeff_4k_sb_1seg; } else { // 3-segments if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; } else { // QPSK or QAM on external segments ncoeff = coeff_4k_sb_3seg_0dqpsk; } } else { // QPSK or QAM on central segment if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { ncoeff = coeff_4k_sb_3seg_1dqpsk; } else // QPSK or QAM on external segments ncoeff = coeff_4k_sb_3seg; } } break; case TRANSMISSION_MODE_AUTO: case TRANSMISSION_MODE_8K: default: if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) ncoeff = coeff_8k_sb_1seg_dqpsk; else // QPSK or QAM ncoeff = coeff_8k_sb_1seg; } else { // 3-segments if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; } else { // QPSK or QAM on external segments ncoeff = coeff_8k_sb_3seg_0dqpsk; } } else { // QPSK or QAM on central segment if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { ncoeff = coeff_8k_sb_3seg_1dqpsk; } else // QPSK or QAM on external segments ncoeff = coeff_8k_sb_3seg; } } break; } for (i = 0; i < 8; i++) dib8000_write_word(state, 343 + i, ncoeff[i]); } // P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 dib8000_write_word(state, 351, (state->fe[0]->dtv_property_cache.isdbt_sb_mode << 9) | (state->fe[0]->dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5); // ---- COFF ---- // Carloff, the most robust if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64 // P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state->fe[0]->dtv_property_cache.isdbt_partial_reception & 1) << 2) | 0x3); /* // P_small_coef_ext_enable = 1 */ /* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1) if (mode == 3) dib8000_write_word(state, 180, 0x1fcf | ((mode - 1) << 14)); else dib8000_write_word(state, 180, 0x0fcf | ((mode - 1) << 14)); // P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); // P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k dib8000_write_word(state, 181, 300); dib8000_write_word(state, 182, 150); dib8000_write_word(state, 183, 80); dib8000_write_word(state, 184, 300); dib8000_write_word(state, 185, 150); dib8000_write_word(state, 186, 80); } else { // Sound Broadcasting mode 3 seg // P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15 /* if (mode == 3) */ /* dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */ /* else */ /* dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */ dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); // P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); //P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k dib8000_write_word(state, 181, 350); dib8000_write_word(state, 182, 300); dib8000_write_word(state, 183, 250); dib8000_write_word(state, 184, 350); dib8000_write_word(state, 185, 300); dib8000_write_word(state, 186, 250); } } else if (state->isdbt_cfg_loaded == 0) { // if not Sound Broadcasting mode : put default values for 13 segments dib8000_write_word(state, 180, (16 << 6) | 9); dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); coff_pow = 0x2800; for (i = 0; i < 6; i++) dib8000_write_word(state, 181 + i, coff_pow); // P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1, // P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); // P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); // P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); } // ---- FFT ---- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) dib8000_write_word(state, 178, 64); // P_fft_powrange=64 else dib8000_write_word(state, 178, 32); // P_fft_powrange=32 /* make the cpil_coff_lock more robust but slower p_coff_winlen * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) */ /* if ( ( nbseg_diff>0)&&(nbseg_diff<13)) dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */ dib8000_write_word(state, 189, ~seg_mask13 | seg_diff_mask); /* P_lmod4_seg_inh */ dib8000_write_word(state, 192, ~seg_mask13 | seg_diff_mask); /* P_pha3_seg_inh */ dib8000_write_word(state, 225, ~seg_mask13 | seg_diff_mask); /* P_tac_seg_inh */ if ((!state->fe[0]->dtv_property_cache.isdbt_sb_mode) && (state->cfg.pll->ifreq == 0)) dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ else dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask); /* P_equal_noise_seg_inh */ dib8000_write_word(state, 287, ~seg_mask13 | 0x1000); /* P_tmcc_seg_inh */ //dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */ if (!autosearching) dib8000_write_word(state, 288, (~seg_mask13 | seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ else dib8000_write_word(state, 288, 0x1fff); //disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. dprintk("287 = %X (%d)", ~seg_mask13 | 0x1000, ~seg_mask13 | 0x1000); dib8000_write_word(state, 211, seg_mask13 & (~seg_diff_mask)); /* P_des_seg_enabled */ /* offset loop parameters */ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */ dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40); else // Sound Broadcasting mode 3 seg /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */ dib8000_write_word(state, 32, ((10 - mode) << 12) | (6 << 8) | 