/* * talitos - Freescale Integrated Security Engine (SEC) device driver * * Copyright (c) 2008-2011 Freescale Semiconductor, Inc. * * Scatterlist Crypto API glue code copied from files with the following: * Copyright (c) 2006-2007 Herbert Xu <herbert@gondor.apana.org.au> * * Crypto algorithm registration code copied from hifn driver: * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/crypto.h> #include <linux/hw_random.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/des.h> #include <crypto/sha.h> #include <crypto/md5.h> #include <crypto/internal/aead.h> #include <crypto/authenc.h> #include <crypto/skcipher.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include <crypto/scatterwalk.h> #include "talitos.h" static void to_talitos_ptr(struct talitos_ptr *ptr, dma_addr_t dma_addr, bool is_sec1) { ptr->ptr = cpu_to_be32(lower_32_bits(dma_addr)); if (!is_sec1) ptr->eptr = upper_32_bits(dma_addr); } static void to_talitos_ptr_len(struct talitos_ptr *ptr, unsigned int len, bool is_sec1) { if (is_sec1) { ptr->res = 0; ptr->len1 = cpu_to_be16(len); } else { ptr->len = cpu_to_be16(len); } } static unsigned short from_talitos_ptr_len(struct talitos_ptr *ptr, bool is_sec1) { if (is_sec1) return be16_to_cpu(ptr->len1); else return be16_to_cpu(ptr->len); } static void to_talitos_ptr_extent_clear(struct talitos_ptr *ptr, bool is_sec1) { if (!is_sec1) ptr->j_extent = 0; } /* * map virtual single (contiguous) pointer to h/w descriptor pointer */ static void map_single_talitos_ptr(struct device *dev, struct talitos_ptr *ptr, unsigned int len, void *data, enum dma_data_direction dir) { dma_addr_t dma_addr = dma_map_single(dev, data, len, dir); struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); to_talitos_ptr_len(ptr, len, is_sec1); to_talitos_ptr(ptr, dma_addr, is_sec1); to_talitos_ptr_extent_clear(ptr, is_sec1); } /* * unmap bus single (contiguous) h/w descriptor pointer */ static void unmap_single_talitos_ptr(struct device *dev, struct talitos_ptr *ptr, enum dma_data_direction dir) { struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); dma_unmap_single(dev, be32_to_cpu(ptr->ptr), from_talitos_ptr_len(ptr, is_sec1), dir); } static int reset_channel(struct device *dev, int ch) { struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; bool is_sec1 = has_ftr_sec1(priv); if (is_sec1) { setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, TALITOS1_CCCR_LO_RESET); while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR_LO) & TALITOS1_CCCR_LO_RESET) && --timeout) cpu_relax(); } else { setbits32(priv->chan[ch].reg + TALITOS_CCCR, TALITOS2_CCCR_RESET); while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR) & TALITOS2_CCCR_RESET) && --timeout) cpu_relax(); } if (timeout == 0) { dev_err(dev, "failed to reset channel %d\n", ch); return -EIO; } /* set 36-bit addressing, done writeback enable and done IRQ enable */ setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, TALITOS_CCCR_LO_EAE | TALITOS_CCCR_LO_CDWE | TALITOS_CCCR_LO_CDIE); /* and ICCR writeback, if available */ if (priv->features & TALITOS_FTR_HW_AUTH_CHECK) setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, TALITOS_CCCR_LO_IWSE); return 0; } static int reset_device(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; bool is_sec1 = has_ftr_sec1(priv); u32 mcr = is_sec1 ? TALITOS1_MCR_SWR : TALITOS2_MCR_SWR; setbits32(priv->reg + TALITOS_MCR, mcr); while ((in_be32(priv->reg + TALITOS_MCR) & mcr) && --timeout) cpu_relax(); if (priv->irq[1]) { mcr = TALITOS_MCR_RCA1 | TALITOS_MCR_RCA3; setbits32(priv->reg + TALITOS_MCR, mcr); } if (timeout == 0) { dev_err(dev, "failed to reset device\n"); return -EIO; } return 0; } /* * Reset and initialize the device */ static int init_device(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); int ch, err; bool is_sec1 = has_ftr_sec1(priv); /* * Master reset * errata documentation: warning: certain SEC interrupts * are not fully cleared by writing the MCR:SWR bit, * set bit twice to completely reset */ err = reset_device(dev); if (err) return err; err = reset_device(dev); if (err) return err; /* reset channels */ for (ch = 0; ch < priv->num_channels; ch++) { err = reset_channel(dev, ch); if (err) return err; } /* enable channel done and error interrupts */ if (is_sec1) { clrbits32(priv->reg + TALITOS_IMR, TALITOS1_IMR_INIT); clrbits32(priv->reg + TALITOS_IMR_LO, TALITOS1_IMR_LO_INIT); /* disable parity error check in DEU (erroneous? test vect.) */ setbits32(priv->reg_deu + TALITOS_EUICR, TALITOS1_DEUICR_KPE); } else { setbits32(priv->reg + TALITOS_IMR, TALITOS2_IMR_INIT); setbits32(priv->reg + TALITOS_IMR_LO, TALITOS2_IMR_LO_INIT); } /* disable integrity check error interrupts (use writeback instead) */ if (priv->features & TALITOS_FTR_HW_AUTH_CHECK) setbits32(priv->reg_mdeu + TALITOS_EUICR_LO, TALITOS_MDEUICR_LO_ICE); return 0; } /** * talitos_submit - submits a descriptor to the device for processing * @dev: the SEC device to be used * @ch: the SEC device channel to be used * @desc: the descriptor to be processed by the device * @callback: whom to call when processing is complete * @context: a handle for use by caller (optional) * * desc must contain valid dma-mapped (bus physical) address pointers. * callback must check err and feedback in descriptor header * for device processing status. */ int talitos_submit(struct device *dev, int ch, struct talitos_desc *desc, void (*callback)(struct device *dev, struct talitos_desc *desc, void *context, int error), void *context) { struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_request *request; unsigned long flags; int head; bool is_sec1 = has_ftr_sec1(priv); spin_lock_irqsave(&priv->chan[ch].head_lock, flags); if (!atomic_inc_not_zero(&priv->chan[ch].submit_count)) { /* h/w fifo is full */ spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags); return -EAGAIN; } head = priv->chan[ch].head; request = &priv->chan[ch].fifo[head]; /* map descriptor and save caller data */ if (is_sec1) { desc->hdr1 = desc->hdr; desc->next_desc = 0; request->dma_desc = dma_map_single(dev, &desc->hdr1, TALITOS_DESC_SIZE, DMA_BIDIRECTIONAL); } else { request->dma_desc = dma_map_single(dev, desc, TALITOS_DESC_SIZE, DMA_BIDIRECTIONAL); } request->callback = callback; request->context = context; /* increment fifo head */ priv->chan[ch].head = (priv->chan[ch].head + 1) & (priv->fifo_len - 1); smp_wmb(); request->desc = desc; /* GO! */ wmb(); out_be32(priv->chan[ch].reg + TALITOS_FF, upper_32_bits(request->dma_desc)); out_be32(priv->chan[ch].reg + TALITOS_FF_LO, lower_32_bits(request->dma_desc)); spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags); return -EINPROGRESS; } EXPORT_SYMBOL(talitos_submit); /* * process what was done, notify callback of error if not */ static void flush_channel(struct device *dev, int ch, int error, int reset_ch) { struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_request *request, saved_req; unsigned long flags; int tail, status; bool is_sec1 = has_ftr_sec1(priv); spin_lock_irqsave(&priv->chan[ch].tail_lock, flags); tail = priv->chan[ch].tail; while (priv->chan[ch].fifo[tail].desc) { __be32 hdr; request = &priv->chan[ch].fifo[tail]; /* descriptors with their done bits set don't get the error */ rmb(); hdr = is_sec1 ? request->desc->hdr1 : request->desc->hdr; if ((hdr & DESC_HDR_DONE) == DESC_HDR_DONE) status = 0; else if (!error) break; else status = error; dma_unmap_single(dev, request->dma_desc, TALITOS_DESC_SIZE, DMA_BIDIRECTIONAL); /* copy entries so we can call callback outside lock */ saved_req.desc = request->desc; saved_req.callback = request->callback; saved_req.context = request->context; /* release request entry in fifo */ smp_wmb(); request->desc = NULL; /* increment fifo tail */ priv->chan[ch].tail = (tail + 1) & (priv->fifo_len - 1); spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags); atomic_dec(&priv->chan[ch].submit_count); saved_req.callback(dev, saved_req.desc, saved_req.context, status); /* channel may resume processing in single desc error case */ if (error && !reset_ch && status == error) return; spin_lock_irqsave(&priv->chan[ch].tail_lock, flags); tail = priv->chan[ch].tail; } spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags); } /* * process completed requests for channels that have done status */ #define DEF_TALITOS1_DONE(name, ch_done_mask) \ static void talitos1_done_##name(unsigned long data) \ { \ struct device *dev = (struct device *)data; \ struct talitos_private *priv = dev_get_drvdata(dev); \ unsigned long flags; \ \ if (ch_done_mask & 0x10000000) \ flush_channel(dev, 0, 0, 0); \ if (priv->num_channels == 1) \ goto out; \ if (ch_done_mask & 0x40000000) \ flush_channel(dev, 1, 0, 0); \ if (ch_done_mask & 0x00010000) \ flush_channel(dev, 2, 0, 0); \ if (ch_done_mask & 0x00040000) \ flush_channel(dev, 3, 0, 0); \ \ out: \ /* At this point, all completed channels have been processed */ \ /* Unmask done interrupts for channels completed later on. */ \ spin_lock_irqsave(&priv->reg_lock, flags); \ clrbits32(priv->reg + TALITOS_IMR, ch_done_mask); \ clrbits32(priv->reg + TALITOS_IMR_LO, TALITOS1_IMR_LO_INIT); \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ } DEF_TALITOS1_DONE(4ch, TALITOS1_ISR_4CHDONE) #define DEF_TALITOS2_DONE(name, ch_done_mask) \ static void talitos2_done_##name(unsigned long data) \ { \ struct device *dev = (struct device *)data; \ struct talitos_private *priv = dev_get_drvdata(dev); \ unsigned long flags; \ \ if (ch_done_mask & 1) \ flush_channel(dev, 0, 0, 0); \ if (priv->num_channels == 1) \ goto out; \ if (ch_done_mask & (1 << 2)) \ flush_channel(dev, 1, 0, 0); \ if (ch_done_mask & (1 << 4)) \ flush_channel(dev, 2, 0, 0); \ if (ch_done_mask & (1 << 6)) \ flush_channel(dev, 3, 0, 0); \ \ out: \ /* At this point, all completed channels have been processed */ \ /* Unmask done interrupts for channels completed later on. */ \ spin_lock_irqsave(&priv->reg_lock, flags); \ setbits32(priv->reg + TALITOS_IMR, ch_done_mask); \ setbits32(priv->reg + TALITOS_IMR_LO, TALITOS2_IMR_LO_INIT); \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ } DEF_TALITOS2_DONE(4ch, TALITOS2_ISR_4CHDONE) DEF_TALITOS2_DONE(ch0_2, TALITOS2_ISR_CH_0_2_DONE) DEF_TALITOS2_DONE(ch1_3, TALITOS2_ISR_CH_1_3_DONE) /* * locate current (offending) descriptor */ static u32 current_desc_hdr(struct device *dev, int ch) { struct talitos_private *priv = dev_get_drvdata(dev); int tail, iter; dma_addr_t cur_desc; cur_desc = ((u64)in_be32(priv->chan[ch].reg + TALITOS_CDPR)) << 32; cur_desc |= in_be32(priv->chan[ch].reg + TALITOS_CDPR_LO); if (!cur_desc) { dev_err(dev, "CDPR is NULL, giving up search for offending descriptor\n"); return 0; } tail = priv->chan[ch].tail; iter = tail; while (priv->chan[ch].fifo[iter].dma_desc != cur_desc) { iter = (iter + 1) & (priv->fifo_len - 1); if (iter == tail) { dev_err(dev, "couldn't locate current descriptor\n"); return 0; } } return priv->chan[ch].fifo[iter].desc->hdr; } /* * user diagnostics; report root cause of error based on execution unit status */ static void report_eu_error(struct device *dev, int ch, u32 desc_hdr) { struct talitos_private *priv = dev_get_drvdata(dev); int i; if (!desc_hdr) desc_hdr = in_be32(priv->chan[ch].reg + TALITOS_DESCBUF); switch (desc_hdr & DESC_HDR_SEL0_MASK) { case DESC_HDR_SEL0_AFEU: dev_err(dev, "AFEUISR 0x%08x_%08x\n", in_be32(priv->reg_afeu + TALITOS_EUISR), in_be32(priv->reg_afeu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_DEU: dev_err(dev, "DEUISR 0x%08x_%08x\n", in_be32(priv->reg_deu + TALITOS_EUISR), in_be32(priv->reg_deu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_MDEUA: case DESC_HDR_SEL0_MDEUB: dev_err(dev, "MDEUISR 0x%08x_%08x\n", in_be32(priv->reg_mdeu + TALITOS_EUISR), in_be32(priv->reg_mdeu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_RNG: dev_err(dev, "RNGUISR 0x%08x_%08x\n", in_be32(priv->reg_rngu + TALITOS_ISR), in_be32(priv->reg_rngu + TALITOS_ISR_LO)); break; case DESC_HDR_SEL0_PKEU: dev_err(dev, "PKEUISR 0x%08x_%08x\n", in_be32(priv->reg_pkeu + TALITOS_EUISR), in_be32(priv->reg_pkeu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_AESU: dev_err(dev, "AESUISR 0x%08x_%08x\n", in_be32(priv->reg_aesu + TALITOS_EUISR), in_be32(priv->reg_aesu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_CRCU: dev_err(dev, "CRCUISR 0x%08x_%08x\n", in_be32(priv->reg_crcu + TALITOS_EUISR), in_be32(priv->reg_crcu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL0_KEU: dev_err(dev, "KEUISR 0x%08x_%08x\n", in_be32(priv->reg_pkeu + TALITOS_EUISR), in_be32(priv->reg_pkeu + TALITOS_EUISR_LO)); break; } switch (desc_hdr & DESC_HDR_SEL1_MASK) { case DESC_HDR_SEL1_MDEUA: case DESC_HDR_SEL1_MDEUB: dev_err(dev, "MDEUISR 0x%08x_%08x\n", in_be32(priv->reg_mdeu + TALITOS_EUISR), in_be32(priv->reg_mdeu + TALITOS_EUISR_LO)); break; case DESC_HDR_SEL1_CRCU: dev_err(dev, "CRCUISR 0x%08x_%08x\n", in_be32(priv->reg_crcu + TALITOS_EUISR), in_be32(priv->reg_crcu + TALITOS_EUISR_LO)); break; } for (i = 0; i < 8; i++) dev_err(dev, "DESCBUF 0x%08x_%08x\n", in_be32(priv->chan[ch].reg + TALITOS_DESCBUF + 8*i), in_be32(priv->chan[ch].reg + TALITOS_DESCBUF_LO + 8*i)); } /* * recover from error interrupts */ static void talitos_error(struct device *dev, u32 isr, u32 isr_lo) { struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; int ch, error, reset_dev = 0; u32 v_lo; bool is_sec1 = has_ftr_sec1(priv); int reset_ch = is_sec1 ? 1 : 0; /* only SEC2 supports continuation */ for (ch = 0; ch < priv->num_channels; ch++) { /* skip channels without errors */ if (is_sec1) { /* bits 29, 31, 17, 19 */ if (!(isr & (1 << (29 + (ch & 1) * 2 - (ch & 2) * 6)))) continue; } else { if (!(isr & (1 << (ch * 2 + 1)))) continue; } error = -EINVAL; v_lo = in_be32(priv->chan[ch].reg + TALITOS_CCPSR_LO); if (v_lo & TALITOS_CCPSR_LO_DOF) { dev_err(dev, "double fetch fifo overflow error\n"); error = -EAGAIN; reset_ch = 1; } if (v_lo & TALITOS_CCPSR_LO_SOF) { /* h/w dropped descriptor */ dev_err(dev, "single fetch fifo overflow error\n"); error = -EAGAIN; } if (v_lo & TALITOS_CCPSR_LO_MDTE) dev_err(dev, "master data transfer error\n"); if (v_lo & TALITOS_CCPSR_LO_SGDLZ) dev_err(dev, is_sec1 ? "pointeur not complete error\n" : "s/g data length zero error\n"); if (v_lo & TALITOS_CCPSR_LO_FPZ) dev_err(dev, is_sec1 ? "parity error\n" : "fetch pointer zero error\n"); if (v_lo & TALITOS_CCPSR_LO_IDH) dev_err(dev, "illegal descriptor header error\n"); if (v_lo & TALITOS_CCPSR_LO_IEU) dev_err(dev, is_sec1 ? "static assignment error\n" : "invalid exec unit error\n"); if (v_lo & TALITOS_CCPSR_LO_EU) report_eu_error(dev, ch, current_desc_hdr(dev, ch)); if (!is_sec1) { if (v_lo & TALITOS_CCPSR_LO_GB) dev_err(dev, "gather boundary error\n"); if (v_lo & TALITOS_CCPSR_LO_GRL) dev_err(dev, "gather return/length error\n"); if (v_lo & TALITOS_CCPSR_LO_SB) dev_err(dev, "scatter boundary error\n"); if (v_lo & TALITOS_CCPSR_LO_SRL) dev_err(dev, "scatter return/length error\n"); } flush_channel(dev, ch, error, reset_ch); if (reset_ch) { reset_channel(dev, ch); } else { setbits32(priv->chan[ch].reg + TALITOS_CCCR, TALITOS2_CCCR_CONT); setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, 0); while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR) & TALITOS2_CCCR_CONT) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to restart channel %d\n", ch); reset_dev = 1; } } } if (reset_dev || (is_sec1 && isr & ~TALITOS1_ISR_4CHERR) || (!is_sec1 && isr & ~TALITOS2_ISR_4CHERR) || isr_lo) { if (is_sec1 && (isr_lo & TALITOS1_ISR_TEA_ERR)) dev_err(dev, "TEA error: ISR 0x%08x_%08x\n", isr, isr_lo); else dev_err(dev, "done overflow, internal time out, or " "rngu error: ISR 0x%08x_%08x\n", isr, isr_lo); /* purge request queues */ for (ch = 0; ch < priv->num_channels; ch++) flush_channel(dev, ch, -EIO, 1); /* reset and reinitialize the device */ init_device(dev); } } #define DEF_TALITOS1_INTERRUPT(name, ch_done_mask, ch_err_mask, tlet) \ static irqreturn_t talitos1_interrupt_##name(int irq, void *data) \ { \ struct device *dev = data; \ struct talitos_private *priv = dev_get_drvdata(dev); \ u32 isr, isr_lo; \ unsigned long flags; \ \ spin_lock_irqsave(&priv->reg_lock, flags); \ isr = in_be32(priv->reg + TALITOS_ISR); \ isr_lo = in_be32(priv->reg + TALITOS_ISR_LO); \ /* Acknowledge interrupt */ \ out_be32(priv->reg + TALITOS_ICR, isr & (ch_done_mask | ch_err_mask)); \ out_be32(priv->reg + TALITOS_ICR_LO, isr_lo); \ \ if (unlikely(isr & ch_err_mask || isr_lo & TALITOS1_IMR_LO_INIT)) { \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ talitos_error(dev, isr & ch_err_mask, isr_lo); \ } \ else { \ if (likely(isr & ch_done_mask)) { \ /* mask further done interrupts. */ \ setbits32(priv->reg + TALITOS_IMR, ch_done_mask); \ /* done_task will unmask done interrupts at exit */ \ tasklet_schedule(&priv->done_task[tlet]); \ } \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ } \ \ return (isr & (ch_done_mask | ch_err_mask) || isr_lo) ? IRQ_HANDLED : \ IRQ_NONE; \ } DEF_TALITOS1_INTERRUPT(4ch, TALITOS1_ISR_4CHDONE, TALITOS1_ISR_4CHERR, 0) #define DEF_TALITOS2_INTERRUPT(name, ch_done_mask, ch_err_mask, tlet) \ static irqreturn_t talitos2_interrupt_##name(int irq, void *data) \ { \ struct device *dev = data; \ struct talitos_private *priv = dev_get_drvdata(dev); \ u32 isr, isr_lo; \ unsigned long flags; \ \ spin_lock_irqsave(&priv->reg_lock, flags); \ isr = in_be32(priv->reg + TALITOS_ISR); \ isr_lo = in_be32(priv->reg + TALITOS_ISR_LO); \ /* Acknowledge interrupt */ \ out_be32(priv->reg + TALITOS_ICR, isr & (ch_done_mask | ch_err_mask)); \ out_be32(priv->reg + TALITOS_ICR_LO, isr_lo); \ \ if (unlikely(isr & ch_err_mask || isr_lo)) { \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ talitos_error(dev, isr & ch_err_mask, isr_lo); \ } \ else { \ if (likely(isr & ch_done_mask)) { \ /* mask further done interrupts. */ \ clrbits32(priv->reg + TALITOS_IMR, ch_done_mask); \ /* done_task will unmask done interrupts at exit */ \ tasklet_schedule(&priv->done_task[tlet]); \ } \ spin_unlock_irqrestore(&priv->reg_lock, flags); \ } \ \ return (isr & (ch_done_mask | ch_err_mask) || isr_lo) ? IRQ_HANDLED : \ IRQ_NONE; \ } DEF_TALITOS2_INTERRUPT(4ch, TALITOS2_ISR_4CHDONE, TALITOS2_ISR_4CHERR, 0) DEF_TALITOS2_INTERRUPT(ch0_2, TALITOS2_ISR_CH_0_2_DONE, TALITOS2_ISR_CH_0_2_ERR, 0) DEF_TALITOS2_INTERRUPT(ch1_3, TALITOS2_ISR_CH_1_3_DONE, TALITOS2_ISR_CH_1_3_ERR, 1) /* * hwrng */ static int talitos_rng_data_present(struct hwrng *rng, int wait) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); u32 ofl; int i; for (i = 0; i < 20; i++) { ofl = in_be32(priv->reg_rngu + TALITOS_EUSR_LO) & TALITOS_RNGUSR_LO_OFL; if (ofl || !wait) break; udelay(10); } return !!ofl; } static int talitos_rng_data_read(struct hwrng *rng, u32 *data) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); /* rng fifo requires 64-bit accesses */ *data = in_be32(priv->reg_rngu + TALITOS_EU_FIFO); *data = in_be32(priv->reg_rngu + TALITOS_EU_FIFO_LO); return sizeof(u32); } static int talitos_rng_init(struct hwrng *rng) { struct device *dev = (struct device *)rng->priv; struct talitos_private *priv = dev_get_drvdata(dev); unsigned int timeout = TALITOS_TIMEOUT; setbits32(priv->reg_rngu + TALITOS_EURCR_LO, TALITOS_RNGURCR_LO_SR); while (!(in_be32(priv->reg_rngu + TALITOS_EUSR_LO) & TALITOS_RNGUSR_LO_RD) && --timeout) cpu_relax(); if (timeout == 0) { dev_err(dev, "failed to reset rng hw\n"); return -ENODEV; } /* start generating */ setbits32(priv->reg_rngu + TALITOS_EUDSR_LO, 0); return 0; } static int talitos_register_rng(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); int err; priv->rng.name = dev_driver_string(dev), priv->rng.init = talitos_rng_init, priv->rng.data_present = talitos_rng_data_present, priv->rng.data_read = talitos_rng_data_read, priv->rng.priv = (unsigned long)dev; err = hwrng_register(&priv->rng); if (!err) priv->rng_registered = true; return err; } static void talitos_unregister_rng(struct device *dev) { struct talitos_private *priv = dev_get_drvdata(dev); if (!priv->rng_registered) return; hwrng_unregister(&priv->rng); priv->rng_registered = false; } /* * crypto alg */ #define TALITOS_CRA_PRIORITY 3000 #define TALITOS_MAX_KEY_SIZE 96 #define TALITOS_MAX_IV_LENGTH 16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ struct talitos_ctx { struct device *dev; int ch; __be32 desc_hdr_template; u8 key[TALITOS_MAX_KEY_SIZE]; u8 iv[TALITOS_MAX_IV_LENGTH]; unsigned int keylen; unsigned int enckeylen; unsigned int authkeylen; }; #define HASH_MAX_BLOCK_SIZE SHA512_BLOCK_SIZE #define TALITOS_MDEU_MAX_CONTEXT_SIZE TALITOS_MDEU_CONTEXT_SIZE_SHA384_SHA512 struct talitos_ahash_req_ctx { u32 hw_context[TALITOS_MDEU_MAX_CONTEXT_SIZE / sizeof(u32)]; unsigned int hw_context_size; u8 buf[HASH_MAX_BLOCK_SIZE]; u8 bufnext[HASH_MAX_BLOCK_SIZE]; unsigned int swinit; unsigned int first; unsigned int last; unsigned int to_hash_later; unsigned int nbuf; struct scatterlist bufsl[2]; struct scatterlist *psrc; }; static int aead_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct crypto_authenc_keys keys; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto badkey; if (keys.authkeylen + keys.enckeylen > TALITOS_MAX_KEY_SIZE) goto badkey; memcpy(ctx->key, keys.authkey, keys.authkeylen); memcpy(&ctx->key[keys.authkeylen], keys.enckey, keys.enckeylen); ctx->keylen = keys.authkeylen + keys.enckeylen; ctx->enckeylen = keys.enckeylen; ctx->authkeylen = keys.authkeylen; return 0; badkey: crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /* * talitos_edesc - s/w-extended descriptor * @src_nents: number of segments in input scatterlist * @dst_nents: number of segments in output scatterlist * @icv_ool: whether ICV is out-of-line * @iv_dma: dma address of iv for checking continuity and link table * @dma_len: length of dma mapped link_tbl space * @dma_link_tbl: bus physical address of link_tbl/buf * @desc: h/w descriptor * @link_tbl: input and output h/w link tables (if {src,dst}_nents > 1) (SEC2) * @buf: input and output buffeur (if {src,dst}_nents > 1) (SEC1) * * if decrypting (with authcheck), or either one of src_nents or dst_nents * is greater than 1, an integrity check value is concatenated to the end * of link_tbl data */ struct talitos_edesc { int src_nents; int dst_nents; bool icv_ool; dma_addr_t iv_dma; int dma_len; dma_addr_t dma_link_tbl; struct talitos_desc desc; union { struct talitos_ptr link_tbl[0]; u8 buf[0]; }; }; static void talitos_sg_unmap(struct device *dev, struct talitos_edesc *edesc, struct scatterlist *src, struct scatterlist *dst) { unsigned int src_nents = edesc->src_nents ? : 1; unsigned int dst_nents = edesc->dst_nents ? : 1; if (src != dst) { dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE); if (dst) { dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE); } } else dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL); } static void ipsec_esp_unmap(struct device *dev, struct talitos_edesc *edesc, struct aead_request *areq) { unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6], DMA_FROM_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[3], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[0], DMA_TO_DEVICE); talitos_sg_unmap(dev, edesc, areq->src, areq->dst); if (edesc->dma_len) dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } /* * ipsec_esp descriptor callbacks */ static void ipsec_esp_encrypt_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *areq = context; struct crypto_aead *authenc = crypto_aead_reqtfm(areq); unsigned int authsize = crypto_aead_authsize(authenc); struct talitos_edesc *edesc; struct scatterlist *sg; void *icvdata; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, areq); /* copy the generated ICV to dst */ if (edesc->icv_ool) { icvdata = &edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; sg = sg_last(areq->dst, edesc->dst_nents); memcpy((char *)sg_virt(sg) + sg->length - authsize, icvdata, authsize); } kfree(edesc); aead_request_complete(areq, err); } static void ipsec_esp_decrypt_swauth_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *req = context; struct crypto_aead *authenc = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(authenc); struct talitos_edesc *edesc; struct scatterlist *sg; char *oicv, *icv; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, req); if (!err) { /* auth check */ sg = sg_last(req->dst, edesc->dst_nents ? : 1); icv = (char *)sg_virt(sg) + sg->length - authsize; if (edesc->dma_len) { oicv = (char *)&edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; if (edesc->icv_ool) icv = oicv + authsize; } else oicv = (char *)&edesc->link_tbl[0]; err = crypto_memneq(oicv, icv, authsize) ? -EBADMSG : 0; } kfree(edesc); aead_request_complete(req, err); } static void ipsec_esp_decrypt_hwauth_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct aead_request *req = context; struct talitos_edesc *edesc; edesc = container_of(desc, struct talitos_edesc, desc); ipsec_esp_unmap(dev, edesc, req); /* check ICV auth status */ if (!err && ((desc->hdr_lo & DESC_HDR_LO_ICCR1_MASK) != DESC_HDR_LO_ICCR1_PASS)) err = -EBADMSG; kfree(edesc); aead_request_complete(req, err); } /* * convert scatterlist to SEC h/w link table format * stop at cryptlen bytes */ static int sg_to_link_tbl_offset(struct scatterlist *sg, int sg_count, unsigned int offset, int cryptlen, struct talitos_ptr *link_tbl_ptr) { int n_sg = sg_count; int count = 0; while (cryptlen && sg && n_sg--) { unsigned int len = sg_dma_len(sg); if (offset >= len) { offset -= len; goto next; } len -= offset; if (len > cryptlen) len = cryptlen; to_talitos_ptr(link_tbl_ptr + count, sg_dma_address(sg) + offset, 0); link_tbl_ptr[count].len = cpu_to_be16(len); link_tbl_ptr[count].j_extent = 0; count++; cryptlen -= len; offset = 0; next: sg = sg_next(sg); } /* tag end of link table */ if (count > 0) link_tbl_ptr[count - 1].j_extent = DESC_PTR_LNKTBL_RETURN; return count; } static inline int sg_to_link_tbl(struct scatterlist *sg, int sg_count, int cryptlen, struct talitos_ptr *link_tbl_ptr) { return sg_to_link_tbl_offset(sg, sg_count, 0, cryptlen, link_tbl_ptr); } /* * fill in and submit ipsec_esp descriptor */ static int ipsec_esp(struct talitos_edesc *edesc, struct aead_request *areq, void (*callback)(struct device *dev, struct talitos_desc *desc, void *context, int error)) { struct crypto_aead *aead = crypto_aead_reqtfm(areq); unsigned int authsize = crypto_aead_authsize(aead); struct talitos_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; struct talitos_desc *desc = &edesc->desc; unsigned int cryptlen = areq->cryptlen; unsigned int ivsize = crypto_aead_ivsize(aead); int tbl_off = 0; int sg_count, ret; int sg_link_tbl_len; /* hmac key */ map_single_talitos_ptr(dev, &desc->ptr[0], ctx->authkeylen, &ctx->key, DMA_TO_DEVICE); sg_count = dma_map_sg(dev, areq->src, edesc->src_nents ?: 1, (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); /* hmac data */ desc->ptr[1].len = cpu_to_be16(areq->assoclen); if (sg_count > 1 && (ret = sg_to_link_tbl_offset(areq->src, sg_count, 0, areq->assoclen, &edesc->link_tbl[tbl_off])) > 1) { tbl_off += ret; to_talitos_ptr(&desc->ptr[1], edesc->dma_link_tbl + tbl_off * sizeof(struct talitos_ptr), 0); desc->ptr[1].j_extent = DESC_PTR_LNKTBL_JUMP; dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } else { to_talitos_ptr(&desc->ptr[1], sg_dma_address(areq->src), 0); desc->ptr[1].j_extent = 0; } /* cipher iv */ to_talitos_ptr(&desc->ptr[2], edesc->iv_dma, 0); desc->ptr[2].len = cpu_to_be16(ivsize); desc->ptr[2].j_extent = 0; /* cipher key */ map_single_talitos_ptr(dev, &desc->ptr[3], ctx->enckeylen, (char *)&ctx->key + ctx->authkeylen, DMA_TO_DEVICE); /* * cipher in * map and adjust cipher len to aead request cryptlen. * extent is bytes of HMAC postpended to ciphertext, * typically 12 for ipsec */ desc->ptr[4].len = cpu_to_be16(cryptlen); desc->ptr[4].j_extent = authsize; sg_link_tbl_len = cryptlen; if (edesc->desc.hdr & DESC_HDR_MODE1_MDEU_CICV) sg_link_tbl_len += authsize; if (sg_count > 1 && (ret = sg_to_link_tbl_offset(areq->src, sg_count, areq->assoclen, sg_link_tbl_len, &edesc->link_tbl[tbl_off])) > 1) { tbl_off += ret; desc->ptr[4].j_extent |= DESC_PTR_LNKTBL_JUMP; to_talitos_ptr(&desc->ptr[4], edesc->dma_link_tbl + tbl_off * sizeof(struct talitos_ptr), 0); dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } else to_talitos_ptr(&desc->ptr[4], sg_dma_address(areq->src), 0); /* cipher out */ desc->ptr[5].len = cpu_to_be16(cryptlen); desc->ptr[5].j_extent = authsize; if (areq->src != areq->dst) sg_count = dma_map_sg(dev, areq->dst, edesc->dst_nents ? : 1, DMA_FROM_DEVICE); edesc->icv_ool = false; if (sg_count > 1 && (sg_count = sg_to_link_tbl_offset(areq->dst, sg_count, areq->assoclen, cryptlen, &edesc->link_tbl[tbl_off])) > 1) { struct talitos_ptr *tbl_ptr = &edesc->link_tbl[tbl_off]; to_talitos_ptr(&desc->ptr[5], edesc->dma_link_tbl + tbl_off * sizeof(struct talitos_ptr), 0); /* Add an entry to the link table for ICV data */ tbl_ptr += sg_count - 1; tbl_ptr->j_extent = 0; tbl_ptr++; tbl_ptr->j_extent = DESC_PTR_LNKTBL_RETURN; tbl_ptr->len = cpu_to_be16(authsize); /* icv data follows link tables */ to_talitos_ptr(tbl_ptr, edesc->dma_link_tbl + (edesc->src_nents + edesc->dst_nents + 2) * sizeof(struct talitos_ptr) + authsize, 0); desc->ptr[5].j_extent |= DESC_PTR_LNKTBL_JUMP; dma_sync_single_for_device(ctx->dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); edesc->icv_ool = true; } else to_talitos_ptr(&desc->ptr[5], sg_dma_address(areq->dst), 0); /* iv out */ map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv, DMA_FROM_DEVICE); ret = talitos_submit(dev, ctx->ch, desc, callback, areq); if (ret != -EINPROGRESS) { ipsec_esp_unmap(dev, edesc, areq); kfree(edesc); } return ret; } /* * allocate and map the extended descriptor */ static struct talitos_edesc *talitos_edesc_alloc(struct device *dev, struct scatterlist *src, struct scatterlist *dst, u8 *iv, unsigned int assoclen, unsigned int cryptlen, unsigned int authsize, unsigned int ivsize, int icv_stashing, u32 cryptoflags, bool encrypt) { struct talitos_edesc *edesc; int src_nents, dst_nents, alloc_len, dma_len; dma_addr_t iv_dma = 0; gfp_t flags = cryptoflags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); int max_len = is_sec1 ? TALITOS1_MAX_DATA_LEN : TALITOS2_MAX_DATA_LEN; void *err; if (cryptlen + authsize > max_len) { dev_err(dev, "length exceeds h/w max limit\n"); return ERR_PTR(-EINVAL); } if (ivsize) iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE); if (!dst || dst == src) { src_nents = sg_nents_for_len(src, assoclen + cryptlen + authsize); if (src_nents < 0) { dev_err(dev, "Invalid number of src SG.\n"); err = ERR_PTR(-EINVAL); goto error_sg; } src_nents = (src_nents == 1) ? 0 : src_nents; dst_nents = dst ? src_nents : 0; } else { /* dst && dst != src*/ src_nents = sg_nents_for_len(src, assoclen + cryptlen + (encrypt ? 0 : authsize)); if (src_nents < 0) { dev_err(dev, "Invalid number of src SG.\n"); err = ERR_PTR(-EINVAL); goto error_sg; } src_nents = (src_nents == 1) ? 0 : src_nents; dst_nents = sg_nents_for_len(dst, assoclen + cryptlen + (encrypt ? authsize : 0)); if (dst_nents < 0) { dev_err(dev, "Invalid number of dst SG.\n"); err = ERR_PTR(-EINVAL); goto error_sg; } dst_nents = (dst_nents == 1) ? 0 : dst_nents; } /* * allocate space for base edesc plus the link tables, * allowing for two separate entries for AD and generated ICV (+ 2), * and space for two sets of ICVs (stashed and generated) */ alloc_len = sizeof(struct talitos_edesc); if (src_nents || dst_nents) { if (is_sec1) dma_len = (src_nents ? cryptlen : 0) + (dst_nents ? cryptlen : 0); else dma_len = (src_nents + dst_nents + 2) * sizeof(struct talitos_ptr) + authsize * 2; alloc_len += dma_len; } else { dma_len = 0; alloc_len += icv_stashing ? authsize : 0; } edesc = kmalloc(alloc_len, GFP_DMA | flags); if (!edesc) { dev_err(dev, "could not allocate edescriptor\n"); err = ERR_PTR(-ENOMEM); goto error_sg; } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; edesc->dma_len = dma_len; if (dma_len) edesc->dma_link_tbl = dma_map_single(dev, &edesc->link_tbl[0], edesc->dma_len, DMA_BIDIRECTIONAL); return edesc; error_sg: if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE); return err; } static struct talitos_edesc *aead_edesc_alloc(struct aead_request *areq, u8 *iv, int icv_stashing, bool encrypt) { struct crypto_aead *authenc = crypto_aead_reqtfm(areq); unsigned int authsize = crypto_aead_authsize(authenc); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); unsigned int ivsize = crypto_aead_ivsize(authenc); return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, iv, areq->assoclen, areq->cryptlen, authsize, ivsize, icv_stashing, areq->base.flags, encrypt); } static int aead_encrypt(struct aead_request *req) { struct crypto_aead *authenc = crypto_aead_reqtfm(req); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, req->iv, 0, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* set encrypt */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT; return ipsec_esp(edesc, req, ipsec_esp_encrypt_done); } static int aead_decrypt(struct aead_request *req) { struct crypto_aead *authenc = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(authenc); struct talitos_ctx *ctx = crypto_aead_ctx(authenc); struct talitos_private *priv = dev_get_drvdata(ctx->dev); struct talitos_edesc *edesc; struct scatterlist *sg; void *icvdata; req->cryptlen -= authsize; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, req->iv, 1, false); if (IS_ERR(edesc)) return PTR_ERR(edesc); if ((priv->features & TALITOS_FTR_HW_AUTH_CHECK) && ((!edesc->src_nents && !edesc->dst_nents) || priv->features & TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT)) { /* decrypt and check the ICV */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND | DESC_HDR_MODE1_MDEU_CICV; /* reset integrity check result bits */ edesc->desc.hdr_lo = 0; return ipsec_esp(edesc, req, ipsec_esp_decrypt_hwauth_done); } /* Have to check the ICV with software */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND; /* stash incoming ICV for later cmp with ICV generated by the h/w */ if (edesc->dma_len) icvdata = (char *)&edesc->link_tbl[edesc->src_nents + edesc->dst_nents + 2]; else icvdata = &edesc->link_tbl[0]; sg = sg_last(req->src, edesc->src_nents ? : 1); memcpy(icvdata, (char *)sg_virt(sg) + sg->length - authsize, authsize); return ipsec_esp(edesc, req, ipsec_esp_decrypt_swauth_done); } static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); memcpy(&ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static void unmap_sg_talitos_ptr(struct device *dev, struct scatterlist *src, struct scatterlist *dst, unsigned int len, struct talitos_edesc *edesc) { struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); if (is_sec1) { if (!edesc->src_nents) { dma_unmap_sg(dev, src, 1, dst != src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL); } if (dst && edesc->dst_nents) { dma_sync_single_for_device(dev, edesc->dma_link_tbl + len, len, DMA_FROM_DEVICE); sg_copy_from_buffer(dst, edesc->dst_nents ? : 1, edesc->buf + len, len); } else if (dst && dst != src) { dma_unmap_sg(dev, dst, 1, DMA_FROM_DEVICE); } } else { talitos_sg_unmap(dev, edesc, src, dst); } } static void common_nonsnoop_unmap(struct device *dev, struct talitos_edesc *edesc, struct ablkcipher_request *areq) { unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE); unmap_sg_talitos_ptr(dev, areq->src, areq->dst, areq->nbytes, edesc); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE); if (edesc->dma_len) dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } static void ablkcipher_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct ablkcipher_request *areq = context; struct talitos_edesc *edesc; edesc = container_of(desc, struct talitos_edesc, desc); common_nonsnoop_unmap(dev, edesc, areq); kfree(edesc); areq->base.complete(&areq->base, err); } int map_sg_in_talitos_ptr(struct device *dev, struct scatterlist *src, unsigned int len, struct talitos_edesc *edesc, enum dma_data_direction dir, struct talitos_ptr *ptr) { int sg_count; struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); to_talitos_ptr_len(ptr, len, is_sec1); if (is_sec1) { sg_count = edesc->src_nents ? : 1; if (sg_count == 1) { dma_map_sg(dev, src, 1, dir); to_talitos_ptr(ptr, sg_dma_address(src), is_sec1); } else { sg_copy_to_buffer(src, sg_count, edesc->buf, len); to_talitos_ptr(ptr, edesc->dma_link_tbl, is_sec1); dma_sync_single_for_device(dev, edesc->dma_link_tbl, len, DMA_TO_DEVICE); } } else { to_talitos_ptr_extent_clear(ptr, is_sec1); sg_count = dma_map_sg(dev, src, edesc->src_nents ? : 1, dir); if (sg_count == 1) { to_talitos_ptr(ptr, sg_dma_address(src), is_sec1); } else { sg_count = sg_to_link_tbl(src, sg_count, len, &edesc->link_tbl[0]); if (sg_count > 1) { to_talitos_ptr(ptr, edesc->dma_link_tbl, 0); ptr->j_extent |= DESC_PTR_LNKTBL_JUMP; dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } else { /* Only one segment now, so no link tbl needed*/ to_talitos_ptr(ptr, sg_dma_address(src), is_sec1); } } } return sg_count; } void map_sg_out_talitos_ptr(struct device *dev, struct scatterlist *dst, unsigned int len, struct talitos_edesc *edesc, enum dma_data_direction dir, struct talitos_ptr *ptr, int sg_count) { struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); if (dir != DMA_NONE) sg_count = dma_map_sg(dev, dst, edesc->dst_nents ? : 1, dir); to_talitos_ptr_len(ptr, len, is_sec1); if (is_sec1) { if (sg_count == 1) { if (dir != DMA_NONE) dma_map_sg(dev, dst, 1, dir); to_talitos_ptr(ptr, sg_dma_address(dst), is_sec1); } else { to_talitos_ptr(ptr, edesc->dma_link_tbl + len, is_sec1); dma_sync_single_for_device(dev, edesc->dma_link_tbl + len, len, DMA_FROM_DEVICE); } } else { to_talitos_ptr_extent_clear(ptr, is_sec1); if (sg_count == 1) { to_talitos_ptr(ptr, sg_dma_address(dst), is_sec1); } else { struct talitos_ptr *link_tbl_ptr = &edesc->link_tbl[edesc->src_nents + 1]; to_talitos_ptr(ptr, edesc->dma_link_tbl + (edesc->src_nents + 1) * sizeof(struct talitos_ptr), 0); ptr->j_extent |= DESC_PTR_LNKTBL_JUMP; sg_to_link_tbl(dst, sg_count, len, link_tbl_ptr); dma_sync_single_for_device(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } } } static int common_nonsnoop(struct talitos_edesc *edesc, struct ablkcipher_request *areq, void (*callback) (struct device *dev, struct talitos_desc *desc, void *context, int error)) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct device *dev = ctx->dev; struct talitos_desc *desc = &edesc->desc; unsigned int cryptlen = areq->nbytes; unsigned int ivsize = crypto_ablkcipher_ivsize(cipher); int sg_count, ret; struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); /* first DWORD empty */ desc->ptr[0] = zero_entry; /* cipher iv */ to_talitos_ptr(&desc->ptr[1], edesc->iv_dma, is_sec1); to_talitos_ptr_len(&desc->ptr[1], ivsize, is_sec1); to_talitos_ptr_extent_clear(&desc->ptr[1], is_sec1); /* cipher key */ map_single_talitos_ptr(dev, &desc->ptr[2], ctx->keylen, (char *)&ctx->key, DMA_TO_DEVICE); /* * cipher in */ sg_count = map_sg_in_talitos_ptr(dev, areq->src, cryptlen, edesc, (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, &desc->ptr[3]); /* cipher out */ map_sg_out_talitos_ptr(dev, areq->dst, cryptlen, edesc, (areq->src == areq->dst) ? DMA_NONE : DMA_FROM_DEVICE, &desc->ptr[4], sg_count); /* iv out */ map_single_talitos_ptr(dev, &desc->ptr[5], ivsize, ctx->iv, DMA_FROM_DEVICE); /* last DWORD empty */ desc->ptr[6] = zero_entry; ret = talitos_submit(dev, ctx->ch, desc, callback, areq); if (ret != -EINPROGRESS) { common_nonsnoop_unmap(dev, edesc, areq); kfree(edesc); } return ret; } static struct talitos_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request * areq, bool encrypt) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); unsigned int ivsize = crypto_ablkcipher_ivsize(cipher); return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst, areq->info, 0, areq->nbytes, 0, ivsize, 0, areq->base.flags, encrypt); } static int ablkcipher_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(areq, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* set encrypt */ edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT; return common_nonsnoop(edesc, areq, ablkcipher_done); } static int ablkcipher_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq); struct talitos_ctx *ctx = crypto_ablkcipher_ctx(cipher); struct talitos_edesc *edesc; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(areq, false); if (IS_ERR(edesc)) return PTR_ERR(edesc); edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND; return common_nonsnoop(edesc, areq, ablkcipher_done); } static void common_nonsnoop_hash_unmap(struct device *dev, struct talitos_edesc *edesc, struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE); unmap_sg_talitos_ptr(dev, req_ctx->psrc, NULL, 0, edesc); /* When using hashctx-in, must unmap it. */ if (from_talitos_ptr_len(&edesc->desc.ptr[1], is_sec1)) unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE); if (from_talitos_ptr_len(&edesc->desc.ptr[2], is_sec1)) unmap_single_talitos_ptr(dev, &edesc->desc.ptr[2], DMA_TO_DEVICE); if (edesc->dma_len) dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len, DMA_BIDIRECTIONAL); } static void ahash_done(struct device *dev, struct talitos_desc *desc, void *context, int err) { struct ahash_request *areq = context; struct talitos_edesc *edesc = container_of(desc, struct talitos_edesc, desc); struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); if (!req_ctx->last && req_ctx->to_hash_later) { /* Position any partial block for next update/final/finup */ memcpy(req_ctx->buf, req_ctx->bufnext, req_ctx->to_hash_later); req_ctx->nbuf = req_ctx->to_hash_later; } common_nonsnoop_hash_unmap(dev, edesc, areq); kfree(edesc); areq->base.complete(&areq->base, err); } /* * SEC1 