/* * USB RedRat3 IR Transceiver rc-core driver * * Copyright (c) 2011 by Jarod Wilson * based heavily on the work of Stephen Cox, with additional * help from RedRat Ltd. * * This driver began life based an an old version of the first-generation * lirc_mceusb driver from the lirc 0.7.2 distribution. It was then * significantly rewritten by Stephen Cox with the aid of RedRat Ltd's * Chris Dodge. * * The driver was then ported to rc-core and significantly rewritten again, * by Jarod, using the in-kernel mceusb driver as a guide, after an initial * port effort was started by Stephen. * * TODO LIST: * - fix lirc not showing repeats properly * -- * * The RedRat3 is a USB transceiver with both send & receive, * with 2 separate sensors available for receive to enable * both good long range reception for general use, and good * short range reception when required for learning a signal. * * http://www.redrat.co.uk/ * * It uses its own little protocol to communicate, the required * parts of which are embedded within this driver. * -- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include /* Driver Information */ #define DRIVER_AUTHOR "Jarod Wilson " #define DRIVER_AUTHOR2 "The Dweller, Stephen Cox" #define DRIVER_DESC "RedRat3 USB IR Transceiver Driver" #define DRIVER_NAME "redrat3" /* module parameters */ #ifdef CONFIG_USB_DEBUG static int debug = 1; #else static int debug; #endif #define RR3_DEBUG_STANDARD 0x1 #define RR3_DEBUG_FUNCTION_TRACE 0x2 #define rr3_dbg(dev, fmt, ...) \ do { \ if (debug & RR3_DEBUG_STANDARD) \ dev_info(dev, fmt, ## __VA_ARGS__); \ } while (0) #define rr3_ftr(dev, fmt, ...) \ do { \ if (debug & RR3_DEBUG_FUNCTION_TRACE) \ dev_info(dev, fmt, ## __VA_ARGS__); \ } while (0) /* bulk data transfer types */ #define RR3_ERROR 0x01 #define RR3_MOD_SIGNAL_IN 0x20 #define RR3_MOD_SIGNAL_OUT 0x21 /* Get the RR firmware version */ #define RR3_FW_VERSION 0xb1 #define RR3_FW_VERSION_LEN 64 /* Send encoded signal bulk-sent earlier*/ #define RR3_TX_SEND_SIGNAL 0xb3 #define RR3_SET_IR_PARAM 0xb7 #define RR3_GET_IR_PARAM 0xb8 /* Blink the red LED on the device */ #define RR3_BLINK_LED 0xb9 /* Read serial number of device */ #define RR3_READ_SER_NO 0xba #define RR3_SER_NO_LEN 4 /* Start capture with the RC receiver */ #define RR3_RC_DET_ENABLE 0xbb /* Stop capture with the RC receiver */ #define RR3_RC_DET_DISABLE 0xbc /* Return the status of RC detector capture */ #define RR3_RC_DET_STATUS 0xbd /* Reset redrat */ #define RR3_RESET 0xa0 /* Max number of lengths in the signal. */ #define RR3_IR_IO_MAX_LENGTHS 0x01 /* Periods to measure mod. freq. */ #define RR3_IR_IO_PERIODS_MF 0x02 /* Size of memory for main signal data */ #define RR3_IR_IO_SIG_MEM_SIZE 0x03 /* Delta value when measuring lengths */ #define RR3_IR_IO_LENGTH_FUZZ 0x04 /* Timeout for end of signal detection */ #define RR3_IR_IO_SIG_TIMEOUT 0x05 /* Minumum value for pause recognition. */ #define RR3_IR_IO_MIN_PAUSE 0x06 /* Clock freq. of EZ-USB chip */ #define RR3_CLK 24000000 /* Clock periods per timer count */ #define RR3_CLK_PER_COUNT 12 /* (RR3_CLK / RR3_CLK_PER_COUNT) */ #define RR3_CLK_CONV_FACTOR 2000000 /* USB bulk-in IR data endpoint address */ #define RR3_BULK_IN_EP_ADDR 0x82 /* Size of the fixed-length portion of the signal */ #define RR3_DRIVER_MAXLENS 128 #define RR3_MAX_SIG_SIZE 512 #define RR3_TIME_UNIT 50 #define RR3_END_OF_SIGNAL 0x7f #define RR3_TX_TRAILER_LEN 2 #define RR3_RX_MIN_TIMEOUT 5 #define RR3_RX_MAX_TIMEOUT 2000 /* The 8051's CPUCS Register address */ #define RR3_CPUCS_REG_ADDR 0x7f92 #define USB_RR3USB_VENDOR_ID 0x112a #define USB_RR3USB_PRODUCT_ID 0x0001 #define