0x60); } else // TODO in 13 seg, timf_alpha can always be the same or not ? /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80); if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */ dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode)); else // Sound Broadcasting mode 3 seg /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */ dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (9 - mode)); } else /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */ dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (8 - mode)); /* P_dvsy_sync_wait - reuse mode */ switch (state->fe[0]->dtv_property_cache.transmission_mode) { case TRANSMISSION_MODE_8K: mode = 256; break; case TRANSMISSION_MODE_4K: mode = 128; break; default: case TRANSMISSION_MODE_2K: mode = 64; break; } if (state->cfg.diversity_delay == 0) mode = (mode * (1 << (guard)) * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo else mode = (mode * (1 << (guard)) * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for DVSY-fifo mode <<= 4; dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | mode); /* channel estimation fine configuration */ switch (max_constellation) { case QAM_64: ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB coeff[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ coeff[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ coeff[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ //if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1 break; case QAM_16: ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB coeff[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ coeff[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ coeff[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ //if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16))) break; default: ana_gain = 0; // 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level coeff[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ coeff[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ coeff[2] = 0x0333; /* P_adp_regul_ext 0.1 */ coeff[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ break; } for (mode = 0; mode < 4; mode++) dib8000_write_word(state, 215 + mode, coeff[mode]); // update ana_gain depending on max constellation dib8000_write_word(state, 116, ana_gain); // update ADC target depending on ana_gain if (ana_gain) { // set -16dB ADC target for ana_gain=-1 for (i = 0; i < 10; i++) dib8000_write_word(state, 80 + i, adc_target_16dB[i]); } else { // set -22dB ADC target for ana_gain=0 for (i = 0; i < 10; i++) dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); } // ---- ANA_FE ---- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) ana_fe = ana_fe_coeff_3seg; else // 1-segment ana_fe = ana_fe_coeff_1seg; } else ana_fe = ana_fe_coeff_13seg; if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 || state->isdbt_cfg_loaded == 0) for (mode = 0; mode < 24; mode++) dib8000_write_word(state, 117 + mode, ana_fe[mode]); // ---- CHAN_BLK ---- for (i = 0; i < 13; i++) { if ((((~seg_diff_mask) >> i) & 1) == 1) { P_cfr_left_edge += (1 << i) * ((i == 0) || ((((seg_mask13 & (~seg_diff_mask)) >> (i - 1)) & 1) == 0)); P_cfr_right_edge += (1 << i) * ((i == 12) || ((((seg_mask13 & (~seg_diff_mask)) >> (i + 1)) & 1) == 0)); } } dib8000_write_word(state, 222, P_cfr_left_edge); // P_cfr_left_edge dib8000_write_word(state, 223, P_cfr_right_edge); // P_cfr_right_edge // "P_cspu_left_edge" not used => do not care // "P_cspu_right_edge" not used => do not care if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1 dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0 if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0 && state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) { //dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0 dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15 } } else if (state->isdbt_cfg_loaded == 0) { dib8000_write_word(state, 228, 0); // default value dib8000_write_word(state, 265, 31); // default value dib8000_write_word(state, 205, 0x200f); // init value } // ---- TMCC ---- for (i = 0; i < 3; i++) tmcc_pow += (((state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * 4 + 1) * state->fe[0]->dtv_property_cache.layer[i].segment_count); // Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); // Threshold is set at 1/4 of max power. tmcc_pow *= (1 << (9 - 2)); dib8000_write_word(state, 290, tmcc_pow); // P_tmcc_dec_thres_2k dib8000_write_word(state, 291, tmcc_pow); // P_tmcc_dec_thres_4k dib8000_write_word(state, 292, tmcc_pow); // P_tmcc_dec_thres_8k //dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); // ---- PHA3 ---- if (state->isdbt_cfg_loaded == 0) dib8000_write_word(state, 250, 3285); /*p_2d_hspeed_thr0 */ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) state->isdbt_cfg_loaded = 0; else state->isdbt_cfg_loaded = 1; } static int dib8000_autosearch_start(struct dvb_frontend *fe) { u8 factor; u32 value; struct dib8000_state *state = fe->demodulator_priv; int slist = 0; state->fe[0]->dtv_property_cache.inversion = 0; if (!state->fe[0]->dtv_property_cache.isdbt_sb_mode) state->fe[0]->dtv_property_cache.layer[0].segment_count = 13; state->fe[0]->dtv_property_cache.layer[0].modulation = QAM_64; state->fe[0]->dtv_property_cache.layer[0].fec = FEC_2_3; state->fe[0]->dtv_property_cache.layer[0].interleaving = 0; //choose the right list, in sb, always do everything if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) { state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; slist = 7; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); } else { if (state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) { if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) { slist = 7; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 to have autosearch start ok with mode2 } else slist = 3; } else { if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) { slist = 2; dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 } else slist = 0; } if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; if (state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; dprintk("using list for autosearch : %d", slist); dib8000_set_channel(state, (unsigned char)slist, 1); //dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 factor = 1; //set lock_mask values dib8000_write_word(state, 6, 0x4); dib8000_write_word(state, 7, 0x8); dib8000_write_word(state, 8, 0x1000); //set lock_mask wait time values value = 50 * state->cfg.pll->internal * factor; dib8000_write_word(state, 11, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib8000_write_word(state, 12, (u16) (value & 0xffff)); // lock0 wait time value = 100 * state->cfg.pll->internal * factor; dib8000_write_word(state, 13, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib8000_write_word(state, 14, (u16) (value & 0xffff)); // lock1 wait time value = 1000 * state->cfg.pll->internal * factor; dib8000_write_word(state, 15, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib8000_write_word(state, 16, (u16) (value & 0xffff)); // lock2 wait time value = dib8000_read_word(state, 0); dib8000_write_word(state, 0, (u16) ((1 << 15) | value)); dib8000_read_word(state, 1284); // reset the INT. n_irq_pending dib8000_write_word(state, 0, (u16) value); } return 0; } static int dib8000_autosearch_irq(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u16 irq_pending = dib8000_read_word(state, 1284); if (irq_pending & 0x1) { // failed dprintk("dib8000_autosearch_irq failed"); return 1; } if (irq_pending & 0x2) { // succeeded dprintk("dib8000_autosearch_irq succeeded"); return 2; } return 0; // still pending } static int dib8000_tune(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; int ret = 0; u16 lock, value, mode = fft_to_mode(state); // we are already tuned - just resuming from suspend if (state == NULL) return -EINVAL; dib8000_set_bandwidth(fe, state->fe[0]->dtv_property_cache.bandwidth_hz / 1000); dib8000_set_channel(state, 0, 0); // restart demod ret |= dib8000_write_word(state, 770, 0x4000); ret |= dib8000_write_word(state, 770, 0x0000); msleep(45); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */ /* ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) ); workaround inh_isi stays at 1 */ // never achieved a lock before - wait for timfreq to update if (state->timf == 0) { if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) msleep(300); else // Sound Broadcasting mode 3 seg msleep(500); } else // 13 seg msleep(200); } if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */ dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40); //dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80); /* P_ctrl_sfreq_step= (12-P_mode) P_ctrl_sfreq_inh =0 P_ctrl_pha_off_max */ ret |= dib8000_write_word(state, 37, (12 - mode) | ((5 + mode) << 5)); } else { // Sound Broadcasting mode 3 seg /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 alpha to check on board */ dib8000_write_word(state, 32, ((12 - mode) << 12) | (6 << 8) | 0x60); ret |= dib8000_write_word(state, 37, (11 - mode) | ((5 + mode) << 5)); } } else { // 13 seg /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 alpha to check on board */ dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x80); ret |= dib8000_write_word(state, 37, (10 - mode) | ((5 + mode) << 5)); } // we achieved a coff_cpil_lock - it's time to update the timf if (state->revision != 0x8090) lock = dib8000_read_word(state, 568); else lock = dib8000_read_word(state, 570); if ((lock >> 11) & 0x1) dib8000_update_timf(state); //now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start dib8000_write_word(state, 6, 0x200); if (state->revision == 0x8002) { value = dib8000_read_word(state, 903); dib8000_write_word(state, 903, value & ~(1 << 3)); msleep(1); dib8000_write_word(state, 903, value | (1 << 3)); } return ret; } static int dib8000_wakeup(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; int