doesn't like hashing of 0 sized message, so we do the padding * ourself and submit a padded block */ void talitos_handle_buggy_hash(struct talitos_ctx *ctx, struct talitos_edesc *edesc, struct talitos_ptr *ptr) { static u8 padded_hash[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; pr_err_once("Bug in SEC1, padding ourself\n"); edesc->desc.hdr &= ~DESC_HDR_MODE0_MDEU_PAD; map_single_talitos_ptr(ctx->dev, ptr, sizeof(padded_hash), (char *)padded_hash, DMA_TO_DEVICE); } static int common_nonsnoop_hash(struct talitos_edesc *edesc, struct ahash_request *areq, unsigned int length, void (*callback) (struct device *dev, struct talitos_desc *desc, void *context, int error)) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct talitos_ctx *ctx = crypto_ahash_ctx(tfm); struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct device *dev = ctx->dev; struct talitos_desc *desc = &edesc->desc; int ret; struct talitos_private *priv = dev_get_drvdata(dev); bool is_sec1 = has_ftr_sec1(priv); /* first DWORD empty */ desc->ptr[0] = zero_entry; /* hash context in */ if (!req_ctx->first || req_ctx->swinit) { map_single_talitos_ptr(dev, &desc->ptr[1], req_ctx->hw_context_size, (char *)req_ctx->hw_context, DMA_TO_DEVICE); req_ctx->swinit = 0; } else { desc->ptr[1] = zero_entry; /* Indicate next op is not the first. */ req_ctx->first = 0; } /* HMAC key */ if (ctx->keylen) map_single_talitos_ptr(dev, &desc->ptr[2], ctx->keylen, (char *)&ctx->key, DMA_TO_DEVICE); else desc->ptr[2] = zero_entry; /* * data in */ map_sg_in_talitos_ptr(dev, req_ctx->psrc, length, edesc, DMA_TO_DEVICE, &desc->ptr[3]); /* fifth DWORD empty */ desc->ptr[4] = zero_entry; /* hash/HMAC out -or- hash context out */ if (req_ctx->last) map_single_talitos_ptr(dev, &desc->ptr[5], crypto_ahash_digestsize(tfm), areq->result, DMA_FROM_DEVICE); else map_single_talitos_ptr(dev, &desc->ptr[5], req_ctx->hw_context_size, req_ctx->hw_context, DMA_FROM_DEVICE); /* last DWORD empty */ desc->ptr[6] = zero_entry; if (is_sec1 && from_talitos_ptr_len(&desc->ptr[3], true) == 0) talitos_handle_buggy_hash(ctx, edesc, &desc->ptr[3]); ret = talitos_submit(dev, ctx->ch, desc, callback, areq); if (ret != -EINPROGRESS) { common_nonsnoop_hash_unmap(dev, edesc, areq); kfree(edesc); } return ret; } static struct talitos_edesc *ahash_edesc_alloc(struct ahash_request *areq, unsigned int nbytes) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct talitos_ctx *ctx = crypto_ahash_ctx(tfm); struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); return talitos_edesc_alloc(ctx->dev, req_ctx->psrc, NULL, NULL, 0, nbytes, 0, 0, 0, areq->base.flags, false); } static int ahash_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); /* Initialize the context */ req_ctx->nbuf = 0; req_ctx->first = 1; /* first indicates h/w must init its context */ req_ctx->swinit = 0; /* assume h/w init of context */ req_ctx->hw_context_size = (crypto_ahash_digestsize(tfm) <= SHA256_DIGEST_SIZE) ? TALITOS_MDEU_CONTEXT_SIZE_MD5_SHA1_SHA256 : TALITOS_MDEU_CONTEXT_SIZE_SHA384_SHA512; return 0; } /* * on h/w without explicit sha224 support, we initialize h/w context * manually with sha224 constants, and tell it to run sha256. */ static int ahash_init_sha224_swinit(struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); ahash_init(areq); req_ctx->swinit = 1;/* prevent h/w initting context with sha256 values*/ req_ctx->hw_context[0] = SHA224_H0; req_ctx->hw_context[1] = SHA224_H1; req_ctx->hw_context[2] = SHA224_H2; req_ctx->hw_context[3] = SHA224_H3; req_ctx->hw_context[4] = SHA224_H4; req_ctx->hw_context[5] = SHA224_H5; req_ctx->hw_context[6] = SHA224_H6; req_ctx->hw_context[7] = SHA224_H7; /* init 64-bit count */ req_ctx->hw_context[8] = 0; req_ctx->hw_context[9] = 0; return 0; } static int ahash_process_req(struct ahash_request *areq, unsigned int nbytes) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct talitos_ctx *ctx = crypto_ahash_ctx(tfm); struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct talitos_edesc *edesc; unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); unsigned int nbytes_to_hash; unsigned int to_hash_later; unsigned int nsg; int nents; if (!req_ctx->last && (nbytes + req_ctx->nbuf <= blocksize)) { /* Buffer up to one whole block */ nents = sg_nents_for_len(areq->src, nbytes); if (nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return nents; } sg_copy_to_buffer(areq->src, nents, req_ctx->buf + req_ctx->nbuf, nbytes); req_ctx->nbuf += nbytes; return 0; } /* At least (blocksize + 1) bytes are available to hash */ nbytes_to_hash = nbytes + req_ctx->nbuf; to_hash_later = nbytes_to_hash & (blocksize - 1); if (req_ctx->last) to_hash_later = 0; else if (to_hash_later) /* There is a partial block. Hash the full block(s) now */ nbytes_to_hash -= to_hash_later; else { /* Keep one block buffered */ nbytes_to_hash -= blocksize; to_hash_later = blocksize; } /* Chain in any previously buffered data */ if (req_ctx->nbuf) { nsg = (req_ctx->nbuf < nbytes_to_hash) ? 2 : 1; sg_init_table(req_ctx->bufsl, nsg); sg_set_buf(req_ctx->bufsl, req_ctx->buf, req_ctx->nbuf); if (nsg > 1) sg_chain(req_ctx->bufsl, 2, areq->src); req_ctx->psrc = req_ctx->bufsl; } else req_ctx->psrc = areq->src; if (to_hash_later) { nents = sg_nents_for_len(areq->src, nbytes); if (nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return nents; } sg_pcopy_to_buffer(areq->src, nents, req_ctx->bufnext, to_hash_later, nbytes - to_hash_later); } req_ctx->to_hash_later = to_hash_later; /* Allocate extended descriptor */ edesc = ahash_edesc_alloc(areq, nbytes_to_hash); if (IS_ERR(edesc)) return PTR_ERR(edesc); edesc->desc.hdr = ctx->desc_hdr_template; /* On last one, request SEC to pad; otherwise continue */ if (req_ctx->last) edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_PAD; else edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_CONT; /* request SEC to INIT hash. */ if (req_ctx->first && !req_ctx->swinit) edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_INIT; /* When the tfm context has a keylen, it's an HMAC. * A first or last (ie. not middle) descriptor must request HMAC. */ if (ctx->keylen && (req_ctx->first || req_ctx->last)) edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_HMAC; return common_nonsnoop_hash(edesc, areq, nbytes_to_hash, ahash_done); } static int ahash_update(struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); req_ctx->last = 0; return ahash_process_req(areq, areq->nbytes); } static int ahash_final(struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); req_ctx->last = 1; return ahash_process_req(areq, 0); } static int ahash_finup(struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); req_ctx->last = 1; return ahash_process_req(areq, areq->nbytes); } static int ahash_digest(struct ahash_request *areq) { struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); ahash->init(areq); req_ctx->last = 1; return ahash_process_req(areq, areq->nbytes); } struct keyhash_result { struct completion completion; int err; }; static void keyhash_complete(struct crypto_async_request *req, int err) { struct keyhash_result *res = req->data; if (err == -EINPROGRESS) return; res->err = err; complete(&res->completion); } static int keyhash(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen, u8 *hash) { struct talitos_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct scatterlist sg[1]; struct ahash_request *req; struct keyhash_result hresult; int ret; init_completion(&hresult.completion); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) return -ENOMEM; /* Keep tfm keylen == 0 during hash of the long key */ ctx->keylen = 0; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, keyhash_complete, &hresult); sg_init_one(&sg[0], key, keylen); ahash_request_set_crypt(req, sg, hash, keylen); ret = crypto_ahash_digest(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &hresult.completion); if (!ret) ret = hresult.err; break; default: break; } ahash_request_free(req); return ret; } static int ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct talitos_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); unsigned int blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); unsigned int digestsize = crypto_ahash_digestsize(tfm); unsigned int keysize = keylen; u8 