USB_RR3IIUSB_PRODUCT_ID 0x0005 struct redrat3_header { __be16 length; __be16 transfer_type; } __packed; /* sending and receiving irdata */ struct redrat3_irdata { struct redrat3_header header; __be32 pause; __be16 mod_freq_count; __be16 num_periods; __u8 max_lengths; __u8 no_lengths; __be16 max_sig_size; __be16 sig_size; __u8 no_repeats; __be16 lens[RR3_DRIVER_MAXLENS]; /* not aligned */ __u8 sigdata[RR3_MAX_SIG_SIZE]; } __packed; /* firmware errors */ struct redrat3_error { struct redrat3_header header; __be16 fw_error; } __packed; /* table of devices that work with this driver */ static struct usb_device_id redrat3_dev_table[] = { /* Original version of the RedRat3 */ {USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3USB_PRODUCT_ID)}, /* Second Version/release of the RedRat3 - RetRat3-II */ {USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3IIUSB_PRODUCT_ID)}, {} /* Terminating entry */ }; /* Structure to hold all of our device specific stuff */ struct redrat3_dev { /* core device bits */ struct rc_dev *rc; struct device *dev; /* save off the usb device pointer */ struct usb_device *udev; /* the receive endpoint */ struct usb_endpoint_descriptor *ep_in; /* the buffer to receive data */ void *bulk_in_buf; /* urb used to read ir data */ struct urb *read_urb; /* the send endpoint */ struct usb_endpoint_descriptor *ep_out; /* usb dma */ dma_addr_t dma_in; /* rx signal timeout timer */ struct timer_list rx_timeout; u32 hw_timeout; /* Is the device currently transmitting?*/ bool transmitting; /* store for current packet */ struct redrat3_irdata irdata; u16 bytes_read; u32 carrier; char name[64]; char phys[64]; }; /* * redrat3_issue_async * * Issues an async read to the ir data in port.. * sets the callback to be redrat3_handle_async */ static void redrat3_issue_async(struct redrat3_dev *rr3) { int res; rr3_ftr(rr3->dev, "Entering %s\n", __func__); res = usb_submit_urb(rr3->read_urb, GFP_ATOMIC); if (res) rr3_dbg(rr3->dev, "%s: receive request FAILED! " "(res %d, len %d)\n", __func__, res, rr3->read_urb->transfer_buffer_length); } static void redrat3_dump_fw_error(struct redrat3_dev *rr3, int code) { if (!rr3->transmitting && (code != 0x40)) dev_info(rr3->dev, "fw error code 0x%02x: ", code); switch (code) { case 0x00: pr_cont("No Error\n"); break; /* Codes 0x20 through 0x2f are IR Firmware Errors */ case 0x20: pr_cont("Initial signal pulse not long enough " "to measure carrier frequency\n"); break; case 0x21: pr_cont("Not enough length values allocated for signal\n"); break; case 0x22: pr_cont("Not enough memory allocated for signal data\n"); break; case 0x23: pr_cont("Too many signal repeats\n"); break; case 0x28: pr_cont("Insufficient memory available for IR signal " "data memory allocation\n"); break; case 0x29: pr_cont("Insufficient memory available " "for IrDa signal data memory allocation\n"); break; /* Codes 0x30 through 0x3f are USB Firmware Errors */ case 0x30: pr_cont("Insufficient memory available for bulk " "transfer structure\n"); break; /* * Other error codes... These are primarily errors that can occur in * the control messages sent to the redrat */ case 0x40: if (!rr3->transmitting) pr_cont("Signal capture has been terminated\n"); break; case 0x41: pr_cont("Attempt to set/get and unknown signal I/O " "algorithm parameter\n"); break; case 0x42: pr_cont("Signal capture already started\n"); break; default: pr_cont("Unknown Error\n"); break; } } static u32 redrat3_val_to_mod_freq(struct redrat3_irdata *irdata) { u32 mod_freq = 0; u16 mod_freq_count = be16_to_cpu(irdata->mod_freq_count); if (mod_freq_count != 0) mod_freq = (RR3_CLK * be16_to_cpu(irdata->num_periods)) / (mod_freq_count * RR3_CLK_PER_COUNT); return mod_freq; } /* this function scales down the figures for the same result... */ static u32 redrat3_len_to_us(u32 length) { u32 biglen = length * 1000; u32 divisor = (RR3_CLK_CONV_FACTOR) / 1000; u32 result = (u32) (biglen / divisor); /* don't allow zero lengths to go back, breaks lirc */ return result ? result : 1; } /* * convert us back into redrat3 lengths * * length * 1000 length * 1000000 * ------------- = ---------------- = micro * rr3clk / 1000 rr3clk * 6 * 2 4 * 3 micro * rr3clk micro * rr3clk / 1000 * ----- = 4 ----- = 6 -------------- = len --------------------- * 3 2 1000000 1000 */ static u32 redrat3_us_to_len(u32 microsec) { u32 result; u32 divisor; microsec &= IR_MAX_DURATION; divisor = (RR3_CLK_CONV_FACTOR / 1000); result = (u32)(microsec * divisor) / 1000; /* don't allow zero lengths to go back, breaks lirc */ return result ? result : 1; } /* timer callback to send reset event */ static void redrat3_rx_timeout(unsigned long data) { struct redrat3_dev *rr3 = (struct redrat3_dev *)data; rr3_dbg(rr3->dev, "calling ir_raw_event_reset\n"); ir_raw_event_reset(rr3->rc); } static void redrat3_process_ir_data(struct redrat3_dev *rr3) { DEFINE_IR_RAW_EVENT(rawir); struct device *dev; unsigned i, trailer = 0; unsigned sig_size, single_len, offset, val; unsigned long delay; u32 mod_freq; if (!rr3) { pr_err("%s called with no context!\n", __func__); return; } rr3_ftr(rr3->dev, "Entered %s\n", __func__); dev = rr3->dev; /* Make sure we reset the IR kfifo after a bit of inactivity */ delay = usecs_to_jiffies(rr3->hw_timeout); mod_timer(&rr3->rx_timeout, jiffies + delay); mod_freq = redrat3_val_to_mod_freq(&rr3->irdata); rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq); /* process each rr3 encoded byte into an int */ sig_size = be16_to_cpu(rr3->irdata.sig_size); for (i = 0; i < sig_size; i++) { offset = rr3->irdata.sigdata[i]; val = get_unaligned_be16(&rr3->irdata.lens[offset]); single_len = redrat3_len_to_us(val); /* we should always get pulse/space/pulse/space samples */ if (i % 2) rawir.pulse = false; else rawir.pulse = true; rawir.duration = US_TO_NS(single_len); /* Save initial pulse length to fudge trailer */ if (i == 0) trailer = rawir.duration; /* cap the value to IR_MAX_DURATION */ rawir.duration &= IR_MAX_DURATION; rr3_dbg(dev, "storing %s with duration %d (i: %d)\n", rawir.pulse ? "pulse" : "space", rawir.duration, i); ir_raw_event_store_with_filter(rr3->rc, &rawir); } /* add a trailing space, if need be */ if (i % 2) { rawir.pulse = false; /* this duration is made up, and may not be ideal... */ if (trailer < US_TO_NS(1000)) rawir.duration = US_TO_NS(2800); else rawir.duration = trailer; rr3_dbg(dev, "storing trailing space with duration %d\n", rawir.duration); ir_raw_event_store_with_filter(rr3->rc, &rawir); } rr3_dbg(dev, "calling ir_raw_event_handle\n"); ir_raw_event_handle(rr3->rc); } /* Util fn to send rr3 cmds */ static u8 redrat3_send_cmd(int cmd, struct redrat3_dev *rr3) { struct usb_device *udev; u8 *data; int res; data = kzalloc(sizeof(u8), GFP_KERNEL); if (!data) return -ENOMEM; udev = rr3->udev; res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), cmd, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0x0000, 0x0000, data, sizeof(u8), HZ * 10); if (res < 0) { dev_err(rr3->dev, "%s: Error sending rr3 cmd res %d, data %d", __func__, res, *data); res = -EIO; } else res = data[0]; kfree(data); return res; } /* Enables the long range detector and starts async receive */ static int redrat3_enable_detector(struct redrat3_dev *rr3) { struct device *dev = rr3->dev; u8 