/* * Copyright (c) 2016 Linaro Ltd. * Copyright (c) 2016 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include "hisi_sas.h" #define DRV_NAME "hisi_sas_v2_hw" /* global registers need init*/ #define DLVRY_QUEUE_ENABLE 0x0 #define IOST_BASE_ADDR_LO 0x8 #define IOST_BASE_ADDR_HI 0xc #define ITCT_BASE_ADDR_LO 0x10 #define ITCT_BASE_ADDR_HI 0x14 #define IO_BROKEN_MSG_ADDR_LO 0x18 #define IO_BROKEN_MSG_ADDR_HI 0x1c #define PHY_CONTEXT 0x20 #define PHY_STATE 0x24 #define PHY_PORT_NUM_MA 0x28 #define PORT_STATE 0x2c #define PORT_STATE_PHY8_PORT_NUM_OFF 16 #define PORT_STATE_PHY8_PORT_NUM_MSK (0xf << PORT_STATE_PHY8_PORT_NUM_OFF) #define PORT_STATE_PHY8_CONN_RATE_OFF 20 #define PORT_STATE_PHY8_CONN_RATE_MSK (0xf << PORT_STATE_PHY8_CONN_RATE_OFF) #define PHY_CONN_RATE 0x30 #define HGC_TRANS_TASK_CNT_LIMIT 0x38 #define AXI_AHB_CLK_CFG 0x3c #define ITCT_CLR 0x44 #define ITCT_CLR_EN_OFF 16 #define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF) #define ITCT_DEV_OFF 0 #define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF) #define AXI_USER1 0x48 #define AXI_USER2 0x4c #define IO_SATA_BROKEN_MSG_ADDR_LO 0x58 #define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c #define SATA_INITI_D2H_STORE_ADDR_LO 0x60 #define SATA_INITI_D2H_STORE_ADDR_HI 0x64 #define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84 #define HGC_SAS_TXFAIL_RETRY_CTRL 0x88 #define HGC_GET_ITV_TIME 0x90 #define DEVICE_MSG_WORK_MODE 0x94 #define OPENA_WT_CONTI_TIME 0x9c #define I_T_NEXUS_LOSS_TIME 0xa0 #define MAX_CON_TIME_LIMIT_TIME 0xa4 #define BUS_INACTIVE_LIMIT_TIME 0xa8 #define REJECT_TO_OPEN_LIMIT_TIME 0xac #define CFG_AGING_TIME 0xbc #define HGC_DFX_CFG2 0xc0 #define HGC_IOMB_PROC1_STATUS 0x104 #define CFG_1US_TIMER_TRSH 0xcc #define HGC_LM_DFX_STATUS2 0x128 #define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0 #define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \ HGC_LM_DFX_STATUS2_IOSTLIST_OFF) #define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12 #define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \ HGC_LM_DFX_STATUS2_ITCTLIST_OFF) #define HGC_CQE_ECC_ADDR 0x13c #define HGC_CQE_ECC_1B_ADDR_OFF 0 #define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF) #define HGC_CQE_ECC_MB_ADDR_OFF 8 #define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF) #define HGC_IOST_ECC_ADDR 0x140 #define HGC_IOST_ECC_1B_ADDR_OFF 0 #define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF) #define HGC_IOST_ECC_MB_ADDR_OFF 16 #define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF) #define HGC_DQE_ECC_ADDR 0x144 #define HGC_DQE_ECC_1B_ADDR_OFF 0 #define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF) #define HGC_DQE_ECC_MB_ADDR_OFF 16 #define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF) #define HGC_INVLD_DQE_INFO 0x148 #define HGC_INVLD_DQE_INFO_FB_CH0_OFF 9 #define HGC_INVLD_DQE_INFO_FB_CH0_MSK (0x1 << HGC_INVLD_DQE_INFO_FB_CH0_OFF) #define HGC_INVLD_DQE_INFO_FB_CH3_OFF 18 #define HGC_ITCT_ECC_ADDR 0x150 #define HGC_ITCT_ECC_1B_ADDR_OFF 0 #define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \ HGC_ITCT_ECC_1B_ADDR_OFF) #define HGC_ITCT_ECC_MB_ADDR_OFF 16 #define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \ HGC_ITCT_ECC_MB_ADDR_OFF) #define HGC_AXI_FIFO_ERR_INFO 0x154 #define AXI_ERR_INFO_OFF 0 #define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF) #define FIFO_ERR_INFO_OFF 8 #define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF) #define INT_COAL_EN 0x19c #define OQ_INT_COAL_TIME 0x1a0 #define OQ_INT_COAL_CNT 0x1a4 #define ENT_INT_COAL_TIME 0x1a8 #define ENT_INT_COAL_CNT 0x1ac #define OQ_INT_SRC 0x1b0 #define OQ_INT_SRC_MSK 0x1b4 #define ENT_INT_SRC1 0x1b8 #define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0 #define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF) #define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8 #define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF) #define ENT_INT_SRC2 0x1bc #define ENT_INT_SRC3 0x1c0 #define ENT_INT_SRC3_WP_DEPTH_OFF 8 #define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9 #define ENT_INT_SRC3_RP_DEPTH_OFF 10 #define ENT_INT_SRC3_AXI_OFF 11 #define ENT_INT_SRC3_FIFO_OFF 12 #define ENT_INT_SRC3_LM_OFF 14 #define ENT_INT_SRC3_ITC_INT_OFF 15 #define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF) #define ENT_INT_SRC3_ABT_OFF 16 #define ENT_INT_SRC_MSK1 0x1c4 #define ENT_INT_SRC_MSK2 0x1c8 #define ENT_INT_SRC_MSK3 0x1cc #define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31 #define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF) #define SAS_ECC_INTR 0x1e8 #define SAS_ECC_INTR_DQE_ECC_1B_OFF 0 #define SAS_ECC_INTR_DQE_ECC_MB_OFF 1 #define SAS_ECC_INTR_IOST_ECC_1B_OFF 2 #define SAS_ECC_INTR_IOST_ECC_MB_OFF 3 #define SAS_ECC_INTR_ITCT_ECC_MB_OFF 4 #define SAS_ECC_INTR_ITCT_ECC_1B_OFF 5 #define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 6 #define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 7 #define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 8 #define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 9 #define SAS_ECC_INTR_CQE_ECC_1B_OFF 10 #define SAS_ECC_INTR_CQE_ECC_MB_OFF 11 #define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 12 #define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 13 #define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 14 #define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 15 #define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 16 #define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 17 #define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 18 #define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 19 #define SAS_ECC_INTR_MSK 0x1ec #define HGC_ERR_STAT_EN 0x238 #define DLVRY_Q_0_BASE_ADDR_LO 0x260 #define DLVRY_Q_0_BASE_ADDR_HI 0x264 #define DLVRY_Q_0_DEPTH 0x268 #define DLVRY_Q_0_WR_PTR 0x26c #define DLVRY_Q_0_RD_PTR 0x270 #define HYPER_STREAM_ID_EN_CFG 0xc80 #define OQ0_INT_SRC_MSK 0xc90 #define COMPL_Q_0_BASE_ADDR_LO 0x4e0 #define COMPL_Q_0_BASE_ADDR_HI 0x4e4 #define COMPL_Q_0_DEPTH 0x4e8 #define COMPL_Q_0_WR_PTR 0x4ec #define COMPL_Q_0_RD_PTR 0x4f0 #define HGC_RXM_DFX_STATUS14 0xae8 #define HGC_RXM_DFX_STATUS14_MEM0_OFF 0 #define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM0_OFF) #define HGC_RXM_DFX_STATUS14_MEM1_OFF 9 #define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM1_OFF) #define HGC_RXM_DFX_STATUS14_MEM2_OFF 18 #define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM2_OFF) #define HGC_RXM_DFX_STATUS15 0xaec #define HGC_RXM_DFX_STATUS15_MEM3_OFF 0 #define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \ HGC_RXM_DFX_STATUS15_MEM3_OFF) /* phy registers need init */ #define PORT_BASE (0x2000) #define PHY_CFG (PORT_BASE + 0x0) #define HARD_PHY_LINKRATE (PORT_BASE + 0x4) #define PHY_CFG_ENA_OFF 0 #define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF) #define PHY_CFG_DC_OPT_OFF 2 #define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF) #define PROG_PHY_LINK_RATE (PORT_BASE + 0x8) #define PROG_PHY_LINK_RATE_MAX_OFF 0 #define PROG_PHY_LINK_RATE_MAX_MSK (0xff << PROG_PHY_LINK_RATE_MAX_OFF) #define PHY_CTRL (PORT_BASE + 0x14) #define PHY_CTRL_RESET_OFF 0 #define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF) #define SAS_PHY_CTRL (PORT_BASE + 0x20) #define SL_CFG (PORT_BASE + 0x84) #define PHY_PCN (PORT_BASE + 0x44) #define SL_TOUT_CFG (PORT_BASE + 0x8c) #define SL_CONTROL (PORT_BASE + 0x94) #define SL_CONTROL_NOTIFY_EN_OFF 0 #define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF) #define SL_CONTROL_CTA_OFF 17 #define SL_CONTROL_CTA_MSK (0x1 << SL_CONTROL_CTA_OFF) #define RX_PRIMS_STATUS (PORT_BASE + 0x98) #define RX_BCAST_CHG_OFF 1 #define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF) #define TX_ID_DWORD0 (PORT_BASE + 0x9c) #define TX_ID_DWORD1 (PORT_BASE + 0xa0) #define TX_ID_DWORD2 (PORT_BASE + 0xa4) #define TX_ID_DWORD3 (PORT_BASE + 0xa8) #define TX_ID_DWORD4 (PORT_BASE + 0xaC) #define TX_ID_DWORD5 (PORT_BASE + 0xb0) #define TX_ID_DWORD6 (PORT_BASE + 0xb4) #define TXID_AUTO (PORT_BASE + 0xb8) #define TXID_AUTO_CT3_OFF 1 #define TXID_AUTO_CT3_MSK (0x1 << TXID_AUTO_CT3_OFF) #define TXID_AUTO_CTB_OFF 11 #define TXID_AUTO_CTB_MSK (0x1 << TXID_AUTO_CTB_OFF) #define TX_HARDRST_OFF 2 #define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF) #define RX_IDAF_DWORD0 (PORT_BASE + 0xc4) #define RX_IDAF_DWORD1 (PORT_BASE + 0xc8) #define RX_IDAF_DWORD2 (PORT_BASE + 0xcc) #define RX_IDAF_DWORD3 (PORT_BASE + 0xd0) #define RX_IDAF_DWORD4 (PORT_BASE + 0xd4) #define RX_IDAF_DWORD5 (PORT_BASE + 0xd8) #define RX_IDAF_DWORD6 (PORT_BASE + 0xdc) #define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc) #define CON_CONTROL (PORT_BASE + 0x118) #define CON_CONTROL_CFG_OPEN_ACC_STP_OFF 0 #define CON_CONTROL_CFG_OPEN_ACC_STP_MSK \ (0x01 << CON_CONTROL_CFG_OPEN_ACC_STP_OFF) #define DONE_RECEIVED_TIME (PORT_BASE + 0x11c) #define CHL_INT0 (PORT_BASE + 0x1b4) #define CHL_INT0_HOTPLUG_TOUT_OFF 0 #define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF) #define CHL_INT0_SL_RX_BCST_ACK_OFF 1 #define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF) #define CHL_INT0_SL_PHY_ENABLE_OFF 2 #define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF) #define CHL_INT0_NOT_RDY_OFF 4 #define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF) #define CHL_INT0_PHY_RDY_OFF 5 #define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF) #define CHL_INT1 (PORT_BASE + 0x1b8) #define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15 #define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF) #define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17 #define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF) #define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19 #define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20 #define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21 #define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22 #define CHL_INT2 (PORT_BASE + 0x1bc) #define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0 #define CHL_INT0_MSK (PORT_BASE + 0x1c0) #define CHL_INT1_MSK (PORT_BASE + 0x1c4) #define CHL_INT2_MSK (PORT_BASE + 0x1c8) #define CHL_INT_COAL_EN (PORT_BASE + 0x1d0) #define DMA_TX_DFX0 (PORT_BASE + 0x200) #define DMA_TX_DFX1 (PORT_BASE + 0x204) #define DMA_TX_DFX1_IPTT_OFF 0 #define DMA_TX_DFX1_IPTT_MSK (0xffff << DMA_TX_DFX1_IPTT_OFF) #define DMA_TX_FIFO_DFX0 (PORT_BASE + 0x240) #define PORT_DFX0 (PORT_BASE + 0x258) #define LINK_DFX2 (PORT_BASE + 0X264) #define LINK_DFX2_RCVR_HOLD_STS_OFF 9 #define LINK_DFX2_RCVR_HOLD_STS_MSK (0x1 << LINK_DFX2_RCVR_HOLD_STS_OFF) #define LINK_DFX2_SEND_HOLD_STS_OFF 10 #define LINK_DFX2_SEND_HOLD_STS_MSK (0x1 << LINK_DFX2_SEND_HOLD_STS_OFF) #define SAS_ERR_CNT4_REG (PORT_BASE + 0x290) #define SAS_ERR_CNT6_REG (PORT_BASE + 0x298) #define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0) #define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4) #define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8) #define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc) #define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0) #define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4) #define DMA_TX_STATUS (PORT_BASE + 0x2d0) #define DMA_TX_STATUS_BUSY_OFF 0 #define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF) #define DMA_RX_STATUS (PORT_BASE + 0x2e8) #define DMA_RX_STATUS_BUSY_OFF 0 #define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF) #define AXI_CFG (0x5100) #define AM_CFG_MAX_TRANS (0x5010) #define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014) #define AXI_MASTER_CFG_BASE (0x5000) #define AM_CTRL_GLOBAL (0x0) #define AM_CURR_TRANS_RETURN (0x150) /* HW dma structures */ /* Delivery queue header */ /* dw0 */ #define CMD_HDR_ABORT_FLAG_OFF 0 #define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF) #define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2 #define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF) #define CMD_HDR_RESP_REPORT_OFF 5 #define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF) #define CMD_HDR_TLR_CTRL_OFF 6 #define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF) #define CMD_HDR_PORT_OFF 18 #define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF) #define CMD_HDR_PRIORITY_OFF 27 #define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF) #define CMD_HDR_CMD_OFF 29 #define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF) /* dw1 */ #define CMD_HDR_DIR_OFF 5 #define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF) #define CMD_HDR_RESET_OFF 7 #define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF) #define CMD_HDR_VDTL_OFF 10 #define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF) #define CMD_HDR_FRAME_TYPE_OFF 11 #define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF) #define CMD_HDR_DEV_ID_OFF 16 #define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF) /* dw2 */ #define CMD_HDR_CFL_OFF 0 #define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF) #define CMD_HDR_NCQ_TAG_OFF 10 #define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF) #define CMD_HDR_MRFL_OFF 15 #define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF) #define CMD_HDR_SG_MOD_OFF 24 #define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF) #define CMD_HDR_FIRST_BURST_OFF 26 #define CMD_HDR_FIRST_BURST_MSK (0x1 << CMD_HDR_SG_MOD_OFF) /* dw3 */ #define CMD_HDR_IPTT_OFF 0 #define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF) /* dw6 */ #define CMD_HDR_DIF_SGL_LEN_OFF 0 #define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF) #define CMD_HDR_DATA_SGL_LEN_OFF 16 #define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF) #define CMD_HDR_ABORT_IPTT_OFF 16 #define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF) /* Completion header */ /* dw0 */ #define CMPLT_HDR_ERR_PHASE_OFF 2 #define CMPLT_HDR_ERR_PHASE_MSK (0xff << CMPLT_HDR_ERR_PHASE_OFF) #define CMPLT_HDR_RSPNS_XFRD_OFF 10 #define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF) #define CMPLT_HDR_ERX_OFF 12 #define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF) #define CMPLT_HDR_ABORT_STAT_OFF 13 #define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF) /* abort_stat */ #define STAT_IO_NOT_VALID 0x1 #define STAT_IO_NO_DEVICE 0x2 #define STAT_IO_COMPLETE 0x3 #define STAT_IO_ABORTED 0x4 /* dw1 */ #define CMPLT_HDR_IPTT_OFF 0 #define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF) #define CMPLT_HDR_DEV_ID_OFF 16 #define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF) /* ITCT header */ /* qw0 */ #define ITCT_HDR_DEV_TYPE_OFF 0 #define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF) #define ITCT_HDR_VALID_OFF 2 #define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF) #define ITCT_HDR_MCR_OFF 5 #define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF) #define ITCT_HDR_VLN_OFF 9 #define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF) #define ITCT_HDR_SMP_TIMEOUT_OFF 16 #define ITCT_HDR_SMP_TIMEOUT_8US 1 #define ITCT_HDR_SMP_TIMEOUT (ITCT_HDR_SMP_TIMEOUT_8US * \ 250) /* 2ms */ #define ITCT_HDR_AWT_CONTINUE_OFF 25 #define ITCT_HDR_PORT_ID_OFF 28 #define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF) /* qw2 */ #define ITCT_HDR_INLT_OFF 0 #define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF) #define ITCT_HDR_BITLT_OFF 16 #define ITCT_HDR_BITLT_MSK (0xffffULL << ITCT_HDR_BITLT_OFF) #define ITCT_HDR_MCTLT_OFF 32 #define ITCT_HDR_MCTLT_MSK (0xffffULL << ITCT_HDR_MCTLT_OFF) #define ITCT_HDR_RTOLT_OFF 48 #define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF) #define HISI_SAS_FATAL_INT_NR 2 struct hisi_sas_complete_v2_hdr { __le32 dw0; __le32 dw1; __le32 act; __le32 dw3; }; struct hisi_sas_err_record_v2 { /* dw0 */ __le32 trans_tx_fail_type; /* dw1 */ __le32 trans_rx_fail_type; /* dw2 */ __le16 dma_tx_err_type; __le16 sipc_rx_err_type; /* dw3 */ __le32 dma_rx_err_type; }; struct signal_attenuation_s { u32 de_emphasis; u32 preshoot; u32 boost; }; struct sig_atten_lu_s { const struct signal_attenuation_s *att; u32 sas_phy_ctrl; }; static const struct hisi_sas_hw_error one_bit_ecc_errors[] = { { .irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_1B_OFF), .msk = HGC_DQE_ECC_1B_ADDR_MSK, .shift = HGC_DQE_ECC_1B_ADDR_OFF, .msg = "hgc_dqe_acc1b_intr found: Ram address is 0x%08X\n", .reg = HGC_DQE_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_1B_OFF), .msk = HGC_IOST_ECC_1B_ADDR_MSK, .shift = HGC_IOST_ECC_1B_ADDR_OFF, .msg = "hgc_iost_acc1b_intr found: Ram address is 0x%08X\n", .reg = HGC_IOST_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_1B_OFF), .msk = HGC_ITCT_ECC_1B_ADDR_MSK, .shift = HGC_ITCT_ECC_1B_ADDR_OFF, .msg = "hgc_itct_acc1b_intr found: am address is 0x%08X\n", .reg = HGC_ITCT_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF), .msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK, .shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF, .msg = "hgc_iostl_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_LM_DFX_STATUS2, }, { .irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF), .msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK, .shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF, .msg = "hgc_itctl_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_LM_DFX_STATUS2, }, { .irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_1B_OFF), .msk = HGC_CQE_ECC_1B_ADDR_MSK, .shift = HGC_CQE_ECC_1B_ADDR_OFF, .msg = "hgc_cqe_acc1b_intr found: Ram address is 0x%08X\n", .reg = HGC_CQE_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM0_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM0_OFF, .msg = "rxm_mem0_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM1_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM1_OFF, .msg = "rxm_mem1_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM2_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM2_OFF, .msg = "rxm_mem2_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF), .msk = HGC_RXM_DFX_STATUS15_MEM3_MSK, .shift = HGC_RXM_DFX_STATUS15_MEM3_OFF, .msg = "rxm_mem3_acc1b_intr found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS15, }, }; static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = { { .irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF), .msk = HGC_DQE_ECC_MB_ADDR_MSK, .shift = HGC_DQE_ECC_MB_ADDR_OFF, .msg = "hgc_dqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n", .reg = HGC_DQE_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF), .msk = HGC_IOST_ECC_MB_ADDR_MSK, .shift = HGC_IOST_ECC_MB_ADDR_OFF, .msg = "hgc_iost_accbad_intr (0x%x) found: Ram address is 0x%08X\n", .reg = HGC_IOST_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF), .msk = HGC_ITCT_ECC_MB_ADDR_MSK, .shift = HGC_ITCT_ECC_MB_ADDR_OFF, .msg = "hgc_itct_accbad_intr (0x%x) found: Ram address is 0x%08X\n", .reg = HGC_ITCT_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF), .msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK, .shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF, .msg = "hgc_iostl_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_LM_DFX_STATUS2, }, { .irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF), .msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK, .shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF, .msg = "hgc_itctl_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_LM_DFX_STATUS2, }, { .irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF), .msk = HGC_CQE_ECC_MB_ADDR_MSK, .shift = HGC_CQE_ECC_MB_ADDR_OFF, .msg = "hgc_cqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n", .reg = HGC_CQE_ECC_ADDR, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM0_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM0_OFF, .msg = "rxm_mem0_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM1_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM1_OFF, .msg = "rxm_mem1_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF), .msk = HGC_RXM_DFX_STATUS14_MEM2_MSK, .shift = HGC_RXM_DFX_STATUS14_MEM2_OFF, .msg = "rxm_mem2_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS14, }, { .irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF), .msk = HGC_RXM_DFX_STATUS15_MEM3_MSK, .shift = HGC_RXM_DFX_STATUS15_MEM3_OFF, .msg = "rxm_mem3_accbad_intr (0x%x) found: memory address is 0x%08X\n", .reg = HGC_RXM_DFX_STATUS15, }, }; enum { HISI_SAS_PHY_PHY_UPDOWN, HISI_SAS_PHY_CHNL_INT, HISI_SAS_PHY_INT_NR }; enum { TRANS_TX_FAIL_BASE = 0x0, /* dw0 */ TRANS_RX_FAIL_BASE = 0x20, /* dw1 */ DMA_TX_ERR_BASE = 0x40, /* dw2 bit 15-0 */ SIPC_RX_ERR_BASE = 0x50, /* dw2 bit 31-16*/ DMA_RX_ERR_BASE = 0x60, /* dw3 */ /* trans tx*/ TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS = TRANS_TX_FAIL_BASE, /* 0x0 */ TRANS_TX_ERR_PHY_NOT_ENABLE, /* 0x1 */ TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, /* 0x2 */ TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, /* 0x3 */ TRANS_TX_OPEN_CNX_ERR_BY_OTHER, /* 0x4 */ RESERVED0, /* 0x5 */ TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, /* 0x6 */ TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, /* 0x7 */ TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, /* 0x8 */ TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, /* 0x9 */ TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, /* 0xa */ TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, /* 0xb */ TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, /* 0xc */ TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, /* 0xd */ TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, /* 0xe */ TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, /* 0xf */ TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, /* 0x10 */ TRANS_TX_ERR_FRAME_TXED, /* 0x11 */ TRANS_TX_ERR_WITH_BREAK_TIMEOUT, /* 0x12 */ TRANS_TX_ERR_WITH_BREAK_REQUEST, /* 0x13 */ TRANS_TX_ERR_WITH_BREAK_RECEVIED, /* 0x14 */ TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, /* 0x15 */ TRANS_TX_ERR_WITH_CLOSE_NORMAL, /* 0x16 for ssp*/ TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, /* 0x17 */ TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x18 */ TRANS_TX_ERR_WITH_CLOSE_COMINIT, /* 0x19 */ TRANS_TX_ERR_WITH_NAK_RECEVIED, /* 0x1a for ssp*/ TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, /* 0x1b for ssp*/ /*IO_TX_ERR_WITH_R_ERR_RECEVIED, [> 0x1b for sata/stp<] */ TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, /* 0x1c for ssp */ /*IO_RX_ERR_WITH_SATA_DEVICE_LOST 0x1c for sata/stp */ TRANS_TX_ERR_WITH_IPTT_CONFLICT, /* 0x1d for ssp/smp */ TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, /* 0x1e */ /*IO_TX_ERR_WITH_SYNC_RXD, [> 0x1e <] for sata/stp */ TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, /* 0x1f for sata/stp */ /* trans rx */ TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x20 */ TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, /* 0x21 for sata/stp */ TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, /* 0x22 for ssp/smp */ /*IO_ERR_WITH_RXFIS_8B10B_CODE_ERR, [> 0x22 <] for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, /* 0x23 for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, /* 0x24 for sata/stp */ TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, /* 0x25 for smp */ /*IO_ERR_WITH_RXFIS_TX SYNCP, [> 0x25 <] for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, /* 0x26 for sata/stp*/ TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, /* 0x27 */ TRANS_RX_ERR_WITH_BREAK_TIMEOUT, /* 0x28 */ TRANS_RX_ERR_WITH_BREAK_REQUEST, /* 0x29 */ TRANS_RX_ERR_WITH_BREAK_RECEVIED, /* 0x2a */ RESERVED1, /* 0x2b */ TRANS_RX_ERR_WITH_CLOSE_NORMAL, /* 0x2c */ TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, /* 0x2d */ TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x2e */ TRANS_RX_ERR_WITH_CLOSE_COMINIT, /* 0x2f */ TRANS_RX_ERR_WITH_DATA_LEN0, /* 0x30 for ssp/smp */ TRANS_RX_ERR_WITH_BAD_HASH, /* 0x31 for ssp */ /*IO_RX_ERR_WITH_FIS_TOO_SHORT, [> 0x31 <] for sata/stp */ TRANS_RX_XRDY_WLEN_ZERO_ERR, /* 0x32 for ssp*/ /*IO_RX_ERR_WITH_FIS_TOO_LONG, [> 0x32 <] for sata/stp */ TRANS_RX_SSP_FRM_LEN_ERR, /* 0x33 for ssp */ /*IO_RX_ERR_WITH_SATA_DEVICE_LOST, [> 0x33 <] for sata */ RESERVED2, /* 0x34 */ RESERVED3, /* 0x35 */ RESERVED4, /* 0x36 */ RESERVED5, /* 0x37 */ TRANS_RX_ERR_WITH_BAD_FRM_TYPE, /* 0x38 */ TRANS_RX_SMP_FRM_LEN_ERR, /* 0x39 */ TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x3a */ RESERVED6, /* 0x3b */ RESERVED7, /* 0x3c */ RESERVED8, /* 0x3d */ RESERVED9, /* 0x3e */ TRANS_RX_R_ERR, /* 0x3f */ /* dma tx */ DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x40 */ DMA_TX_DIF_APP_ERR, /* 0x41 */ DMA_TX_DIF_RPP_ERR, /* 0x42 */ DMA_TX_DATA_SGL_OVERFLOW, /* 0x43 */ DMA_TX_DIF_SGL_OVERFLOW, /* 0x44 */ DMA_TX_UNEXP_XFER_ERR, /* 0x45 */ DMA_TX_UNEXP_RETRANS_ERR, /* 0x46 */ DMA_TX_XFER_LEN_OVERFLOW, /* 0x47 */ DMA_TX_XFER_OFFSET_ERR, /* 0x48 */ DMA_TX_RAM_ECC_ERR, /* 0x49 */ DMA_TX_DIF_LEN_ALIGN_ERR, /* 0x4a */ DMA_TX_MAX_ERR_CODE, /* sipc rx */ SIPC_RX_FIS_STATUS_ERR_BIT_VLD = SIPC_RX_ERR_BASE, /* 0x50 */ SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, /* 0x51 */ SIPC_RX_FIS_STATUS_BSY_BIT_ERR, /* 0x52 */ SIPC_RX_WRSETUP_LEN_ODD_ERR, /* 0x53 */ SIPC_RX_WRSETUP_LEN_ZERO_ERR, /* 0x54 */ SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, /* 0x55 */ SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, /* 0x56 */ SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, /* 0x57 */ SIPC_RX_SATA_UNEXP_FIS_ERR, /* 0x58 */ SIPC_RX_WRSETUP_ESTATUS_ERR, /* 0x59 */ SIPC_RX_DATA_UNDERFLOW_ERR, /* 0x5a */ SIPC_RX_MAX_ERR_CODE, /* dma rx */ DMA_RX_DIF_CRC_ERR = DMA_RX_ERR_BASE, /* 0x60 */ DMA_RX_DIF_APP_ERR, /* 0x61 */ DMA_RX_DIF_RPP_ERR, /* 0x62 */ DMA_RX_DATA_SGL_OVERFLOW, /* 0x63 */ DMA_RX_DIF_SGL_OVERFLOW, /* 0x64 */ DMA_RX_DATA_LEN_OVERFLOW, /* 0x65 */ DMA_RX_DATA_LEN_UNDERFLOW, /* 0x66 */ DMA_RX_DATA_OFFSET_ERR, /* 0x67 */ RESERVED10, /* 0x68 */ DMA_RX_SATA_FRAME_TYPE_ERR, /* 0x69 */ DMA_RX_RESP_BUF_OVERFLOW, /* 0x6a */ DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x6b */ DMA_RX_UNEXP_NORM_RESP_ERR, /* 0x6c */ DMA_RX_UNEXP_RDFRAME_ERR, /* 0x6d */ DMA_RX_PIO_DATA_LEN_ERR, /* 0x6e */ DMA_RX_RDSETUP_STATUS_ERR, /* 0x6f */ DMA_RX_RDSETUP_STATUS_DRQ_ERR, /* 0x70 */ DMA_RX_RDSETUP_STATUS_BSY_ERR, /* 0x71 */ DMA_RX_RDSETUP_LEN_ODD_ERR, /* 0x72 */ DMA_RX_RDSETUP_LEN_ZERO_ERR, /* 0x73 */ DMA_RX_RDSETUP_LEN_OVER_ERR, /* 0x74 */ DMA_RX_RDSETUP_OFFSET_ERR, /* 0x75 */ DMA_RX_RDSETUP_ACTIVE_ERR, /* 0x76 */ DMA_RX_RDSETUP_ESTATUS_ERR, /* 0x77 */ DMA_RX_RAM_ECC_ERR, /* 0x78 */ DMA_RX_UNKNOWN_FRM_ERR, /* 0x79 */ DMA_RX_MAX_ERR_CODE, }; #define HISI_SAS_COMMAND_ENTRIES_V2_HW 4096 #define HISI_MAX_SATA_SUPPORT_V2_HW (HISI_SAS_COMMAND_ENTRIES_V2_HW/64 - 1) #define DIR_NO_DATA 0 #define DIR_TO_INI 1 #define DIR_TO_DEVICE 2 #define DIR_RESERVED 3 #define ERR_ON_TX_PHASE(err_phase) (err_phase == 0x2 || \ err_phase == 0x4 || err_phase == 0x8 ||\ err_phase == 0x6 || err_phase == 0xa) #define ERR_ON_RX_PHASE(err_phase) (err_phase == 0x10 || \ err_phase == 0x20 || err_phase == 0x40) static void link_timeout_disable_link(struct timer_list *t); static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl(regs); } static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl_relaxed(regs); } static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + off; writel(val, regs); } static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; writel(val, regs); } static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba, int phy_no, u32 off) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; return readl(regs); } /* This function needs to be protected from pre-emption. */ static int slot_index_alloc_quirk_v2_hw(struct hisi_hba *hisi_hba, int *slot_idx, struct domain_device *device) { int sata_dev = dev_is_sata(device); void *bitmap = hisi_hba->slot_index_tags; struct hisi_sas_device *sas_dev = device->lldd_dev; int sata_idx = sas_dev->sata_idx; int start, end; if (!sata_dev) { /* * STP link SoC bug workaround: index starts from 1. * additionally, we can only allocate odd IPTT(1~4095) * for SAS/SMP device. */ start = 1; end = hisi_hba->slot_index_count; } else { if (sata_idx >= HISI_MAX_SATA_SUPPORT_V2_HW) return -EINVAL; /* * For SATA device: allocate even IPTT in this interval * [64*(sata_idx+1), 64*(sata_idx+2)], then each SATA device * own 32 IPTTs. IPTT 0 shall not be used duing to STP link * SoC bug workaround. So we ignore the first 32 even IPTTs. */ start = 64 * (sata_idx + 1); end = 64 * (sata_idx + 2); } while (1) { start = find_next_zero_bit(bitmap, hisi_hba->slot_index_count, start); if (start >= end) return -SAS_QUEUE_FULL; /* * SAS IPTT bit0 should be 1, and SATA IPTT bit0 should be 0. */ if (sata_dev ^ (start & 1)) break; start++; } set_bit(start, bitmap); *slot_idx = start; return 0; } static bool sata_index_alloc_v2_hw(struct hisi_hba *hisi_hba, int *idx) { unsigned int index; struct device *dev = hisi_hba->dev; void *bitmap = hisi_hba->sata_dev_bitmap; index = find_first_zero_bit(bitmap, HISI_MAX_SATA_SUPPORT_V2_HW); if (index >= HISI_MAX_SATA_SUPPORT_V2_HW) { dev_warn(dev, "alloc sata index failed, index=%d\n", index); return false; } set_bit(index, bitmap); *idx = index; return true; } static struct hisi_sas_device *alloc_dev_quirk_v2_hw(struct domain_device *device) { struct hisi_hba *hisi_hba = device->port->ha->lldd_ha; struct hisi_sas_device *sas_dev = NULL; int i, sata_dev = dev_is_sata(device); int sata_idx = -1; unsigned long flags; spin_lock_irqsave(&hisi_hba->lock, flags); if (sata_dev) if (!sata_index_alloc_v2_hw(hisi_hba, &sata_idx)) goto out; for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) { /* * SATA device id bit0 should be 0 */ if (sata_dev && (i & 1)) continue; if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) { int queue = i % hisi_hba->queue_count; struct hisi_sas_dq *dq = &hisi_hba->dq[queue]; hisi_hba->devices[i].device_id = i; sas_dev = &hisi_hba->devices[i]; sas_dev->dev_status = HISI_SAS_DEV_NORMAL; sas_dev->dev_type = device->dev_type; sas_dev->hisi_hba = hisi_hba; sas_dev->sas_device = device; sas_dev->sata_idx = sata_idx; sas_dev->dq = dq; INIT_LIST_HEAD(&hisi_hba->devices[i].list); break; } } out: spin_unlock_irqrestore(&hisi_hba->lock, flags); return sas_dev; } static void config_phy_opt_mode_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_DC_OPT_MSK; cfg |= 1 << PHY_CFG_DC_OPT_OFF; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void config_id_frame_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { struct sas_identify_frame identify_frame; u32 *identify_buffer; memset(&identify_frame, 0, sizeof(identify_frame)); identify_frame.dev_type = SAS_END_DEVICE; identify_frame.frame_type = 0; identify_frame._un1 = 1; identify_frame.initiator_bits = SAS_PROTOCOL_ALL; identify_frame.target_bits = SAS_PROTOCOL_NONE; memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); identify_frame.phy_id = phy_no; identify_buffer = (u32 *)(&identify_frame); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0, __swab32(identify_buffer[0])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1, __swab32(identify_buffer[1])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2, __swab32(identify_buffer[2])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3, __swab32(identify_buffer[3])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4, __swab32(identify_buffer[4])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5, __swab32(identify_buffer[5])); } static void setup_itct_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { struct domain_device *device = sas_dev->sas_device; struct device *dev = hisi_hba->dev; u64 qw0, device_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[device_id]; struct domain_device *parent_dev = device->parent; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); memset(itct, 0, sizeof(*itct)); /* qw0 */ qw0 = 0; switch (sas_dev->dev_type) { case SAS_END_DEVICE: case SAS_EDGE_EXPANDER_DEVICE: case SAS_FANOUT_EXPANDER_DEVICE: qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF; break; case SAS_SATA_DEV: case SAS_SATA_PENDING: if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF; else qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF; break; default: dev_warn(dev, "setup itct: unsupported dev type (%d)\n", sas_dev->dev_type); } qw0 |= ((1 << ITCT_HDR_VALID_OFF) | (device->linkrate << ITCT_HDR_MCR_OFF) | (1 << ITCT_HDR_VLN_OFF) | (ITCT_HDR_SMP_TIMEOUT << ITCT_HDR_SMP_TIMEOUT_OFF) | (1 << ITCT_HDR_AWT_CONTINUE_OFF) | (port->id << ITCT_HDR_PORT_ID_OFF)); itct->qw0 = cpu_to_le64(qw0); /* qw1 */ memcpy(&itct->sas_addr, device->sas_addr, SAS_ADDR_SIZE); itct->sas_addr = __swab64(itct->sas_addr); /* qw2 */ if (!dev_is_sata(device)) itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) | (0x1ULL << ITCT_HDR_BITLT_OFF) | (0x32ULL << ITCT_HDR_MCTLT_OFF) | (0x1ULL << ITCT_HDR_RTOLT_OFF)); } static void clear_itct_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { DECLARE_COMPLETION_ONSTACK(completion); u64 dev_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id]; u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); int i; sas_dev->completion = &completion; /* clear the itct interrupt state */ if (ENT_INT_SRC3_ITC_INT_MSK & reg_val) hisi_sas_write32(hisi_hba, ENT_INT_SRC3, ENT_INT_SRC3_ITC_INT_MSK); for (i = 0; i < 2; i++) { reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK); hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val); wait_for_completion(sas_dev->completion); memset(itct, 0, sizeof(struct hisi_sas_itct)); } } static void free_device_v2_hw(struct hisi_sas_device *sas_dev) { struct hisi_hba *hisi_hba = sas_dev->hisi_hba; /* SoC bug workaround */ if (dev_is_sata(sas_dev->sas_device)) clear_bit(sas_dev->sata_idx, hisi_hba->sata_dev_bitmap); } static int reset_hw_v2_hw(struct hisi_hba *hisi_hba) { int i, reset_val; u32 val; unsigned long end_time; struct device *dev = hisi_hba->dev; /* The mask needs to be set depending on the number of phys */ if (hisi_hba->n_phy == 9) reset_val = 0x1fffff; else reset_val = 0x7ffff; hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0); /* Disable all of the PHYs */ for (i = 0; i < hisi_hba->n_phy; i++) { u32 phy_cfg = hisi_sas_phy_read32(hisi_hba, i, PHY_CFG); phy_cfg &= ~PHY_CTRL_RESET_MSK; hisi_sas_phy_write32(hisi_hba, i, PHY_CFG, phy_cfg); } udelay(50); /* Ensure DMA tx & rx idle */ for (i = 0; i < hisi_hba->n_phy; i++) { u32 dma_tx_status, dma_rx_status; end_time = jiffies + msecs_to_jiffies(1000); while (1) { dma_tx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_TX_STATUS); dma_rx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_RX_STATUS); if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) && !(dma_rx_status & DMA_RX_STATUS_BUSY_MSK)) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } } /* Ensure axi bus idle */ end_time = jiffies + msecs_to_jiffies(1000); while (1) { u32 axi_status = hisi_sas_read32(hisi_hba, AXI_CFG); if (axi_status == 0) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } if (ACPI_HANDLE(dev)) { acpi_status s; s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL); if (ACPI_FAILURE(s)) { dev_err(dev, "Reset failed\n"); return -EIO; } } else if (hisi_hba->ctrl) { /* reset and disable clock*/ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg, reset_val); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4, reset_val); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (reset_val != (val & reset_val)) { dev_err(dev, "SAS reset fail.