hash[SHA512_DIGEST_SIZE]; int ret; if (keylen <= blocksize) memcpy(ctx->key, key, keysize); else { /* Must get the hash of the long key */ ret = keyhash(tfm, key, keylen, hash); if (ret) { crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } keysize = digestsize; memcpy(ctx->key, hash, digestsize); } ctx->keylen = keysize; return 0; } struct talitos_alg_template { u32 type; union { struct crypto_alg crypto; struct ahash_alg hash; struct aead_alg aead; } alg; __be32 desc_hdr_template; }; static struct talitos_alg_template driver_algs[] = { /* AEAD algorithms. These use a single-pass ipsec_esp descriptor */ { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA1_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA1_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA224_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA224_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA256_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_SHA256_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUB | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEUB_SHA384_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUB | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEUB_SHA384_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUB | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEUB_SHA512_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUB | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEUB_SHA512_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-" "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_MD5_HMAC, }, { .type = CRYPTO_ALG_TYPE_AEAD, .alg.aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-" "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES | DESC_HDR_SEL1_MDEUA | DESC_HDR_MODE1_MDEU_INIT | DESC_HDR_MODE1_MDEU_PAD | DESC_HDR_MODE1_MDEU_MD5_HMAC, }, /* ABLKCIPHER algorithms. */ { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_AESU, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CBC, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-talitos", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_AESU | DESC_HDR_MODE0_AESU_CTR, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(des)", .cra_driver_name = "ecb-des-talitos", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_DEU, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(des)", .cra_driver_name = "cbc-des-talitos", .cra_blocksize = DES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "ecb-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_3DES, }, { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .alg.crypto = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-3des-talitos", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_DEU | DESC_HDR_MODE0_DEU_CBC | DESC_HDR_MODE0_DEU_3DES, }, /* AHASH algorithms. */ { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "md5", .cra_driver_name = "md5-talitos", .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_MD5, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-talitos", .cra_blocksize = SHA1_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA1, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "sha224", .cra_driver_name = "sha224-talitos", .cra_blocksize = SHA224_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA224, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-talitos", .cra_blocksize = SHA256_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA256, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "sha384", .cra_driver_name = "sha384-talitos", .cra_blocksize = SHA384_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUB | DESC_HDR_MODE0_MDEUB_SHA384, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "sha512", .cra_driver_name = "sha512-talitos", .cra_blocksize = SHA512_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUB | DESC_HDR_MODE0_MDEUB_SHA512, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(md5)", .cra_driver_name = "hmac-md5-talitos", .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_MD5, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "hmac-sha1-talitos", .cra_blocksize = SHA1_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA1, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac-sha224-talitos", .cra_blocksize = SHA224_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA224, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-talitos", .cra_blocksize = SHA256_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA256, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac-sha384-talitos", .cra_blocksize = SHA384_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUB | DESC_HDR_MODE0_MDEUB_SHA384, }, { .type = CRYPTO_ALG_TYPE_AHASH, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac-sha512-talitos", .cra_blocksize = SHA512_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, } }, .desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUB | DESC_HDR_MODE0_MDEUB_SHA512, } }; struct talitos_crypto_alg { struct list_head entry; struct device *dev; struct talitos_alg_template algt; }; static int talitos_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct talitos_crypto_alg *talitos_alg; struct talitos_ctx *ctx = crypto_tfm_ctx(tfm); struct talitos_private *priv; if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_AHASH) talitos_alg = container_of(__crypto_ahash_alg(alg), struct talitos_crypto_alg, algt.alg.hash); else talitos_alg = container_of(alg, struct talitos_crypto_alg, algt.alg.crypto); /* update context with ptr to dev */ ctx->dev = talitos_alg->dev; /* assign SEC channel to tfm in round-robin fashion */ priv = dev_get_drvdata(ctx->dev); ctx->ch = atomic_inc_return(&priv->last_chan) & (priv->num_channels - 1); /* copy descriptor header template value */ ctx->desc_hdr_template = talitos_alg->algt.desc_hdr_template; /* select done notification */ ctx->desc_hdr_template |= DESC_HDR_DONE_NOTIFY; return 0; } static int talitos_cra_init_aead(struct crypto_aead *tfm) { talitos_cra_init(crypto_aead_tfm(tfm)); return 0; } static int talitos_cra_init_ahash(struct crypto_tfm *tfm) { struct talitos_ctx *ctx = crypto_tfm_ctx(tfm); talitos_cra_init(tfm); ctx->keylen = 0; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct talitos_ahash_req_ctx)); return 0; } /* * given the alg's descriptor header template, determine whether descriptor * type and primary/secondary execution units required match the hw * capabilities description provided in the device tree node. */ static int hw_supports(struct device *dev, __be32 desc_hdr_template) { struct talitos_private *priv = dev_get_drvdata(dev); int ret; ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) && (1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units); if (SECONDARY_EU(desc_hdr_template)) ret = ret && (1 << SECONDARY_EU(desc_hdr_template) & priv->exec_units); return ret; } static int talitos_remove(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_crypto_alg *t_alg, *n; int i; list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) { switch (t_alg->algt.type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: break; case CRYPTO_ALG_TYPE_AEAD: crypto_unregister_aead(&t_alg->algt.alg.aead); case CRYPTO_ALG_TYPE_AHASH: crypto_unregister_ahash(&t_alg->algt.alg.hash); break; } list_del(&t_alg->entry); kfree(t_alg); } if (hw_supports(dev, DESC_HDR_SEL0_RNG)) talitos_unregister_rng(dev); for (i = 0; priv->chan && i < priv->num_channels; i++) kfree(priv->chan[i].fifo); kfree(priv->chan); for (i = 0; i < 2; i++) if (priv->irq[i]) { free_irq(priv->irq[i], dev); irq_dispose_mapping(priv->irq[i]); } tasklet_kill(&priv->done_task[0]); if (priv->irq[1]) tasklet_kill(&priv->done_task[1]); iounmap(priv->reg); kfree(priv); return 0; } static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev, struct talitos_alg_template *template) { struct talitos_private *priv = dev_get_drvdata(dev); struct talitos_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(struct talitos_crypto_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); t_alg->algt = *template; switch (t_alg->algt.type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: alg = &t_alg->algt.alg.crypto; alg->cra_init = talitos_cra_init; alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher.setkey = ablkcipher_setkey; alg->cra_ablkcipher.encrypt = ablkcipher_encrypt; alg->cra_ablkcipher.decrypt = ablkcipher_decrypt; alg->cra_ablkcipher.geniv = "eseqiv"; break; case CRYPTO_ALG_TYPE_AEAD: alg = &t_alg->algt.alg.aead.base; t_alg->algt.alg.aead.init = talitos_cra_init_aead; t_alg->algt.alg.aead.setkey = aead_setkey; t_alg->algt.alg.aead.encrypt = aead_encrypt; t_alg->algt.alg.aead.decrypt = aead_decrypt; break; case CRYPTO_ALG_TYPE_AHASH: alg = &t_alg->algt.alg.hash.halg.base; alg->cra_init = talitos_cra_init_ahash; alg->cra_type = &crypto_ahash_type; t_alg->algt.alg.hash.init = ahash_init; t_alg->algt.alg.hash.update = ahash_update; t_alg->algt.alg.hash.final = ahash_final; t_alg->algt.alg.hash.finup = ahash_finup; t_alg->algt.alg.hash.digest = ahash_digest; t_alg->algt.alg.hash.setkey = ahash_setkey; if (!