ret; rr3_ftr(dev, "Entering %s\n", __func__); ret = redrat3_send_cmd(RR3_RC_DET_ENABLE, rr3); if (ret != 0) dev_dbg(dev, "%s: unexpected ret of %d\n", __func__, ret); ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3); if (ret != 1) { dev_err(dev, "%s: detector status: %d, should be 1\n", __func__, ret); return -EIO; } redrat3_issue_async(rr3); return 0; } static inline void redrat3_delete(struct redrat3_dev *rr3, struct usb_device *udev) { rr3_ftr(rr3->dev, "%s cleaning up\n", __func__); usb_kill_urb(rr3->read_urb); usb_free_urb(rr3->read_urb); usb_free_coherent(udev, le16_to_cpu(rr3->ep_in->wMaxPacketSize), rr3->bulk_in_buf, rr3->dma_in); kfree(rr3); } static u32 redrat3_get_timeout(struct redrat3_dev *rr3) { __be32 *tmp; u32 timeout = MS_TO_US(150); /* a sane default, if things go haywire */ int len, ret, pipe; len = sizeof(*tmp); tmp = kzalloc(len, GFP_KERNEL); if (!tmp) { dev_warn(rr3->dev, "Memory allocation faillure\n"); return timeout; } pipe = usb_rcvctrlpipe(rr3->udev, 0); ret = usb_control_msg(rr3->udev, pipe, RR3_GET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, RR3_IR_IO_SIG_TIMEOUT, 0, tmp, len, HZ * 5); if (ret != len) dev_warn(rr3->dev, "Failed to read timeout from hardware\n"); else { timeout = redrat3_len_to_us(be32_to_cpup(tmp)); rr3_dbg(rr3->dev, "Got timeout of %d ms\n", timeout / 1000); } kfree(tmp); return timeout; } static void redrat3_reset(struct redrat3_dev *rr3) { struct usb_device *udev = rr3->udev; struct device *dev = rr3->dev; int rc, rxpipe, txpipe; u8 *val; int len = sizeof(u8); rr3_ftr(dev, "Entering %s\n", __func__); rxpipe = usb_rcvctrlpipe(udev, 0); txpipe = usb_sndctrlpipe(udev, 0); val = kmalloc(len, GFP_KERNEL); if (!val) { dev_err(dev, "Memory allocation failure\n"); return; } *val = 0x01; rc = usb_control_msg(udev, rxpipe, RR3_RESET, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, RR3_CPUCS_REG_ADDR, 0, val, len, HZ * 25); rr3_dbg(dev, "reset returned 0x%02x\n", rc); *val = 5; rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, RR3_IR_IO_LENGTH_FUZZ, 0, val, len, HZ * 25); rr3_dbg(dev, "set ir parm len fuzz %d rc 0x%02x\n", *val, rc); *val = RR3_DRIVER_MAXLENS; rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, RR3_IR_IO_MAX_LENGTHS, 0, val, len, HZ * 25); rr3_dbg(dev, "set ir parm max lens %d rc 0x%02x\n", *val, rc); kfree(val); } static void redrat3_get_firmware_rev(struct redrat3_dev *rr3) { int rc = 0; char *buffer; rr3_ftr(rr3->dev, "Entering %s\n", __func__); buffer = kzalloc(sizeof(char) * (RR3_FW_VERSION_LEN + 1), GFP_KERNEL); if (!buffer) { dev_err(rr3->dev, "Memory allocation failure\n"); return; } rc = usb_control_msg(rr3->udev, usb_rcvctrlpipe(rr3->udev, 0), RR3_FW_VERSION, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0, 0, buffer, RR3_FW_VERSION_LEN, HZ * 5); if (rc >= 0) dev_info(rr3->dev, "Firmware rev: %s", buffer); else dev_err(rr3->dev, "Problem fetching firmware ID\n"); kfree(buffer); rr3_ftr(rr3->dev, "Exiting %s\n", __func__); } static void redrat3_read_packet_start(struct redrat3_dev *rr3, unsigned len) { struct redrat3_header *header = rr3->bulk_in_buf; unsigned pktlen, pkttype; rr3_ftr(rr3->dev, "Entering %s\n", __func__); /* grab the Length and type of transfer */ pktlen = be16_to_cpu(header->length); pkttype = be16_to_cpu(header->transfer_type); if (pktlen > sizeof(rr3->irdata)) { dev_warn(rr3->dev, "packet length %u too large\n", pktlen); return; } switch (pkttype) { case RR3_ERROR: if (len >= sizeof(struct redrat3_error)) { struct redrat3_error *error = rr3->bulk_in_buf; unsigned fw_error = be16_to_cpu(error->fw_error); redrat3_dump_fw_error(rr3, fw_error); } break; case