\n"); return -EIO; } /* De-reset and enable clock*/ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4, reset_val); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg, reset_val); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (val & reset_val) { dev_err(dev, "SAS de-reset fail.\n"); return -EIO; } } else { dev_err(dev, "no reset method\n"); return -EINVAL; } return 0; } /* This function needs to be called after resetting SAS controller. */ static void phys_reject_stp_links_v2_hw(struct hisi_hba *hisi_hba) { u32 cfg; int phy_no; hisi_hba->reject_stp_links_msk = (1 << hisi_hba->n_phy) - 1; for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { cfg = hisi_sas_phy_read32(hisi_hba, phy_no, CON_CONTROL); if (!(cfg & CON_CONTROL_CFG_OPEN_ACC_STP_MSK)) continue; cfg &= ~CON_CONTROL_CFG_OPEN_ACC_STP_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, CON_CONTROL, cfg); } } static void phys_try_accept_stp_links_v2_hw(struct hisi_hba *hisi_hba) { int phy_no; u32 dma_tx_dfx1; for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { if (!(hisi_hba->reject_stp_links_msk & BIT(phy_no))) continue; dma_tx_dfx1 = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1); if (dma_tx_dfx1 & DMA_TX_DFX1_IPTT_MSK) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, CON_CONTROL); cfg |= CON_CONTROL_CFG_OPEN_ACC_STP_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, CON_CONTROL, cfg); clear_bit(phy_no, &hisi_hba->reject_stp_links_msk); } } } static const struct signal_attenuation_s x6000 = {9200, 0, 10476}; static const struct sig_atten_lu_s sig_atten_lu[] = { { &x6000, 0x3016a68 }, }; static void init_reg_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; u32 sas_phy_ctrl = 0x30b9908; u32 signal[3]; int i; /* Global registers init */ /* Deal with am-max-transmissions quirk */ if (device_property_present(dev, "hip06-sas-v2-quirk-amt")) { hisi_sas_write32(hisi_hba, AM_CFG_MAX_TRANS, 0x2020); hisi_sas_write32(hisi_hba, AM_CFG_SINGLE_PORT_MAX_TRANS, 0x2020); } /* Else, use defaults -> do nothing */ hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, (u32)((1ULL << hisi_hba->queue_count) - 1)); hisi_sas_write32(hisi_hba, AXI_USER1, 0xc0000000); hisi_sas_write32(hisi_hba, AXI_USER2, 0x10000); hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x0); hisi_sas_write32(hisi_hba, HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL, 0x7FF); hisi_sas_write32(hisi_hba, OPENA_WT_CONTI_TIME, 0x1); hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x1F4); hisi_sas_write32(hisi_hba, MAX_CON_TIME_LIMIT_TIME, 0x32); hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x1); hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1); hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x1); hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1); hisi_sas_write32(hisi_hba, INT_COAL_EN, 0xc); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x60); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x3); hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0x0); hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0x7efefefe); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0x7efefefe); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0x7ffe20fe); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xfff00c30); for (i = 0; i < hisi_hba->queue_count; i++) hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0); hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 1); hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1); /* Get sas_phy_ctrl value to deal with TX FFE issue. */ if (!device_property_read_u32_array(dev, "hisilicon,signal-attenuation", signal, ARRAY_SIZE(signal))) { for (i = 0; i < ARRAY_SIZE(sig_atten_lu); i++) { const struct sig_atten_lu_s *lookup = &sig_atten_lu[i]; const struct signal_attenuation_s *att = lookup->att; if ((signal[0] == att->de_emphasis) && (signal[1] == att->preshoot) && (signal[2] == att->boost)) { sas_phy_ctrl = lookup->sas_phy_ctrl; break; } } if (i == ARRAY_SIZE(sig_atten_lu)) dev_warn(dev, "unknown signal attenuation values, using default PHY ctrl config\n"); } for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; u32 prog_phy_link_rate = 0x800; if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate < SAS_LINK_RATE_1_5_GBPS)) { prog_phy_link_rate = 0x855; } else { enum sas_linkrate max = sas_phy->phy->maximum_linkrate; prog_phy_link_rate = hisi_sas_get_prog_phy_linkrate_mask(max) | 0x800; } hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, prog_phy_link_rate); hisi_sas_phy_write32(hisi_hba, i, SAS_PHY_CTRL, sas_phy_ctrl); hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d); hisi_sas_phy_write32(hisi_hba, i, SL_CONTROL, 0x0); hisi_sas_phy_write32(hisi_hba, i, TXID_AUTO, 0x2); hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x8); hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xfff87fff); hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff857fff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbfe); hisi_sas_phy_write32(hisi_hba, i, SL_CFG, 0x13f801fc); hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0); if (hisi_hba->refclk_frequency_mhz == 66) hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199B694); /* else, do nothing -> leave it how you found it */ } for (i = 0; i < hisi_hba->queue_count; i++) { /* Delivery queue */ hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); /* Completion queue */ hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); } /* itct */ hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO, lower_32_bits(hisi_hba->itct_dma)); hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI, upper_32_bits(hisi_hba->itct_dma)); /* iost */ hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO, lower_32_bits(hisi_hba->iost_dma)); hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI, upper_32_bits(hisi_hba->iost_dma)); /* breakpoint */ hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->breakpoint_dma)); /* SATA broken msg */ hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->sata_breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->sata_breakpoint_dma)); /* SATA initial fis */ hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO, lower_32_bits(hisi_hba->initial_fis_dma)); hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI, upper_32_bits(hisi_hba->initial_fis_dma)); } static void link_timeout_enable_link(struct timer_list *t) { struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer); int i, reg_val; for (i = 0; i < hisi_hba->n_phy; i++) { if (hisi_hba->reject_stp_links_msk & BIT(i)) continue; reg_val = hisi_sas_phy_read32(hisi_hba, i, CON_CONTROL); if (!(reg_val & BIT(0))) { hisi_sas_phy_write32(hisi_hba, i, CON_CONTROL, 0x7); break; } } hisi_hba->timer.function = link_timeout_disable_link; mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(900)); } static void link_timeout_disable_link(struct timer_list *t) { struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer); int i, reg_val; reg_val = hisi_sas_read32(hisi_hba, PHY_STATE); for (i = 0; i < hisi_hba->n_phy && reg_val; i++) { if (hisi_hba->reject_stp_links_msk & BIT(i)) continue; if (reg_val & BIT(i)) { hisi_sas_phy_write32(hisi_hba, i, CON_CONTROL, 0x6); break; } } hisi_hba->timer.function = link_timeout_enable_link; mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(100)); } static void set_link_timer_quirk(struct hisi_hba *hisi_hba) { hisi_hba->timer.function = link_timeout_disable_link; hisi_hba->timer.expires = jiffies + msecs_to_jiffies(1000); add_timer(&hisi_hba->timer); } static int hw_init_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; int rc; rc = reset_hw_v2_hw(hisi_hba); if (rc) { dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc); return rc; } msleep(100); init_reg_v2_hw(hisi_hba); return 0; } static void enable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg |= PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static bool is_sata_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 context; context = hisi_sas_read32(hisi_hba, PHY_CONTEXT); if (context & (1 << phy_no)) return true; return false; } static bool tx_fifo_is_empty_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 dfx_val; dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1); if (dfx_val & BIT(16)) return false; return true; } static bool axi_bus_is_idle_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { int i, max_loop = 1000; struct device *dev = hisi_hba->dev; u32 status, axi_status, dfx_val, dfx_tx_val; for (i = 0; i < max_loop; i++) { status = hisi_sas_read32_relaxed(hisi_hba, AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN); axi_status = hisi_sas_read32(hisi_hba, AXI_CFG); dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1); dfx_tx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_FIFO_DFX0); if ((status == 0x3) && (axi_status == 0x0) && (dfx_val & BIT(20)) && (dfx_tx_val & BIT(10))) return true; udelay(10); } dev_err(dev, "bus is not idle phy%d, axi150:0x%x axi100:0x%x port204:0x%x port240:0x%x\n", phy_no, status, axi_status, dfx_val, dfx_tx_val); return false; } static bool wait_io_done_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { int i, max_loop = 1000; struct device *dev = hisi_hba->dev; u32 status, tx_dfx0; for (i = 0; i < max_loop; i++) { status = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2); status = (status & 0x3fc0) >> 6; if (status != 0x1) return true; tx_dfx0 = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX0); if ((tx_dfx0 & 0x1ff) == 0x2) return true; udelay(10); } dev_err(dev, "IO not done phy%d, port264:0x%x port200:0x%x\n", phy_no, status, tx_dfx0); return false; } static bool allowed_disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { if (tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) return true; if (!axi_bus_is_idle_v2_hw(hisi_hba, phy_no)) return false; if (!wait_io_done_v2_hw(hisi_hba, phy_no)) return false; return true; } static void disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg, axi_val, dfx0_val, txid_auto; struct device *dev = hisi_hba->dev; /* Close axi bus. */ axi_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL); axi_val |= 0x1; hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, axi_val); if (is_sata_phy_v2_hw(hisi_hba, phy_no)) { if (allowed_disable_phy_v2_hw(hisi_hba, phy_no)) goto do_disable; /* Reset host controller. */ queue_work(hisi_hba->wq, &hisi_hba->rst_work); return; } dfx0_val = hisi_sas_phy_read32(hisi_hba, phy_no, PORT_DFX0); dfx0_val = (dfx0_val & 0x1fc0) >> 6; if (dfx0_val != 0x4) goto do_disable; if (!tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) { dev_warn(dev, "phy%d, wait tx fifo need send break\n", phy_no); txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); txid_auto |= TXID_AUTO_CTB_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto); } do_disable: cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); /* Open axi bus. */ axi_val &= ~0x1; hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, axi_val); } static void start_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { config_id_frame_v2_hw(hisi_hba, phy_no); config_phy_opt_mode_v2_hw(hisi_hba, phy_no); enable_phy_v2_hw(hisi_hba, phy_no); } static void phy_hard_reset_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; u32 txid_auto; disable_phy_v2_hw(hisi_hba, phy_no); if (phy->identify.device_type == SAS_END_DEVICE) { txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | TX_HARDRST_MSK); } msleep(100); start_phy_v2_hw(hisi_hba, phy_no); } static void phy_get_events_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_phy *sphy = sas_phy->phy; u32 err4_reg_val, err6_reg_val; /* loss dword syn, phy reset problem */ err4_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT4_REG); /* disparity err, invalid dword */ err6_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT6_REG); sphy->loss_of_dword_sync_count += (err4_reg_val >> 16) & 0xFFFF; sphy->phy_reset_problem_count += err4_reg_val & 0xFFFF; sphy->invalid_dword_count += (err6_reg_val & 0xFF0000) >> 16; sphy->running_disparity_error_count += err6_reg_val & 0xFF; } static void phys_init_v2_hw(struct hisi_hba *hisi_hba) { int i; for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; if (!sas_phy->phy->enabled) continue; start_phy_v2_hw(hisi_hba, i); } } static void sl_notify_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 sl_control; sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control |= SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); msleep(1); sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); } static enum sas_linkrate phy_get_max_linkrate_v2_hw(void) { return SAS_LINK_RATE_12_0_GBPS; } static void phy_set_linkrate_v2_hw(struct hisi_hba *hisi_hba, int phy_no, struct sas_phy_linkrates *r) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; enum sas_linkrate min, max; u32 prog_phy_link_rate = 0x800; if (r->maximum_linkrate == SAS_LINK_RATE_UNKNOWN) { max = sas_phy->phy->maximum_linkrate; min = r->minimum_linkrate; } else if (r->minimum_linkrate == SAS_LINK_RATE_UNKNOWN) { max = r->maximum_linkrate; min = sas_phy->phy->minimum_linkrate; } else return; sas_phy->phy->maximum_linkrate = max; sas_phy->phy->minimum_linkrate = min; prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max); disable_phy_v2_hw(hisi_hba, phy_no); msleep(100); hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE, prog_phy_link_rate); start_phy_v2_hw(hisi_hba, phy_no); } static int get_wideport_bitmap_v2_hw(struct hisi_hba *hisi_hba, int port_id) { int i, bitmap = 0; u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); for (i = 0; i < (hisi_hba->n_phy < 9 ? hisi_hba->n_phy : 8); i++) if (phy_state & 1 << i) if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id) bitmap |= 1 << i; if (hisi_hba->n_phy == 9) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); if (phy_state & 1 << 8) if (((port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF) == port_id) bitmap |= 1 << 9; } return bitmap; } /* * The callpath to this function and upto writing the write * queue pointer should be safe from interruption. */ static int get_free_slot_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_dq *dq) { struct device *dev = hisi_hba->dev; int queue = dq->id; u32 r, w; w = dq->wr_point; r = hisi_sas_read32_relaxed(hisi_hba, DLVRY_Q_0_RD_PTR + (queue * 0x14)); if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) { dev_warn(dev, "full queue=%d r=%d w=%d\n\n", queue, r, w); return -EAGAIN; } return 0; } static void start_delivery_v2_hw(struct hisi_sas_dq *dq) { struct hisi_hba *hisi_hba = dq->hisi_hba; int dlvry_queue = dq->slot_prep->dlvry_queue; int dlvry_queue_slot = dq->slot_prep->dlvry_queue_slot; dq->wr_point = ++dlvry_queue_slot % HISI_SAS_QUEUE_SLOTS; hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), dq->wr_point); } static void prep_prd_sge_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, struct hisi_sas_cmd_hdr *hdr, struct scatterlist *scatter, int n_elem) { struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot); struct scatterlist *sg; int i; for_each_sg(scatter, sg, n_elem, i) { struct hisi_sas_sge *entry = &sge_page->sge[i]; entry->addr = cpu_to_le64(sg_dma_address(sg)); entry->page_ctrl_0 = entry->page_ctrl_1 = 0; entry->data_len = cpu_to_le32(sg_dma_len(sg)); entry->data_off = 0; } hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot)); hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF); } static void prep_smp_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_port *port = slot->port; struct scatterlist *sg_req; struct hisi_sas_device *sas_dev = device->lldd_dev; dma_addr_t req_dma_addr; unsigned int req_len; /* req */ sg_req = &task->smp_task.smp_req; req_dma_addr = sg_dma_address(sg_req); req_len = sg_dma_len(&task->smp_task.smp_req); /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) | (1 << CMD_HDR_PRIORITY_OFF) | /* high pri */ (2 << CMD_HDR_CMD_OFF)); /* smp */ /* map itct entry */ hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) | (1 << CMD_HDR_FRAME_TYPE_OFF) | (DIR_NO_DATA << CMD_HDR_DIR_OFF)); /* dw2 */ hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) | (HISI_SAS_MAX_SMP_RESP_SZ / 4 << CMD_HDR_MRFL_OFF)); hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); hdr->cmd_table_addr = cpu_to_le64(req_dma_addr); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); } static void prep_ssp_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int is_tmf, struct hisi_sas_tmf_task *tmf) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_port *port = slot->port; struct sas_ssp_task *ssp_task = &task->ssp_task; struct scsi_cmnd *scsi_cmnd = ssp_task->cmd; int has_data = 0, priority = is_tmf; u8 *buf_cmd; u32 dw1 = 0, dw2 = 0; hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) | (2 << CMD_HDR_TLR_CTRL_OFF) | (port->id << CMD_HDR_PORT_OFF) | (priority << CMD_HDR_PRIORITY_OFF) | (1 << CMD_HDR_CMD_OFF)); /* ssp */ dw1 = 1 << CMD_HDR_VDTL_OFF; if (is_tmf) { dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF; dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF; } else { dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF; switch (scsi_cmnd->sc_data_direction) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } } /* map itct entry */ dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; hdr->dw1 = cpu_to_le32(dw1); dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr) + 3) / 4) << CMD_HDR_CFL_OFF) | ((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) | (2 << CMD_HDR_SG_MOD_OFF); hdr->dw2 = cpu_to_le32(dw2); hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) + sizeof(struct ssp_frame_hdr); memcpy(buf_cmd, &task->ssp_task.LUN, 8); if (!is_tmf) { buf_cmd[9] = task->ssp_task.task_attr | (task->ssp_task.task_prio << 3); memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd, task->ssp_task.cmd->cmd_len); } else { buf_cmd[10] = tmf->tmf; switch (tmf->tmf) { case TMF_ABORT_TASK: case TMF_QUERY_TASK: buf_cmd[12] = (tmf->tag_of_task_to_be_managed >> 8) & 0xff; buf_cmd[13] = tmf->tag_of_task_to_be_managed & 0xff; break; default: break; } } } #define TRANS_TX_ERR 0 #define TRANS_RX_ERR 1 #define DMA_TX_ERR 2 #define SIPC_RX_ERR 3 #define DMA_RX_ERR 4 #define DMA_TX_ERR_OFF 0 #define DMA_TX_ERR_MSK (0xffff << DMA_TX_ERR_OFF) #define SIPC_RX_ERR_OFF 16 #define SIPC_RX_ERR_MSK (0xffff << SIPC_RX_ERR_OFF) static int parse_trans_tx_err_code_v2_hw(u32 err_msk) { static const u8 trans_tx_err_code_prio[] = { TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS, TRANS_TX_ERR_PHY_NOT_ENABLE, TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, TRANS_TX_OPEN_CNX_ERR_BY_OTHER, RESERVED0, TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, TRANS_TX_ERR_WITH_CLOSE_COMINIT, TRANS_TX_ERR_WITH_BREAK_TIMEOUT, TRANS_TX_ERR_WITH_BREAK_REQUEST, TRANS_TX_ERR_WITH_BREAK_RECEVIED, TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, TRANS_TX_ERR_WITH_CLOSE_NORMAL, TRANS_TX_ERR_WITH_NAK_RECEVIED, TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, TRANS_TX_ERR_WITH_IPTT_CONFLICT, TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, }; int index, i; for (i = 0; i < ARRAY_SIZE(trans_tx_err_code_prio); i++) { index = trans_tx_err_code_prio[i] - TRANS_TX_FAIL_BASE; if (err_msk & (1 << index)) return trans_tx_err_code_prio[i]; } return -1; } static int parse_trans_rx_err_code_v2_hw(u32 err_msk) { static const u8 trans_rx_err_code_prio[] = { TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR, TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, TRANS_RX_ERR_WITH_CLOSE_COMINIT, TRANS_RX_ERR_WITH_BREAK_TIMEOUT, TRANS_RX_ERR_WITH_BREAK_REQUEST, TRANS_RX_ERR_WITH_BREAK_RECEVIED, RESERVED1, TRANS_RX_ERR_WITH_CLOSE_NORMAL, TRANS_RX_ERR_WITH_DATA_LEN0, TRANS_RX_ERR_WITH_BAD_HASH, TRANS_RX_XRDY_WLEN_ZERO_ERR, TRANS_RX_SSP_FRM_LEN_ERR, RESERVED2, RESERVED3, RESERVED4, RESERVED5, TRANS_RX_ERR_WITH_BAD_FRM_TYPE, TRANS_RX_SMP_FRM_LEN_ERR, TRANS_RX_SMP_RESP_TIMEOUT_ERR, RESERVED6, RESERVED7, RESERVED8, RESERVED9, TRANS_RX_R_ERR, }; int index, i; for (i = 0; i < ARRAY_SIZE(trans_rx_err_code_prio); i++) { index = trans_rx_err_code_prio[i] - TRANS_RX_FAIL_BASE; if (err_msk & (1 << index)) return trans_rx_err_code_prio[i]; } return -1; } static int parse_dma_tx_err_code_v2_hw(u32 err_msk) { static const u8 dma_tx_err_code_prio[] = { DMA_TX_UNEXP_XFER_ERR, DMA_TX_UNEXP_RETRANS_ERR, DMA_TX_XFER_LEN_OVERFLOW, DMA_TX_XFER_OFFSET_ERR, DMA_TX_RAM_ECC_ERR, DMA_TX_DIF_LEN_ALIGN_ERR, DMA_TX_DIF_CRC_ERR, DMA_TX_DIF_APP_ERR, DMA_TX_DIF_RPP_ERR, DMA_TX_DATA_SGL_OVERFLOW, DMA_TX_DIF_SGL_OVERFLOW, }; int index, i; for (i = 0; i < ARRAY_SIZE(dma_tx_err_code_prio); i++) { index = dma_tx_err_code_prio[i] - DMA_TX_ERR_BASE; err_msk = err_msk & DMA_TX_ERR_MSK; if (err_msk & (1 << index)) return dma_tx_err_code_prio[i]; } return -1; } static int parse_sipc_rx_err_code_v2_hw(u32 err_msk) { static const u8 sipc_rx_err_code_prio[] = { SIPC_RX_FIS_STATUS_ERR_BIT_VLD, SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, SIPC_RX_FIS_STATUS_BSY_BIT_ERR, SIPC_RX_WRSETUP_LEN_ODD_ERR, SIPC_RX_WRSETUP_LEN_ZERO_ERR, SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, SIPC_RX_SATA_UNEXP_FIS_ERR, SIPC_RX_WRSETUP_ESTATUS_ERR, SIPC_RX_DATA_UNDERFLOW_ERR, }; int index, i; for (i = 0; i < ARRAY_SIZE(sipc_rx_err_code_prio); i++) { index = sipc_rx_err_code_prio[i] - SIPC_RX_ERR_BASE; err_msk = err_msk & SIPC_RX_ERR_MSK; if (err_msk & (1 << (index + 0x10))) return sipc_rx_err_code_prio[i]; } return -1; } static int parse_dma_rx_err_code_v2_hw(u32 err_msk) { static const u8 dma_rx_err_code_prio[] = { DMA_RX_UNKNOWN_FRM_ERR, DMA_RX_DATA_LEN_OVERFLOW, DMA_RX_DATA_LEN_UNDERFLOW, DMA_RX_DATA_OFFSET_ERR, RESERVED10, DMA_RX_SATA_FRAME_TYPE_ERR, DMA_RX_RESP_BUF_OVERFLOW, DMA_RX_UNEXP_RETRANS_RESP_ERR, DMA_RX_UNEXP_NORM_RESP_ERR, DMA_RX_UNEXP_RDFRAME_ERR, DMA_RX_PIO_DATA_LEN_ERR, DMA_RX_RDSETUP_STATUS_ERR, DMA_RX_RDSETUP_STATUS_DRQ_ERR, DMA_RX_RDSETUP_STATUS_BSY_ERR, DMA_RX_RDSETUP_LEN_ODD_ERR, DMA_RX_RDSETUP_LEN_ZERO_ERR, DMA_RX_RDSETUP_LEN_OVER_ERR, DMA_RX_RDSETUP_OFFSET_ERR, DMA_RX_RDSETUP_ACTIVE_ERR, DMA_RX_RDSETUP_ESTATUS_ERR, DMA_RX_RAM_ECC_ERR, DMA_RX_DIF_CRC_ERR, DMA_RX_DIF_APP_ERR, DMA_RX_DIF_RPP_ERR, DMA_RX_DATA_SGL_OVERFLOW, DMA_RX_DIF_SGL_OVERFLOW, }; int index, i; for (i = 0; i < ARRAY_SIZE(dma_rx_err_code_prio); i++) { index = dma_rx_err_code_prio[i] - DMA_RX_ERR_BASE; if (err_msk & (1 << index)) return dma_rx_err_code_prio[i]; } return -1; } /* by default, task resp is complete */ static void slot_err_v2_hw(struct hisi_hba *hisi_hba, struct sas_task *task, struct hisi_sas_slot *slot, int err_phase) { struct task_status_struct *ts = &task->task_status; struct hisi_sas_err_record_v2 *err_record = hisi_sas_status_buf_addr_mem(slot); u32 trans_tx_fail_type = cpu_to_le32(err_record->trans_tx_fail_type); u32 trans_rx_fail_type = cpu_to_le32(err_record->trans_rx_fail_type); u16 dma_tx_err_type = cpu_to_le16(err_record->dma_tx_err_type); u16 sipc_rx_err_type = cpu_to_le16(err_record->sipc_rx_err_type); u32 dma_rx_err_type = cpu_to_le32(err_record->dma_rx_err_type); int error = -1; if (err_phase == 1) { /* error in TX phase, the priority of error