(priv->features & TALITOS_FTR_HMAC_OK) && !strncmp(alg->cra_name, "hmac", 4)) { kfree(t_alg); return ERR_PTR(-ENOTSUPP); } if (!(priv->features & TALITOS_FTR_SHA224_HWINIT) && (!strcmp(alg->cra_name, "sha224") || !strcmp(alg->cra_name, "hmac(sha224)"))) { t_alg->algt.alg.hash.init = ahash_init_sha224_swinit; t_alg->algt.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU | DESC_HDR_SEL0_MDEUA | DESC_HDR_MODE0_MDEU_SHA256; } break; default: dev_err(dev, "unknown algorithm type %d\n", t_alg->algt.type); kfree(t_alg); return ERR_PTR(-EINVAL); } alg->cra_module = THIS_MODULE; alg->cra_priority = TALITOS_CRA_PRIORITY; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct talitos_ctx); alg->cra_flags |= CRYPTO_ALG_KERN_DRIVER_ONLY; t_alg->dev = dev; return t_alg; } static int talitos_probe_irq(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct talitos_private *priv = dev_get_drvdata(dev); int err; bool is_sec1 = has_ftr_sec1(priv); priv->irq[0] = irq_of_parse_and_map(np, 0); if (!priv->irq[0]) { dev_err(dev, "failed to map irq\n"); return -EINVAL; } if (is_sec1) { err = request_irq(priv->irq[0], talitos1_interrupt_4ch, 0, dev_driver_string(dev), dev); goto primary_out; } priv->irq[1] = irq_of_parse_and_map(np, 1); /* get the primary irq line */ if (!priv->irq[1]) { err = request_irq(priv->irq[0], talitos2_interrupt_4ch, 0, dev_driver_string(dev), dev); goto primary_out; } err = request_irq(priv->irq[0], talitos2_interrupt_ch0_2, 0, dev_driver_string(dev), dev); if (err) goto primary_out; /* get the secondary irq line */ err = request_irq(priv->irq[1], talitos2_interrupt_ch1_3, 0, dev_driver_string(dev), dev); if (err) { dev_err(dev, "failed to request secondary irq\n"); irq_dispose_mapping(priv->irq[1]); priv->irq[1] = 0; } return err; primary_out: if (err) { dev_err(dev, "failed to request primary irq\n"); irq_dispose_mapping(priv->irq[0]); priv->irq[0] = 0; } return err; } static int talitos_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct talitos_private *priv; const unsigned int *prop; int i, err; int stride; priv = kzalloc(sizeof(struct talitos_private), GFP_KERNEL); if (!priv) return -ENOMEM; INIT_LIST_HEAD(&priv->alg_list); dev_set_drvdata(dev, priv); priv->ofdev = ofdev; spin_lock_init(&priv->reg_lock); priv->reg = of_iomap(np, 0); if (!priv->reg) { dev_err(dev, "failed to of_iomap\n"); err = -ENOMEM; goto err_out; } /* get SEC version capabilities from device tree */ prop = of_get_property(np, "fsl,num-channels", NULL); if (prop) priv->num_channels = *prop; prop = of_get_property(np, "fsl,channel-fifo-len", NULL); if (prop) priv->chfifo_len = *prop; prop = of_get_property(np, "fsl,exec-units-mask", NULL); if (prop) priv->exec_units = *prop; prop = of_get_property(np, "fsl,descriptor-types-mask", NULL); if (prop) priv->desc_types = *prop; if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len || !priv->exec_units || !priv->desc_types) { dev_err(dev, "invalid property data in device tree node\n"); err = -EINVAL; goto err_out; } if (of_device_is_compatible(np, "fsl,sec3.0")) priv->features |= TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT; if (of_device_is_compatible(np, "fsl,sec2.1")) priv->features |= TALITOS_FTR_HW_AUTH_CHECK | TALITOS_FTR_SHA224_HWINIT | TALITOS_FTR_HMAC_OK; if (of_device_is_compatible(np, "fsl,sec1.0")) priv->features |= TALITOS_FTR_SEC1; if (of_device_is_compatible(np, "fsl,sec1.2")) { priv->reg_deu = priv->reg + TALITOS12_DEU; priv->reg_aesu = priv->reg + TALITOS12_AESU; priv->reg_mdeu = priv->reg + TALITOS12_MDEU; stride = TALITOS1_CH_STRIDE; } else if (of_device_is_compatible(np, "fsl,sec1.0")) { priv->reg_deu = priv->reg + TALITOS10_DEU; priv->reg_aesu = priv->reg + TALITOS10_AESU; priv->reg_mdeu = priv->reg + TALITOS10_MDEU; priv->reg_afeu = priv->reg + TALITOS10_AFEU; priv->reg_rngu = priv->reg + TALITOS10_RNGU; priv->reg_pkeu = priv->reg + TALITOS10_PKEU; stride = TALITOS1_CH_STRIDE; } else { priv->reg_deu = priv->reg + TALITOS2_DEU; priv->reg_aesu = priv->reg + TALITOS2_AESU; priv->reg_mdeu = priv->reg + TALITOS2_MDEU; priv->reg_afeu = priv->reg + TALITOS2_AFEU; priv->reg_rngu = priv->reg + TALITOS2_RNGU; priv->reg_pkeu = priv->reg + TALITOS2_PKEU; priv->reg_keu = priv->reg + TALITOS2_KEU; priv->reg_crcu = priv->reg + TALITOS2_CRCU; stride = TALITOS2_CH_STRIDE; } err = talitos_probe_irq(ofdev); if (err) goto err_out; if (of_device_is_compatible(np, "fsl,sec1.0")) { tasklet_init(&priv->done_task[0], talitos1_done_4ch, (unsigned long)dev); } else { if (!priv->irq[1]) { tasklet_init(&priv->done_task[0], talitos2_done_4ch, (unsigned long)dev); } else { tasklet_init(&priv->done_task[0], talitos2_done_ch0_2, (unsigned long)dev); tasklet_init(&priv->done_task[1], talitos2_done_ch1_3, (unsigned long)dev); } } priv->chan = kzalloc(sizeof(struct talitos_channel) * priv->num_channels, GFP_KERNEL); if (!priv->chan) { dev_err(dev, "failed to allocate channel management space\n"); err = -ENOMEM; goto err_out; } priv->fifo_len = roundup_pow_of_two(priv->chfifo_len); for (i = 0; i < priv->num_channels; i++) { priv->chan[i].reg = priv->reg + stride * (i + 1); if (!priv->irq[1] || !(i & 1)) priv->chan[i].reg += TALITOS_CH_BASE_OFFSET; spin_lock_init(&priv->chan[i].head_lock); spin_lock_init(&priv->chan[i].tail_lock); priv->chan[i].fifo = kzalloc(sizeof(struct talitos_request) * priv->fifo_len, GFP_KERNEL); if (!priv->chan[i].fifo) { dev_err(dev, "failed to allocate request fifo %d\n", i); err = -ENOMEM; goto err_out; } atomic_set(&priv->chan[i].submit_count, -(priv->chfifo_len - 1)); } dma_set_mask(dev, DMA_BIT_MASK(36)); /* reset and initialize the h/w */ err = init_device(dev); if (err) { dev_err(dev, "failed to initialize device\n"); goto err_out; } /* register the RNG, if available */ if (hw_supports(dev, DESC_HDR_SEL0_RNG)) { err = talitos_register_rng(dev); if (err) { dev_err(dev, "failed to register hwrng: %d\n", err); goto err_out; } else dev_info(dev, "hwrng\n"); } /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { if (hw_supports(dev, driver_algs[i].desc_hdr_template)) { struct talitos_crypto_alg *t_alg; struct crypto_alg *alg = NULL; t_alg = talitos_alg_alloc(dev, &driver_algs[i]); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); if (err == -ENOTSUPP) continue; goto err_out; } switch (t_alg->algt.type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: err = crypto_register_alg( &t_alg->algt.alg.crypto); alg = &t_alg->algt.alg.crypto; break; case CRYPTO_ALG_TYPE_AEAD: err = crypto_register_aead( &t_alg->algt.alg.aead); alg = &t_alg->algt.alg.aead.base; break; case CRYPTO_ALG_TYPE_AHASH: err = crypto_register_ahash( &t_alg->algt.alg.hash); alg = &t_alg->algt.alg.hash.halg.base; break; } if (err) { dev_err(dev, "%s alg registration failed\n", alg->cra_driver_name); kfree(t_alg); } else list_add_tail(&t_alg->entry, &priv->alg_list); } } if (!list_empty(&priv->alg_list)) dev_info(dev, "%s algorithms registered in /proc/crypto\n", (char *)of_get_property(np, "compatible", NULL)); return 0; err_out: talitos_remove(ofdev); return err; } static const struct of_device_id talitos_match[] = { #ifdef CONFIG_CRYPTO_DEV_TALITOS1 { .compatible = "fsl,sec1.0", }, #endif #ifdef CONFIG_CRYPTO_DEV_TALITOS2 { .compatible = "fsl,sec2.0", }, #endif {}, }; MODULE_DEVICE_TABLE(of, talitos_match); static struct platform_driver talitos_driver = { .driver = { .name = "talitos", .of_match_table = talitos_match, }, .probe = talitos_probe, .remove = talitos_remove, }; module_platform_driver(talitos_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kim Phillips <kim.phillips@freescale.com>"); MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");