RR3_MOD_SIGNAL_IN: memcpy(&rr3->irdata, rr3->bulk_in_buf, len); rr3->bytes_read = len; rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read, pktlen); break; default: rr3_dbg(rr3->dev, "ignoring packet with type 0x%02x, len of %d, 0x%02x\n", pkttype, len, pktlen); break; } } static void redrat3_read_packet_continue(struct redrat3_dev *rr3, unsigned len) { void *irdata = &rr3->irdata; rr3_ftr(rr3->dev, "Entering %s\n", __func__); if (len + rr3->bytes_read > sizeof(rr3->irdata)) { dev_warn(rr3->dev, "too much data for packet\n"); rr3->bytes_read = 0; return; } memcpy(irdata + rr3->bytes_read, rr3->bulk_in_buf, len); rr3->bytes_read += len; rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read, be16_to_cpu(rr3->irdata.header.length)); } /* gather IR data from incoming urb, process it when we have enough */ static int redrat3_get_ir_data(struct redrat3_dev *rr3, unsigned len) { struct device *dev = rr3->dev; unsigned pkttype; int ret = 0; rr3_ftr(dev, "Entering %s\n", __func__); if (rr3->bytes_read == 0 && len >= sizeof(struct redrat3_header)) { redrat3_read_packet_start(rr3, len); } else if (rr3->bytes_read != 0) { redrat3_read_packet_continue(rr3, len); } else if (rr3->bytes_read == 0) { dev_err(dev, "error: no packet data read\n"); ret = -ENODATA; goto out; } if (rr3->bytes_read < be16_to_cpu(rr3->irdata.header.length)) /* we're still accumulating data */ return 0; /* if we get here, we've got IR data to decode */ pkttype = be16_to_cpu(rr3->irdata.header.transfer_type); if (pkttype == RR3_MOD_SIGNAL_IN) redrat3_process_ir_data(rr3); else rr3_dbg(dev, "discarding non-signal data packet (type 0x%02x)\n", pkttype); out: rr3->bytes_read = 0; return ret; } /* callback function from USB when async USB request has completed */ static void redrat3_handle_async(struct urb *urb) { struct redrat3_dev *rr3; int ret; if (!urb) return; rr3 = urb->context; if (!rr3) { pr_err("%s called with invalid context!\n", __func__); usb_unlink_urb(urb); return; } rr3_ftr(rr3->dev, "Entering %s\n", __func__); switch (urb->status) { case 0: ret = redrat3_get_ir_data(rr3, urb->actual_length); if (!ret) { /* no error, prepare to read more */ redrat3_issue_async(rr3); } break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: usb_unlink_urb(urb); return; case -EPIPE: default: dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status); rr3->bytes_read = 0; break; } } static u16 mod_freq_to_val(unsigned int mod_freq) { int mult = 6000000; /* Clk used in mod. freq. generation is CLK24/4. */ return 65536 - (mult / mod_freq); } static int redrat3_set_tx_carrier(struct rc_dev *rcdev, u32 carrier) { struct redrat3_dev *rr3 = rcdev->priv; struct device *dev = rr3->dev; rr3_dbg(dev, "Setting modulation frequency to %u", carrier); if (carrier == 0) return -EINVAL; rr3->carrier = carrier; return carrier; } static int redrat3_transmit_ir(struct rc_dev *rcdev, unsigned *txbuf, unsigned count) { struct redrat3_dev *rr3 = rcdev->priv; struct device *dev = rr3->dev; struct redrat3_irdata *irdata = NULL; int ret, ret_len; int lencheck, cur_sample_len, pipe; int *sample_lens = NULL; u8 curlencheck = 0; unsigned i, sendbuf_len; rr3_ftr(dev, "Entering %s\n", __func__); if (rr3->transmitting) { dev_warn(dev, "%s: transmitter already in use\n", __func__); return -EAGAIN; } if (count > RR3_MAX_SIG_SIZE - RR3_TX_TRAILER_LEN) return -EINVAL; /* rr3 will disable rc detector on transmit */ rr3->transmitting = true; sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL); if (!sample_lens) { ret = -ENOMEM; goto out; } irdata = kzalloc(sizeof(*irdata), GFP_KERNEL); if (!irdata) { ret = -ENOMEM; goto