is: DW2 > DW0 */ error = parse_dma_tx_err_code_v2_hw(dma_tx_err_type); if (error == -1) error = parse_trans_tx_err_code_v2_hw( trans_tx_fail_type); } else if (err_phase == 2) { /* error in RX phase, the priority is: DW1 > DW3 > DW2 */ error = parse_trans_rx_err_code_v2_hw( trans_rx_fail_type); if (error == -1) { error = parse_dma_rx_err_code_v2_hw( dma_rx_err_type); if (error == -1) error = parse_sipc_rx_err_code_v2_hw( sipc_rx_err_type); } } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { switch (error) { case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_NO_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; } case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; } case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; } case DMA_RX_UNEXP_NORM_RESP_ERR: case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: case DMA_RX_RESP_BUF_OVERFLOW: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; } case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: { /* not sure */ ts->stat = SAS_DEV_NO_RESPONSE; break; } case DMA_RX_DATA_LEN_OVERFLOW: { ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; } case DMA_RX_DATA_LEN_UNDERFLOW: { ts->residual = trans_tx_fail_type; ts->stat = SAS_DATA_UNDERRUN; break; } case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: case TRANS_TX_ERR_PHY_NOT_ENABLE: case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: case TRANS_TX_ERR_WITH_BREAK_REQUEST: case TRANS_TX_ERR_WITH_BREAK_RECEVIED: case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_NORMAL: case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE: case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_COMINIT: case TRANS_TX_ERR_WITH_NAK_RECEVIED: case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: case TRANS_TX_ERR_WITH_IPTT_CONFLICT: case TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR: case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN: case TRANS_RX_ERR_WITH_BREAK_TIMEOUT: case TRANS_RX_ERR_WITH_BREAK_REQUEST: case TRANS_RX_ERR_WITH_BREAK_RECEVIED: case TRANS_RX_ERR_WITH_CLOSE_NORMAL: case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_RX_ERR_WITH_CLOSE_COMINIT: case TRANS_TX_ERR_FRAME_TXED: case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: case TRANS_RX_ERR_WITH_DATA_LEN0: case TRANS_RX_ERR_WITH_BAD_HASH: case TRANS_RX_XRDY_WLEN_ZERO_ERR: case TRANS_RX_SSP_FRM_LEN_ERR: case TRANS_RX_ERR_WITH_BAD_FRM_TYPE: case DMA_TX_DATA_SGL_OVERFLOW: case DMA_TX_UNEXP_XFER_ERR: case DMA_TX_UNEXP_RETRANS_ERR: case DMA_TX_XFER_LEN_OVERFLOW: case DMA_TX_XFER_OFFSET_ERR: case SIPC_RX_DATA_UNDERFLOW_ERR: case DMA_RX_DATA_SGL_OVERFLOW: case DMA_RX_DATA_OFFSET_ERR: case DMA_RX_RDSETUP_LEN_ODD_ERR: case DMA_RX_RDSETUP_LEN_ZERO_ERR: case DMA_RX_RDSETUP_LEN_OVER_ERR: case DMA_RX_SATA_FRAME_TYPE_ERR: case DMA_RX_UNKNOWN_FRM_ERR: { /* This will request a retry */ ts->stat = SAS_QUEUE_FULL; slot->abort = 1; break; } default: break; } } break; case SAS_PROTOCOL_SMP: ts->stat = SAM_STAT_CHECK_CONDITION; break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { switch (error) { case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_NO_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: { ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; break; } case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; } case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; } case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; } case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; } case DMA_RX_RESP_BUF_OVERFLOW: case DMA_RX_UNEXP_NORM_RESP_ERR: case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; } case DMA_RX_DATA_LEN_OVERFLOW: { ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; } case DMA_RX_DATA_LEN_UNDERFLOW: { ts->residual = trans_tx_fail_type; ts->stat = SAS_DATA_UNDERRUN; break; } case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: case TRANS_TX_ERR_PHY_NOT_ENABLE: case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: case TRANS_TX_ERR_WITH_BREAK_REQUEST: case TRANS_TX_ERR_WITH_BREAK_RECEVIED: case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_NORMAL: case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE: case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_COMINIT: case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: case TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS: case TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT: case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: case TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR: case TRANS_RX_ERR_WITH_RXFIS_CRC_ERR: case TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN: case TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP: case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN: case TRANS_RX_ERR_WITH_BREAK_TIMEOUT: case TRANS_RX_ERR_WITH_BREAK_REQUEST: case TRANS_RX_ERR_WITH_BREAK_RECEVIED: case TRANS_RX_ERR_WITH_CLOSE_NORMAL: case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_RX_ERR_WITH_CLOSE_COMINIT: case TRANS_RX_ERR_WITH_DATA_LEN0: case TRANS_RX_ERR_WITH_BAD_HASH: case TRANS_RX_XRDY_WLEN_ZERO_ERR: case TRANS_RX_ERR_WITH_BAD_FRM_TYPE: case DMA_TX_DATA_SGL_OVERFLOW: case DMA_TX_UNEXP_XFER_ERR: case DMA_TX_UNEXP_RETRANS_ERR: case DMA_TX_XFER_LEN_OVERFLOW: case DMA_TX_XFER_OFFSET_ERR: case SIPC_RX_FIS_STATUS_ERR_BIT_VLD: case SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR: case SIPC_RX_FIS_STATUS_BSY_BIT_ERR: case SIPC_RX_WRSETUP_LEN_ODD_ERR: case SIPC_RX_WRSETUP_LEN_ZERO_ERR: case SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR: case SIPC_RX_SATA_UNEXP_FIS_ERR: case DMA_RX_DATA_SGL_OVERFLOW: case DMA_RX_DATA_OFFSET_ERR: case DMA_RX_SATA_FRAME_TYPE_ERR: case DMA_RX_UNEXP_RDFRAME_ERR: case DMA_RX_PIO_DATA_LEN_ERR: case DMA_RX_RDSETUP_STATUS_ERR: case DMA_RX_RDSETUP_STATUS_DRQ_ERR: case DMA_RX_RDSETUP_STATUS_BSY_ERR: case DMA_RX_RDSETUP_LEN_ODD_ERR: case DMA_RX_RDSETUP_LEN_ZERO_ERR: case DMA_RX_RDSETUP_LEN_OVER_ERR: case DMA_RX_RDSETUP_OFFSET_ERR: case DMA_RX_RDSETUP_ACTIVE_ERR: case DMA_RX_RDSETUP_ESTATUS_ERR: case DMA_RX_UNKNOWN_FRM_ERR: case TRANS_RX_SSP_FRM_LEN_ERR: case TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY: { slot->abort = 1; ts->stat = SAS_PHY_DOWN; break; } default: { ts->stat = SAS_PROTO_RESPONSE; break; } } hisi_sas_sata_done(task, slot); } break; default: break; } } static int slot_complete_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_device *sas_dev; struct device *dev = hisi_hba->dev; struct task_status_struct *ts; struct domain_device *device; struct sas_ha_struct *ha; enum exec_status sts; struct hisi_sas_complete_v2_hdr *complete_queue = hisi_hba->complete_hdr[slot->cmplt_queue]; struct hisi_sas_complete_v2_hdr *complete_hdr = &complete_queue[slot->cmplt_queue_slot]; unsigned long flags; bool is_internal = slot->is_internal; if (unlikely(!task || !task->lldd_task || !task->dev)) return -EINVAL; ts = &task->task_status; device = task->dev; ha = device->port->ha; sas_dev = device->lldd_dev; spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); spin_unlock_irqrestore(&task->task_state_lock, flags); memset(ts, 0, sizeof(*ts)); ts->resp = SAS_TASK_COMPLETE; if (unlikely(!sas_dev)) { dev_dbg(dev, "slot complete: port has no device\n"); ts->stat = SAS_PHY_DOWN; goto out; } /* Use SAS+TMF status codes */ switch ((complete_hdr->dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> CMPLT_HDR_ABORT_STAT_OFF) { case STAT_IO_ABORTED: /* this io has been aborted by abort command */ ts->stat = SAS_ABORTED_TASK; goto out; case STAT_IO_COMPLETE: /* internal abort command complete */ ts->stat = TMF_RESP_FUNC_SUCC; del_timer(&slot->internal_abort_timer); goto out; case STAT_IO_NO_DEVICE: ts->stat = TMF_RESP_FUNC_COMPLETE; del_timer(&slot->internal_abort_timer); goto out; case STAT_IO_NOT_VALID: /* abort single io, controller don't find * the io need to abort */ ts->stat = TMF_RESP_FUNC_FAILED; del_timer(&slot->internal_abort_timer); goto out; default: break; } if ((complete_hdr->dw0 & CMPLT_HDR_ERX_MSK) && (!(complete_hdr->dw0 & CMPLT_HDR_RSPNS_XFRD_MSK))) { u32 err_phase = (complete_hdr->dw0 & CMPLT_HDR_ERR_PHASE_MSK) >> CMPLT_HDR_ERR_PHASE_OFF; u32 *error_info = hisi_sas_status_buf_addr_mem(slot); /* Analyse error happens on which phase TX or RX */ if (ERR_ON_TX_PHASE(err_phase)) slot_err_v2_hw(hisi_hba, task, slot, 1); else if (ERR_ON_RX_PHASE(err_phase)) slot_err_v2_hw(hisi_hba, task, slot, 2); if (ts->stat != SAS_DATA_UNDERRUN) dev_info(dev, "erroneous completion iptt=%d task=%p dev id=%d " "CQ hdr: 0x%x 0x%x 0x%x 0x%x " "Error info: 0x%x 0x%x 0x%x 0x%x\n", slot->idx, task, sas_dev->device_id, complete_hdr->dw0, complete_hdr->dw1, complete_hdr->act, complete_hdr->dw3, error_info[0], error_info[1], error_info[2], error_info[3]); if (unlikely(slot->abort)) return ts->stat; goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { struct hisi_sas_status_buffer *status_buffer = hisi_sas_status_buf_addr_mem(slot); struct ssp_response_iu *iu = (struct ssp_response_iu *) &status_buffer->iu[0]; sas_ssp_task_response(dev, task, iu); break; } case SAS_PROTOCOL_SMP: { struct scatterlist *sg_resp = &task->smp_task.smp_resp; void *to; ts->stat = SAM_STAT_GOOD; to = kmap_atomic(sg_page(sg_resp)); dma_unmap_sg(dev, &task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); dma_unmap_sg(dev, &task->smp_task.smp_req, 1, DMA_TO_DEVICE); memcpy(to + sg_resp->offset, hisi_sas_status_buf_addr_mem(slot) + sizeof(struct hisi_sas_err_record), sg_dma_len(sg_resp)); kunmap_atomic(to); break; } case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { ts->stat = SAM_STAT_GOOD; hisi_sas_sata_done(task, slot); break; } default: ts->stat = SAM_STAT_CHECK_CONDITION; break; } if (!slot->port->port_attached) { dev_warn(dev, "slot complete: port %d has removed\n", slot->port->sas_port.id); ts->stat = SAS_PHY_DOWN; } out: hisi_sas_slot_task_free(hisi_hba, task, slot); sts = ts->stat; spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { spin_unlock_irqrestore(&task->task_state_lock, flags); dev_info(dev, "slot complete: task(%p) aborted\n", task); return SAS_ABORTED_TASK; } task->task_state_flags |= SAS_TASK_STATE_DONE; spin_unlock_irqrestore(&task->task_state_lock, flags); if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) { spin_lock_irqsave(&device->done_lock, flags); if (test_bit(SAS_HA_FROZEN, &ha->state)) { spin_unlock_irqrestore(&device->done_lock, flags); dev_info(dev, "slot complete: task(%p) ignored\n ", task); return sts; } spin_unlock_irqrestore(&device->done_lock, flags); } if (task->task_done) task->task_done(task); return sts; } static void prep_ata_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct domain_device *device = task->dev; struct domain_device *parent_dev = device->parent; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); u8 *buf_cmd; int has_data = 0, hdr_tag = 0; u32 dw1 = 0, dw2 = 0; /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF); if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF); else hdr->dw0 |= cpu_to_le32(4 << CMD_HDR_CMD_OFF); /* dw1 */ switch (task->data_dir) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) && (task->ata_task.fis.control & ATA_SRST)) dw1 |= 1 << CMD_HDR_RESET_OFF; dw1 |= (hisi_sas_get_ata_protocol( &task->ata_task.fis, task->data_dir)) << CMD_HDR_FRAME_TYPE_OFF; dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; hdr->dw1 = cpu_to_le32(dw1); /* dw2 */ if (task->ata_task.use_ncq && hisi_sas_get_ncq_tag(task, &hdr_tag)) { task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF; } dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF | 2 << CMD_HDR_SG_MOD_OFF; hdr->dw2 = cpu_to_le32(dw2); /* dw3 */ hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot); if (likely(!task->ata_task.device_control_reg_update)) task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ /* fill in command FIS */ memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); } static void hisi_sas_internal_abort_quirk_timeout(struct timer_list *t) { struct hisi_sas_slot *slot = from_timer(slot, t, internal_abort_timer); struct hisi_sas_port *port = slot->port; struct asd_sas_port *asd_sas_port; struct asd_sas_phy *sas_phy; if (!port) return; asd_sas_port = &port->sas_port; /* Kick the hardware - send break command */ list_for_each_entry(sas_phy, &asd_sas_port->phy_list, port_phy_el) { struct hisi_sas_phy *phy = sas_phy->lldd_phy; struct hisi_hba *hisi_hba = phy->hisi_hba; int phy_no = sas_phy->id; u32 link_dfx2; link_dfx2 = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2); if ((link_dfx2 == LINK_DFX2_RCVR_HOLD_STS_MSK) || (link_dfx2 & LINK_DFX2_SEND_HOLD_STS_MSK)) { u32 txid_auto; txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); txid_auto |= TXID_AUTO_CTB_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto); return; } } } static void prep_abort_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int device_id, int abort_flag, int tag_to_abort) { struct sas_task *task = slot->task; struct domain_device *dev = task->dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct hisi_sas_port *port = slot->port; struct timer_list *timer = &slot->internal_abort_timer; /* setup the quirk timer */ timer_setup(timer, hisi_sas_internal_abort_quirk_timeout, 0); /* Set the timeout to 10ms less than internal abort timeout */ mod_timer(timer, jiffies + msecs_to_jiffies(100)); /* dw0 */ hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/ (port->id << CMD_HDR_PORT_OFF) | (dev_is_sata(dev) << CMD_HDR_ABORT_DEVICE_TYPE_OFF) | (abort_flag << CMD_HDR_ABORT_FLAG_OFF)); /* dw1 */ hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF); /* dw7 */ hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF); hdr->transfer_tags = cpu_to_le32(slot->idx); } static int phy_up_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { int i, res = IRQ_HANDLED; u32 port_id, link_rate; struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct device *dev = hisi_hba->dev; u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd; struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd; hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1); if (is_sata_phy_v2_hw(hisi_hba, phy_no)) goto end; if (phy_no == 8) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF; link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> PORT_STATE_PHY8_CONN_RATE_OFF; } else { port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); port_id = (port_id >> (4 * phy_no)) & 0xf; link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; } if (port_id == 0xf) { dev_err(dev, "phyup: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } for (i = 0; i < 6; i++) { u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no, RX_IDAF_DWORD0 + (i * 4)); frame_rcvd[i] = __swab32(idaf); } sas_phy->linkrate = link_rate; sas_phy->oob_mode = SAS_OOB_MODE; memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE); dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate); phy->port_id = port_id; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); phy->phy_type |= PORT_TYPE_SAS; phy->phy_attached = 1; phy->identify.device_type = id->dev_type; phy->frame_rcvd_size = sizeof(struct sas_identify_frame); if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) { phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; if (!timer_pending(&hisi_hba->timer)) set_link_timer_quirk(hisi_hba); } hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP); end: hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_PHY_ENABLE_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0); return res; } static bool check_any_wideports_v2_hw(struct hisi_hba *hisi_hba) { u32 port_state; port_state = hisi_sas_read32(hisi_hba, PORT_STATE); if (port_state & 0x1ff) return true; return false; } static int phy_down_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { u32 phy_state, sl_ctrl, txid_auto; struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct hisi_sas_port *port = phy->port; struct device *dev = hisi_hba->dev; hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1); phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state); hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0); sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_ctrl & ~SL_CONTROL_CTA_MSK); if (port && !get_wideport_bitmap_v2_hw(hisi_hba, port->id)) if (!check_any_wideports_v2_hw(hisi_hba) && timer_pending(&hisi_hba->timer)) del_timer(&hisi_hba->timer); txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | TXID_AUTO_CT3_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0); return IRQ_HANDLED; } static irqreturn_t int_phy_updown_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_msk; int phy_no = 0; irqreturn_t res = IRQ_NONE; irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >> HGC_INVLD_DQE_INFO_FB_CH0_OFF) & 0x1ff; while (irq_msk) { if (irq_msk & 1) { u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); switch (reg_value & (CHL_INT0_NOT_RDY_MSK | CHL_INT0_SL_PHY_ENABLE_MSK)) { case CHL_INT0_SL_PHY_ENABLE_MSK: /* phy up */ if (phy_up_v2_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; break; case CHL_INT0_NOT_RDY_MSK: /* phy down */ if (phy_down_v2_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; break; case (CHL_INT0_NOT_RDY_MSK | CHL_INT0_SL_PHY_ENABLE_MSK): reg_value = hisi_sas_read32(hisi_hba, PHY_STATE); if (reg_value & BIT(phy_no)) { /* phy up */ if (phy_up_v2_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; } else { /* phy down */ if (phy_down_v2_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; } break; default: break; } } irq_msk >>= 1; phy_no++; } return res; } static void phy_bcast_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_ha_struct *sas_ha = &hisi_hba->sha; u32 bcast_status; hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1); bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS); if (bcast_status & RX_BCAST_CHG_MSK) sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_RX_BCST_ACK_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0); } static const struct hisi_sas_hw_error port_ecc_axi_error[] = { { .irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_ERR_OFF), .msg = "dmac_tx_ecc_bad_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_ERR_OFF), .msg = "dmac_rx_ecc_bad_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF), .msg = "dma_tx_axi_wr_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF), .msg = "dma_tx_axi_rd_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF), .msg = "dma_rx_axi_wr_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF), .msg = "dma_rx_axi_rd_err", }, }; static irqreturn_t int_chnl_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; struct device *dev = hisi_hba->dev; u32 ent_msk, ent_tmp, irq_msk; int phy_no = 0; ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); ent_tmp = ent_msk; ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK; hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk); irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >> HGC_INVLD_DQE_INFO_FB_CH3_OFF) & 0x1ff; while (irq_msk) { u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1); u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2); if ((irq_msk & (1 << phy_no)) && irq_value1) { int i; for (i = 0; i < ARRAY_SIZE(port_ecc_axi_error); i++) { const struct hisi_sas_hw_error *error = &port_ecc_axi_error[i]; if (!(irq_value1 & error->irq_msk)) continue; dev_warn(dev, "%s error (phy%d 0x%x) found!\n", error->msg, phy_no, irq_value1); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT1, irq_value1); } if ((irq_msk & (1 << phy_no)) && irq_value2) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; if (irq_value2 & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) { dev_warn(dev, "phy%d identify timeout\n", phy_no); hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); } hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, irq_value2); } if ((irq_msk & (1 << phy_no)) && irq_value0) { if (irq_value0 & CHL_INT0_SL_RX_BCST_ACK_MSK) phy_bcast_v2_hw(phy_no, hisi_hba); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, irq_value0 & (~CHL_INT0_HOTPLUG_TOUT_MSK) & (~CHL_INT0_SL_PHY_ENABLE_MSK) & (~CHL_INT0_NOT_RDY_MSK)); } irq_msk &= ~(1 << phy_no); phy_no++; } hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp); return IRQ_HANDLED; } static void one_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value) { struct device *dev = hisi_hba->dev; const struct hisi_sas_hw_error *ecc_error; u32 val; int i; for (i = 0; i < ARRAY_SIZE(one_bit_ecc_errors); i++) { ecc_error = &one_bit_ecc_errors[i]; if (irq_value & ecc_error->irq_msk) { val = hisi_sas_read32(hisi_hba, ecc_error->reg); val &= ecc_error->msk; val >>= ecc_error->shift; dev_warn(dev, ecc_error->msg, val); } } } static void multi_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value) { struct device *dev = hisi_hba->dev; const struct hisi_sas_hw_error *ecc_error; u32 val; int i; for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) { ecc_error = &multi_bit_ecc_errors[i]; if (irq_value & ecc_error->irq_msk) { val = hisi_sas_read32(hisi_hba, ecc_error->reg); val &= ecc_error->msk; val >>= ecc_error->shift; dev_err(dev, ecc_error->msg, irq_value, val); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } } return; } static irqreturn_t fatal_ecc_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_value, irq_msk; irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk | 0xffffffff); irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR); if (irq_value) { one_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); multi_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); } hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk); return IRQ_HANDLED; } static const struct hisi_sas_hw_error axi_error[] = { { .msk = BIT(0), .msg = "IOST_AXI_W_ERR" }, { .msk = BIT(1), .msg = "IOST_AXI_R_ERR" }, { .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" }, { .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" }, { .msk = BIT(4), .msg = "SATA_AXI_W_ERR" }, { .msk = BIT(5), .msg = "SATA_AXI_R_ERR" }, { .msk = BIT(6), .msg = "DQE_AXI_R_ERR" }, { .msk = BIT(7), .msg = "CQE_AXI_W_ERR" }, {}, }; static const struct hisi_sas_hw_error fifo_error[] = { { .msk = BIT(8), .msg = "CQE_WINFO_FIFO" }, { .msk = BIT(9), .msg = "CQE_MSG_FIFIO" }, { .msk = BIT(10), .msg = "GETDQE_FIFO" }, { .msk = BIT(11), .msg = "CMDP_FIFO" }, { .msk = BIT(12), .msg = "AWTCTRL_FIFO" }, {}, }; static const struct hisi_sas_hw_error fatal_axi_errors[] = { { .irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF), .msg = "write pointer and depth", }, { .irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF), .msg = "iptt no match slot", }, { .irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF), .msg = "read pointer and depth", }, { .irq_msk = BIT(ENT_INT_SRC3_AXI_OFF), .reg = HGC_AXI_FIFO_ERR_INFO, .sub = axi_error, }, { .irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF), .reg = HGC_AXI_FIFO_ERR_INFO, .sub = fifo_error, }, { .irq_msk = BIT(ENT_INT_SRC3_LM_OFF), .msg = "LM add/fetch list", }, { .irq_msk = BIT(ENT_INT_SRC3_ABT_OFF), .msg = "SAS_HGC_ABT fetch LM list", }, }; static irqreturn_t fatal_axi_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_value, irq_msk, err_value; struct device *dev = hisi_hba->dev; const struct hisi_sas_hw_error *axi_error; int i; irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0xfffffffe); irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); for (i = 0; i < ARRAY_SIZE(fatal_axi_errors); i++) { axi_error = &fatal_axi_errors[i]; if (!