ret; dib8000_set_power_mode(state, DIB8000_POWER_ALL); dib8000_set_adc_state(state, DIBX000_ADC_ON); if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) dprintk("could not start Slow ADC"); if (state->revision != 0x8090) dib8000_sad_calib(state); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); if (ret < 0) return ret; } return 0; } static int dib8000_sleep(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; int ret; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); if (ret < 0) return ret; } if (state->revision != 0x8090) dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); } enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; return state->tune_state; } EXPORT_SYMBOL(dib8000_get_tune_state); int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib8000_state *state = fe->demodulator_priv; state->tune_state = tune_state; return 0; } EXPORT_SYMBOL(dib8000_set_tune_state); static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) { struct dib8000_state *state = fe->demodulator_priv; u16 i, val = 0; fe_status_t stat; u8 index_frontend, sub_index_frontend; fe->dtv_property_cache.bandwidth_hz = 6000000; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); if (stat&FE_HAS_SYNC) { dprintk("TMCC lock on the slave%i", index_frontend); /* synchronize the cache with the other frontends */ state->fe[index_frontend]->ops.get_frontend_legacy(state->fe[index_frontend], fep); for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { if (sub_index_frontend != index_frontend) { state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; for (i = 0; i < 3; i++) { state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; } } } return 0; } } fe->dtv_property_cache.isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; if (state->revision == 0x8090) val = dib8000_read_word(state, 572); else val = dib8000_read_word(state, 570); fe->dtv_property_cache.inversion = (val & 0x40) >> 6; switch ((val & 0x30) >> 4) { case 1: fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; break; case 3: default: fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; break; } switch (val & 0x3) { case 0: fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; dprintk("dib8000_get_frontend GI = 1/32 "); break; case 1: fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; dprintk("dib8000_get_frontend GI = 1/16 "); break; case 2: dprintk("dib8000_get_frontend GI = 1/8 "); fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; break; case 3: dprintk("dib8000_get_frontend GI = 1/4 "); fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; break; } val = dib8000_read_word(state, 505); fe->dtv_property_cache.isdbt_partial_reception = val & 1; dprintk("dib8000_get_frontend : partial_reception = %d ", fe->dtv_property_cache.isdbt_partial_reception); for (i = 0; i < 3; i++) { val = dib8000_read_word(state, 493 + i); fe->dtv_property_cache.layer[i].segment_count = val & 0x0F; dprintk("dib8000_get_frontend : Layer %d segments = %d ", i, fe->dtv_property_cache.layer[i].segment_count); val = dib8000_read_word(state, 499 + i); fe->dtv_property_cache.layer[i].interleaving = val & 0x3; dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i, fe->dtv_property_cache.layer[i].interleaving); val = dib8000_read_word(state, 481 + i); switch (val & 0x7) { case 1: fe->dtv_property_cache.layer[i].fec = FEC_1_2; dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i); break; case 2: fe->dtv_property_cache.layer[i].fec = FEC_2_3; dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i); break; case 3: fe->dtv_property_cache.layer[i].fec = FEC_3_4; dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i); break; case 5: fe->dtv_property_cache.layer[i].fec = FEC_5_6; dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i); break; default: fe->dtv_property_cache.layer[i].fec = FEC_7_8; dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i); break; } val = dib8000_read_word(state, 487 + i); switch (val & 0x3) { case 0: dprintk("dib8000_get_frontend : Layer %d DQPSK ", i); fe->dtv_property_cache.layer[i].modulation = DQPSK; break; case 1: fe->dtv_property_cache.layer[i].modulation = QPSK; dprintk("dib8000_get_frontend : Layer %d QPSK ", i); break; case 2: fe->dtv_property_cache.layer[i].modulation = QAM_16; dprintk("dib8000_get_frontend : Layer %d QAM16 ", i); break; case 3: default: dprintk("dib8000_get_frontend : Layer %d QAM64 ", i); fe->dtv_property_cache.layer[i].modulation = QAM_64; break; } } /* synchronize the cache with the other frontends */ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = fe->dtv_property_cache.isdbt_sb_mode; state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion; state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode; state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval; state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = fe->dtv_property_cache.isdbt_partial_reception; for (i = 0; i < 3; i++) { state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = fe->dtv_property_cache.layer[i].segment_count; state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = fe->dtv_property_cache.layer[i].interleaving; state->fe[index_frontend]->dtv_property_cache.layer[i].fec = fe->dtv_property_cache.layer[i].fec; state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = fe->dtv_property_cache.layer[i].modulation; } } return 0; } static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) { struct dib8000_state *state = fe->demodulator_priv; u8 nbr_pending, exit_condition, index_frontend; s8 index_frontend_success = -1; int time, ret; int time_slave = FE_CALLBACK_TIME_NEVER; if (state->fe[0]->dtv_property_cache.frequency == 0) { dprintk("dib8000: must at least specify frequency "); return 0; } if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { dprintk("dib8000: no bandwidth specified, set to default "); state->fe[0]->dtv_property_cache.bandwidth_hz = 6000000; } for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { /* synchronization of the cache */ state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); if (state->revision != 0x8090) dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); else dib8096p_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); if (state->fe[index_frontend]->ops.tuner_ops.set_params) state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); } /* start up the AGC */ do { time = dib8000_agc_startup(state->fe[0]); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { time_slave = dib8000_agc_startup(state->fe[index_frontend]); if (time == FE_CALLBACK_TIME_NEVER) time = time_slave; else if ((time_slave != FE_CALLBACK_TIME_NEVER) && (time_slave > time)) time = time_slave; } if (time != FE_CALLBACK_TIME_NEVER) msleep(time / 10); else break; exit_condition = 1; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { exit_condition = 0; break; } } } while (exit_condition == 0); for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); if ((state->fe[0]->dtv_property_cache.delivery_system != SYS_ISDBT) || (state->fe[0]->dtv_property_cache.inversion == INVERSION_AUTO) || (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) || (state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) || (((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 0)) != 0) && (state->fe[0]->dtv_property_cache.layer[0].segment_count != 0xff) && (state->fe[0]->dtv_property_cache.layer[0].segment_count != 0) && ((state->fe[0]->dtv_property_cache.layer[0].modulation == QAM_AUTO) || (state->fe[0]->dtv_property_cache.layer[0].fec == FEC_AUTO))) || (((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 1)) != 0) && (state->fe[0]->dtv_property_cache.layer[1].segment_count != 0xff) && (state->fe[0]->dtv_property_cache.layer[1].segment_count != 0) && ((state->fe[0]->dtv_property_cache.layer[1].modulation == QAM_AUTO) || (state->fe[0]->dtv_property_cache.layer[1].fec == FEC_AUTO))) || (((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 2)) != 0) && (state->fe[0]->dtv_property_cache.layer[2].segment_count != 0xff) && (state->fe[0]->dtv_property_cache.layer[2].segment_count != 0) && ((state->fe[0]->dtv_property_cache.layer[2].modulation == QAM_AUTO) || (state->fe[0]->dtv_property_cache.layer[2].fec == FEC_AUTO))) || (((state->fe[0]->dtv_property_cache.layer[0].segment_count == 0) || ((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 0)) == 0)) && ((state->fe[0]->dtv_property_cache.layer[1].segment_count == 0) || ((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (2 << 0)) == 0)) && ((state->fe[0]->dtv_property_cache.layer[2].segment_count == 0) || ((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (3 << 0)) == 0)))) { int i = 100; u8 found = 0; u8 tune_failed = 0; for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { dib8000_set_bandwidth(state->fe[index_frontend], fe->dtv_property_cache.bandwidth_hz / 1000); dib8000_autosearch_start(state->fe[index_frontend]); } do { msleep(20); nbr_pending = 0; exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { if (((tune_failed >> index_frontend) & 0x1) == 0) { found = dib8000_autosearch_irq(state->fe[index_frontend]); switch (found) { case 0: /* tune pending */ nbr_pending++; break; case 2: dprintk("autosearch succeed on the frontend%i", index_frontend); exit_condition = 2; index_frontend_success = index_frontend; break; default: dprintk("unhandled autosearch result"); case 1: tune_failed |= (1 << index_frontend); dprintk("autosearch failed for the frontend%i", index_frontend); break; } } } /* if all tune are done and no success, exit: tune failed */ if ((nbr_pending == 0) && (exit_condition == 0)) exit_condition = 1; } while ((exit_condition == 0) && i--); if (exit_condition == 1) { /* tune failed */ dprintk("tune failed"); return 0; } dprintk("tune success on frontend%i", index_frontend_success); dib8000_get_frontend(fe, fep); } for (index_frontend = 0, ret = 0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) ret = dib8000_tune(state->fe[index_frontend]); /* set output mode and diversity input */ if (state->revision != 