out; } for (i = 0; i < count; i++) { cur_sample_len = redrat3_us_to_len(txbuf[i]); if (cur_sample_len > 0xffff) { dev_warn(dev, "transmit period of %uus truncated to %uus\n", txbuf[i], redrat3_len_to_us(0xffff)); cur_sample_len = 0xffff; } for (lencheck = 0; lencheck < curlencheck; lencheck++) { if (sample_lens[lencheck] == cur_sample_len) break; } if (lencheck == curlencheck) { rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n", i, txbuf[i], curlencheck, cur_sample_len); if (curlencheck < RR3_DRIVER_MAXLENS) { /* now convert the value to a proper * rr3 value.. */ sample_lens[curlencheck] = cur_sample_len; put_unaligned_be16(cur_sample_len, &irdata->lens[curlencheck]); curlencheck++; } else { ret = -EINVAL; goto out; } } irdata->sigdata[i] = lencheck; } irdata->sigdata[count] = RR3_END_OF_SIGNAL; irdata->sigdata[count + 1] = RR3_END_OF_SIGNAL; sendbuf_len = offsetof(struct redrat3_irdata, sigdata[count + RR3_TX_TRAILER_LEN]); /* fill in our packet header */ irdata->header.length = cpu_to_be16(sendbuf_len - sizeof(struct redrat3_header)); irdata->header.transfer_type = cpu_to_be16(RR3_MOD_SIGNAL_OUT); irdata->pause = cpu_to_be32(redrat3_len_to_us(100)); irdata->mod_freq_count = cpu_to_be16(mod_freq_to_val(rr3->carrier)); irdata->no_lengths = curlencheck; irdata->sig_size = cpu_to_be16(count + RR3_TX_TRAILER_LEN); pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress); ret = usb_bulk_msg(rr3->udev, pipe, irdata, sendbuf_len, &ret_len, 10 * HZ); rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, ret); /* now tell the hardware to transmit what we sent it */ pipe = usb_rcvctrlpipe(rr3->udev, 0); ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0, 0, irdata, 2, HZ * 10); if (ret < 0) dev_err(dev, "Error: control msg send failed, rc %d\n", ret); else ret = count; out: kfree(sample_lens); kfree(irdata); rr3->transmitting = false; /* rr3 re-enables rc detector because it was enabled before */ return ret; } static struct rc_dev *redrat3_init_rc_dev(struct redrat3_dev *rr3) { struct device *dev = rr3->dev; struct rc_dev *rc; int ret = -ENODEV; u16 prod = le16_to_cpu(rr3->udev->descriptor.idProduct); rc = rc_allocate_device(); if (!rc) { dev_err(dev, "remote input dev allocation failed\n"); goto out; } snprintf(rr3->name, sizeof(rr3->name), "RedRat3%s " "Infrared Remote Transceiver (%04x:%04x)", prod == USB_RR3IIUSB_PRODUCT_ID ? "-II" : "", le16_to_cpu(rr3->udev->descriptor.idVendor), prod); usb_make_path(rr3->udev, rr3->phys, sizeof(rr3->phys)); rc->input_name = rr3->name; rc->input_phys = rr3->phys; usb_to_input_id(rr3->udev, &rc->input_id); rc->dev.parent = dev; rc->priv = rr3; rc->driver_type = RC_DRIVER_IR_RAW; rc->allowed_protos = RC_BIT_ALL; rc->timeout = US_TO_NS(2750); rc->tx_ir = redrat3_transmit_ir; rc->s_tx_carrier = redrat3_set_tx_carrier; rc->driver_name = DRIVER_NAME; rc->rx_resolution = US_TO_NS(2); rc->map_name = RC_MAP_HAUPPAUGE; ret = rc_register_device(rc); if (ret < 0) { dev_err(dev, "remote dev registration failed\n"); goto out; } return rc; out: rc_free_device(rc); return NULL; } static int redrat3_dev_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct device *dev = &intf->dev; struct usb_host_interface *uhi; struct redrat3_dev *rr3; struct usb_endpoint_descriptor *ep; struct usb_endpoint_descriptor *ep_in = NULL; struct usb_endpoint_descriptor *ep_out = NULL; u8 addr, attrs; int pipe, i; int retval = -ENOMEM; rr3_ftr(dev, "%s called\n", __func__); uhi = intf->cur_altsetting; /* find our bulk-in and bulk-out endpoints */ for (i = 0; i < uhi->desc.bNumEndpoints; ++i) { ep = &uhi->endpoint[i].desc; addr = ep->bEndpointAddress; attrs = ep->bmAttributes; if ((ep_in == NULL) && ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { rr3_dbg(dev, "found bulk-in endpoint at 0x%02x\n", ep->bEndpointAddress); /* data comes in on 0x82, 0x81 is for other data... */ if (ep->bEndpointAddress == RR3_BULK_IN_EP_ADDR) ep_in = ep; } if ((ep_out == NULL) && ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { rr3_dbg(dev, "found bulk-out endpoint at 0x%02x\n", ep->bEndpointAddress); ep_out = ep; } } if (!ep_in || !ep_out) { dev_err(dev, "Couldn't find both in and out endpoints\n"); retval = -ENODEV; goto no_endpoints; } /* allocate memory for our device state and initialize it */ rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL); if (rr3 == NULL) { dev_err(dev, "Memory allocation failure\n"); goto no_endpoints; } rr3->dev = &intf->dev; /* set up bulk-in endpoint */ rr3->read_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->read_urb) { dev_err(dev, "Read urb allocation failure\n"); goto error; } rr3->ep_in = ep_in; rr3->bulk_in_buf = usb_alloc_coherent(udev, le16_to_cpu(ep_in->wMaxPacketSize), GFP_ATOMIC, &rr3->dma_in); if (!rr3->bulk_in_buf) { dev_err(dev, "Read buffer allocation failure\n"); goto error; } pipe = usb_rcvbulkpipe(udev, ep_in->bEndpointAddress); usb_fill_bulk_urb(rr3->read_urb, udev, pipe, rr3->bulk_in_buf, le16_to_cpu(ep_in->wMaxPacketSize), redrat3_handle_async, rr3); rr3->ep_out = ep_out; rr3->udev = udev; redrat3_reset(rr3); redrat3_get_firmware_rev(rr3); /* might be all we need to do? */ retval = redrat3_enable_detector(rr3); if (retval < 0) goto error; /* store current hardware timeout, in us, will use for kfifo resets */ rr3->hw_timeout = redrat3_get_timeout(rr3); /* default.. will get overridden by any sends with a freq defined */ rr3->carrier = 38000; rr3->rc = redrat3_init_rc_dev(rr3); if (!rr3->rc) { retval = -ENOMEM; goto error; } setup_timer(&rr3->rx_timeout, redrat3_rx_timeout, (unsigned long)rr3); /* we can register the device now, as it is ready */ usb_set_intfdata(intf, rr3); rr3_ftr(dev, "Exiting %s\n", __func__); return 0; error: redrat3_delete(rr3, rr3->udev); no_endpoints: dev_err(dev, "%s: retval = %x", __func__, retval); return retval; } static void redrat3_dev_disconnect(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(&intf->dev, "Entering %s\n", __func__); if (!rr3) return; usb_set_intfdata(intf, NULL); rc_unregister_device(rr3->rc); del_timer_sync(&rr3->rx_timeout); redrat3_delete(rr3, udev); rr3_ftr(&intf->dev, "RedRat3 IR Transceiver now disconnected\n"); } static int redrat3_dev_suspend(struct usb_interface *intf, pm_message_t message) { struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(rr3->dev, "suspend\n"); usb_kill_urb(rr3->read_urb); return 0; } static int redrat3_dev_resume(struct usb_interface *intf) { struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(rr3->dev, "resume\n"); if (usb_submit_urb(rr3->read_urb, GFP_ATOMIC)) return -EIO; return 0; } static struct usb_driver redrat3_dev_driver = { .name = DRIVER_NAME, .probe = redrat3_dev_probe, .disconnect = redrat3_dev_disconnect, .suspend = redrat3_dev_suspend, .resume = redrat3_dev_resume, .reset_resume = redrat3_dev_resume, .id_table = redrat3_dev_table }; module_usb_driver(redrat3_dev_driver); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_AUTHOR(DRIVER_AUTHOR2); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, redrat3_dev_table); module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Enable module debug spew. 0 = no debugging (default) " "0x1 = standard debug messages, 0x2 = function tracing debug. " "Flag bits are addative (i.e., 0x3 for both debug types).");