0x8090) { dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); dib8000_set_diversity_in(state->fe[index_frontend-1], 1); } /* turn off the diversity of the last chip */ dib8000_set_diversity_in(state->fe[index_frontend-1], 0); } else { dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); if (state->cfg.enMpegOutput == 0) { dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); } for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { dib8096p_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); dib8096p_set_diversity_in(state->fe[index_frontend-1], 1); } /* turn off the diversity of the last chip */ dib8096p_set_diversity_in(state->fe[index_frontend-1], 0); } return ret; } static u16 dib8000_read_lock(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; if (state->revision == 0x8090) return dib8000_read_word(state, 570); return dib8000_read_word(state, 568); } static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat) { struct dib8000_state *state = fe->demodulator_priv; u16 lock_slave = 0, lock; u8 index_frontend; if (state->revision == 0x8090) lock = dib8000_read_word(state, 570); else lock = dib8000_read_word(state, 568); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) lock_slave |= dib8000_read_lock(state->fe[index_frontend]); *stat = 0; if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) *stat |= FE_HAS_SIGNAL; if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ *stat |= FE_HAS_CARRIER; if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ *stat |= FE_HAS_SYNC; if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ *stat |= FE_HAS_LOCK; if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ if (lock & 0x01) *stat |= FE_HAS_VITERBI; } return 0; } static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) { struct dib8000_state *state = fe->demodulator_priv; /* 13 segments */ if (state->revision == 0x8090) *ber = (dib8000_read_word(state, 562) << 16) | dib8000_read_word(state, 563); else *ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561); return 0; } static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) { struct dib8000_state *state = fe->demodulator_priv; /* packet error on 13 seg */ if (state->revision == 0x8090) *unc = dib8000_read_word(state, 567); else *unc = dib8000_read_word(state, 565); return 0; } static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; u16 val; *strength = 0; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); if (val > 65535 - *strength) *strength = 65535; else *strength += val; } val = 65535 - dib8000_read_word(state, 390); if (val > 65535 - *strength) *strength = 65535; else *strength += val; return 0; } static u32 dib8000_get_snr(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u32 n, s, exp; u16 val; if (state->revision != 0x8090) val = dib8000_read_word(state, 542); else val = dib8000_read_word(state, 544); n = (val >> 6) & 0xff; exp = (val & 0x3f); if ((exp & 0x20) != 0) exp -= 0x40; n <<= exp+16; if (state->revision != 0x8090) val = dib8000_read_word(state, 543); else val = dib8000_read_word(state, 545); s = (val >> 6) & 0xff; exp = (val & 0x3f); if ((exp & 0x20) != 0) exp -= 0x40; s <<= exp+16; if (n > 0) { u32 t = (s/n) << 16; return t + ((s << 16) - n*t) / n; } return 0xffffffff; } static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend; u32 snr_master; snr_master = dib8000_get_snr(fe); for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) snr_master += dib8000_get_snr(state->fe[index_frontend]); if ((snr_master >> 16) != 0) { snr_master = 10*intlog10(snr_master>>16); *snr = snr_master / ((1 << 24) / 10); } else *snr = 0; return 0; } int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { dprintk("set slave fe %p to index %i", fe_slave, index_frontend); state->fe[index_frontend] = fe_slave; return 0; } dprintk("too many slave frontend"); return -ENOMEM; } EXPORT_SYMBOL(dib8000_set_slave_frontend); int dib8000_remove_slave_frontend(struct dvb_frontend *fe) { struct dib8000_state *state = fe->demodulator_priv; u8 index_frontend = 1; while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) index_frontend++; if (index_frontend != 1) { dprintk("remove slave fe %p (index %i)", state->fe[index_frontend-1], index_frontend-1); state->fe[index_frontend] = NULL; return 0; } dprintk("no frontend to be removed"); return -ENODEV; } EXPORT_SYMBOL(dib8000_remove_slave_frontend); struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) { struct dib8000_state *state = fe->demodulator_priv; if (slave_index >= MAX_NUMBER_OF_FRONTENDS) return NULL; return state->fe[slave_index]; } EXPORT_SYMBOL(dib8000_get_slave_frontend); int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr, u8 is_dib8096p) { int k = 0, ret = 0; u8 new_addr = 0; struct i2c_device client = {.adap = host }; client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_write_buffer) { dprintk("%s: not enough memory", __func__); return -ENOMEM; } client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); if (!client.i2c_read_buffer) { dprintk("%s: not enough memory", __func__); ret = -ENOMEM; goto error_memory_read; } client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); if (!client.i2c_buffer_lock) { dprintk("%s: not enough memory", __func__); ret = -ENOMEM; goto error_memory_lock; } mutex_init(client.i2c_buffer_lock); for (k = no_of_demods - 1; k >= 0; k--) { /* designated i2c address */ new_addr = first_addr + (k << 1); client.addr = new_addr; if (!is_dib8096p) dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */ if (dib8000_identify(&client) == 0) { /* sram lead in, rdy */ if (!is_dib8096p) dib8000_i2c_write16(&client, 1287, 0x0003); client.addr = default_addr; if (dib8000_identify(&client) == 0) { dprintk("#%d: not identified", k); ret = -EINVAL; goto error; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); /* set new i2c address and force divstart */ dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); client.addr = new_addr; dib8000_identify(&client); dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); } for (k = 0; k < no_of_demods; k++) { new_addr = first_addr | (k << 1); client.addr = new_addr; // unforce divstr dib8000_i2c_write16(&client, 1285, new_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib8000_i2c_write16(&client, 1286, 0); } error: kfree(client.i2c_buffer_lock); error_memory_lock: kfree(client.i2c_read_buffer); error_memory_read: kfree(client.i2c_write_buffer); return ret; } EXPORT_SYMBOL(dib8000_i2c_enumeration); static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; tune->step_size = 0; tune->max_drift = 0; return 0; } static void dib8000_release(struct dvb_frontend *fe) { struct dib8000_state *st = fe->demodulator_priv; u8 index_frontend; for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) dvb_frontend_detach(st->fe[index_frontend]); dibx000_exit_i2c_master(&st->i2c_master); i2c_del_adapter(&st->dib8096p_tuner_adap); kfree(st->fe[0]); kfree(st); } struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) { struct dib8000_state *st = fe->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib8000_get_i2c_master); int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib8000_state *st = fe->demodulator_priv; u16 val = dib8000_read_word(st, 299) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("pid filter enabled %d", onoff); return dib8000_write_word(st, 299, val); } EXPORT_SYMBOL(dib8000_pid_filter_ctrl); int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib8000_state *st = fe->demodulator_priv; dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff); return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); } EXPORT_SYMBOL(dib8000_pid_filter); static const struct dvb_frontend_ops dib8000_ops = { .info = { .name = "DiBcom 8000 ISDB-T", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib8000_release, .init = dib8000_wakeup, .sleep = dib8000_sleep, .set_frontend_legacy = dib8000_set_frontend, .get_tune_settings = dib8000_fe_get_tune_settings, .get_frontend_legacy = dib8000_get_frontend, .read_status = dib8000_read_status, .read_ber = dib8000_read_ber, .read_signal_strength = dib8000_read_signal_strength, .read_snr = dib8000_read_snr, .read_ucblocks = dib8000_read_unc_blocks, }; struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) { struct dvb_frontend *fe; struct dib8000_state *state; dprintk("dib8000_attach"); state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); if (state == NULL) return NULL; fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); if (fe == NULL) goto error; memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); state->i2c.adap = i2c_adap; state->i2c.addr = i2c_addr; state->i2c.i2c_write_buffer = state->i2c_write_buffer; state->i2c.i2c_read_buffer = state->i2c_read_buffer; mutex_init(&state->i2c_buffer_lock); state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; state->gpio_val = cfg->gpio_val; state->gpio_dir = cfg->gpio_dir; /* Ensure the output mode remains at the previous default if it's * not specifically set by the caller. */ if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) state->cfg.output_mode = OUTMODE_MPEG2_FIFO; state->fe[0] = fe; fe->demodulator_priv = state; memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); state->timf_default = cfg->pll->timf; if (dib8000_identify(&state->i2c) == 0) goto error; dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); /* init 8096p tuner adapter */ strncpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", sizeof(state->dib8096p_tuner_adap.name)); state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; state->dib8096p_tuner_adap.algo_data = NULL; state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; i2c_set_adapdata(&state->dib8096p_tuner_adap, state); i2c_add_adapter(&state->dib8096p_tuner_adap); dib8000_reset(fe); dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */ return fe; error: kfree(state); return NULL; } EXPORT_SYMBOL(dib8000_attach); MODULE_AUTHOR("Olivier Grenie "); MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); MODULE_LICENSE("GPL");