(irq_value & axi_error->irq_msk)) continue; hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << axi_error->shift); if (axi_error->sub) { const struct hisi_sas_hw_error *sub = axi_error->sub; err_value = hisi_sas_read32(hisi_hba, axi_error->reg); for (; sub->msk || sub->msg; sub++) { if (!(err_value & sub->msk)) continue; dev_err(dev, "%s (0x%x) found!\n", sub->msg, irq_value); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } } else { dev_err(dev, "%s (0x%x) found!\n", axi_error->msg, irq_value); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } } if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) { u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR); u32 dev_id = reg_val & ITCT_DEV_MSK; struct hisi_sas_device *sas_dev = &hisi_hba->devices[dev_id]; hisi_sas_write32(hisi_hba, ITCT_CLR, 0); dev_dbg(dev, "clear ITCT ok\n"); complete(sas_dev->completion); } hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk); return IRQ_HANDLED; } static void cq_tasklet_v2_hw(unsigned long val) { struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val; struct hisi_hba *hisi_hba = cq->hisi_hba; struct hisi_sas_slot *slot; struct hisi_sas_itct *itct; struct hisi_sas_complete_v2_hdr *complete_queue; u32 rd_point = cq->rd_point, wr_point, dev_id; int queue = cq->id; if (unlikely(hisi_hba->reject_stp_links_msk)) phys_try_accept_stp_links_v2_hw(hisi_hba); complete_queue = hisi_hba->complete_hdr[queue]; wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR + (0x14 * queue)); while (rd_point != wr_point) { struct hisi_sas_complete_v2_hdr *complete_hdr; int iptt; complete_hdr = &complete_queue[rd_point]; /* Check for NCQ completion */ if (complete_hdr->act) { u32 act_tmp = complete_hdr->act; int ncq_tag_count = ffs(act_tmp); dev_id = (complete_hdr->dw1 & CMPLT_HDR_DEV_ID_MSK) >> CMPLT_HDR_DEV_ID_OFF; itct = &hisi_hba->itct[dev_id]; /* The NCQ tags are held in the itct header */ while (ncq_tag_count) { __le64 *ncq_tag = &itct->qw4_15[0]; ncq_tag_count -= 1; iptt = (ncq_tag[ncq_tag_count / 5] >> (ncq_tag_count % 5) * 12) & 0xfff; slot = &hisi_hba->slot_info[iptt]; slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v2_hw(hisi_hba, slot); act_tmp &= ~(1 << ncq_tag_count); ncq_tag_count = ffs(act_tmp); } } else { iptt = (complete_hdr->dw1) & CMPLT_HDR_IPTT_MSK; slot = &hisi_hba->slot_info[iptt]; slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v2_hw(hisi_hba, slot); } if (++rd_point >= HISI_SAS_QUEUE_SLOTS) rd_point = 0; } /* update rd_point */ cq->rd_point = rd_point; hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point); } static irqreturn_t cq_interrupt_v2_hw(int irq_no, void *p) { struct hisi_sas_cq *cq = p; struct hisi_hba *hisi_hba = cq->hisi_hba; int queue = cq->id; hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue); tasklet_schedule(&cq->tasklet); return IRQ_HANDLED; } static irqreturn_t sata_int_v2_hw(int irq_no, void *p) { struct hisi_sas_phy *phy = p; struct hisi_hba *hisi_hba = phy->hisi_hba; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct device *dev = hisi_hba->dev; struct hisi_sas_initial_fis *initial_fis; struct dev_to_host_fis *fis; u32 ent_tmp, ent_msk, ent_int, port_id, link_rate, hard_phy_linkrate; irqreturn_t res = IRQ_HANDLED; u8 attached_sas_addr[SAS_ADDR_SIZE] = {0}; int phy_no, offset; phy_no = sas_phy->id; initial_fis = &hisi_hba->initial_fis[phy_no]; fis = &initial_fis->fis; offset = 4 * (phy_no / 4); ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK1 + offset); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk | 1 << ((phy_no % 4) * 8)); ent_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC1 + offset); ent_tmp = ent_int & (1 << (ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4))); ent_int >>= ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4); if ((ent_int & ENT_INT_SRC1_D2H_FIS_CH0_MSK) == 0) { dev_warn(dev, "sata int: phy%d did not receive FIS\n", phy_no); res = IRQ_NONE; goto end; } /* check ERR bit of Status Register */ if (fis->status & ATA_ERR) { dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no, fis->status); disable_phy_v2_hw(hisi_hba, phy_no); enable_phy_v2_hw(hisi_hba, phy_no); res = IRQ_NONE; goto end; } if (unlikely(phy_no == 8)) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF; link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> PORT_STATE_PHY8_CONN_RATE_OFF; } else { port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); port_id = (port_id >> (4 * phy_no)) & 0xf; link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; } if (port_id == 0xf) { dev_err(dev, "sata int: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } sas_phy->linkrate = link_rate; hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no, HARD_PHY_LINKRATE); phy->maximum_linkrate = hard_phy_linkrate & 0xf; phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf; sas_phy->oob_mode = SATA_OOB_MODE; /* Make up some unique SAS address */ attached_sas_addr[0] = 0x50; attached_sas_addr[6] = hisi_hba->shost->host_no; attached_sas_addr[7] = phy_no; memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE); memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis)); dev_info(dev, "sata int phyup: phy%d link_rate=%d\n", phy_no, link_rate); phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); phy->port_id = port_id; phy->phy_type |= PORT_TYPE_SATA; phy->phy_attached = 1; phy->identify.device_type = SAS_SATA_DEV; phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP); end: hisi_sas_write32(hisi_hba, ENT_INT_SRC1 + offset, ent_tmp); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk); return res; } static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = { int_phy_updown_v2_hw, int_chnl_int_v2_hw, }; static irq_handler_t fatal_interrupts[HISI_SAS_FATAL_INT_NR] = { fatal_ecc_int_v2_hw, fatal_axi_int_v2_hw }; /** * There is a limitation in the hip06 chipset that we need * to map in all mbigen interrupts, even if they are not used. */ static int interrupt_init_v2_hw(struct hisi_hba *hisi_hba) { struct platform_device *pdev = hisi_hba->platform_dev; struct device *dev = &pdev->dev; int irq, rc, irq_map[128]; int i, phy_no, fatal_no, queue_no, k; for (i = 0; i < 128; i++) irq_map[i] = platform_get_irq(pdev, i); for (i = 0; i < HISI_SAS_PHY_INT_NR; i++) { irq = irq_map[i + 1]; /* Phy up/down is irq1 */ rc = devm_request_irq(dev, irq, phy_interrupts[i], 0, DRV_NAME " phy", hisi_hba); if (rc) { dev_err(dev, "irq init: could not request " "phy interrupt %d, rc=%d\n", irq, rc); rc = -ENOENT; goto free_phy_int_irqs; } } for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; irq = irq_map[phy_no + 72]; rc = devm_request_irq(dev, irq, sata_int_v2_hw, 0, DRV_NAME " sata", phy); if (rc) { dev_err(dev, "irq init: could not request " "sata interrupt %d, rc=%d\n", irq, rc); rc = -ENOENT; goto free_sata_int_irqs; } } for (fatal_no = 0; fatal_no < HISI_SAS_FATAL_INT_NR; fatal_no++) { irq = irq_map[fatal_no + 81]; rc = devm_request_irq(dev, irq, fatal_interrupts[fatal_no], 0, DRV_NAME " fatal", hisi_hba); if (rc) { dev_err(dev, "irq init: could not request fatal interrupt %d, rc=%d\n", irq, rc); rc = -ENOENT; goto free_fatal_int_irqs; } } for (queue_no = 0; queue_no < hisi_hba->queue_count; queue_no++) { struct hisi_sas_cq *cq = &hisi_hba->cq[queue_no]; struct tasklet_struct *t = &cq->tasklet; irq = irq_map[queue_no + 96]; rc = devm_request_irq(dev, irq, cq_interrupt_v2_hw, 0, DRV_NAME " cq", cq); if (rc) { dev_err(dev, "irq init: could not request cq interrupt %d, rc=%d\n", irq, rc); rc = -ENOENT; goto free_cq_int_irqs; } tasklet_init(t, cq_tasklet_v2_hw, (unsigned long)cq); } return 0; free_cq_int_irqs: for (k = 0; k < queue_no; k++) { struct hisi_sas_cq *cq = &hisi_hba->cq[k]; free_irq(irq_map[k + 96], cq); tasklet_kill(&cq->tasklet); } free_fatal_int_irqs: for (k = 0; k < fatal_no; k++) free_irq(irq_map[k + 81], hisi_hba); free_sata_int_irqs: for (k = 0; k < phy_no; k++) { struct hisi_sas_phy *phy = &hisi_hba->phy[k]; free_irq(irq_map[k + 72], phy); } free_phy_int_irqs: for (k = 0; k < i; k++) free_irq(irq_map[k + 1], hisi_hba); return rc; } static int hisi_sas_v2_init(struct hisi_hba *hisi_hba) { int rc; memset(hisi_hba->sata_dev_bitmap, 0, sizeof(hisi_hba->sata_dev_bitmap)); rc = hw_init_v2_hw(hisi_hba); if (rc) return rc; rc = interrupt_init_v2_hw(hisi_hba); if (rc) return rc; return 0; } static void interrupt_disable_v2_hw(struct hisi_hba *hisi_hba) { struct platform_device *pdev = hisi_hba->platform_dev; int i; for (i = 0; i < hisi_hba->queue_count; i++) hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff); for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff); } for (i = 0; i < 128; i++) synchronize_irq(platform_get_irq(pdev, i)); } static u32 get_phys_state_v2_hw(struct hisi_hba *hisi_hba) { return hisi_sas_read32(hisi_hba, PHY_STATE); } static int soft_reset_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; int rc, cnt; interrupt_disable_v2_hw(hisi_hba); hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0); hisi_sas_kill_tasklets(hisi_hba); hisi_sas_stop_phys(hisi_hba); mdelay(10); hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1); /* wait until bus idle */ cnt = 0; while (1) { u32 status = hisi_sas_read32_relaxed(hisi_hba, AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN); if (status == 0x3) break; udelay(10); if (cnt++ > 10) { dev_err(dev, "wait axi bus state to idle timeout!\n"); return -1; } } hisi_sas_init_mem(hisi_hba); rc = hw_init_v2_hw(hisi_hba); if (rc) return rc; phys_reject_stp_links_v2_hw(hisi_hba); return 0; } static int write_gpio_v2_hw(struct hisi_hba *hisi_hba, u8 reg_type, u8 reg_index, u8 reg_count, u8 *write_data) { struct device *dev = hisi_hba->dev; int phy_no, count; if (!hisi_hba->sgpio_regs) return -EOPNOTSUPP; switch (reg_type) { case SAS_GPIO_REG_TX: count = reg_count * 4; count = min(count, hisi_hba->n_phy); for (phy_no = 0; phy_no < count; phy_no++) { /* * GPIO_TX[n] register has the highest numbered drive * of the four in the first byte and the lowest * numbered drive in the fourth byte. * See SFF-8485 Rev. 0.7 Table 24. */ void __iomem *reg_addr = hisi_hba->sgpio_regs + reg_index * 4 + phy_no; int data_idx = phy_no + 3 - (phy_no % 4) * 2; writeb(write_data[data_idx], reg_addr); } break; default: dev_err(dev, "write gpio: unsupported or bad reg type %d\n", reg_type); return -EINVAL; } return 0; } static const struct hisi_sas_hw hisi_sas_v2_hw = { .hw_init = hisi_sas_v2_init, .setup_itct = setup_itct_v2_hw, .slot_index_alloc = slot_index_alloc_quirk_v2_hw, .alloc_dev = alloc_dev_quirk_v2_hw, .sl_notify = sl_notify_v2_hw, .get_wideport_bitmap = get_wideport_bitmap_v2_hw, .clear_itct = clear_itct_v2_hw, .free_device = free_device_v2_hw, .prep_smp = prep_smp_v2_hw, .prep_ssp = prep_ssp_v2_hw, .prep_stp = prep_ata_v2_hw, .prep_abort = prep_abort_v2_hw, .get_free_slot = get_free_slot_v2_hw, .start_delivery = start_delivery_v2_hw, .slot_complete = slot_complete_v2_hw, .phys_init = phys_init_v2_hw, .phy_start = start_phy_v2_hw, .phy_disable = disable_phy_v2_hw, .phy_hard_reset = phy_hard_reset_v2_hw, .get_events = phy_get_events_v2_hw, .phy_set_linkrate = phy_set_linkrate_v2_hw, .phy_get_max_linkrate = phy_get_max_linkrate_v2_hw, .max_command_entries = HISI_SAS_COMMAND_ENTRIES_V2_HW, .complete_hdr_size = sizeof(struct hisi_sas_complete_v2_hdr), .soft_reset = soft_reset_v2_hw, .get_phys_state = get_phys_state_v2_hw, .write_gpio = write_gpio_v2_hw, }; static int hisi_sas_v2_probe(struct platform_device *pdev) { /* * Check if we should defer the probe before we probe the * upper layer, as it's hard to defer later on. */ int ret = platform_get_irq(pdev, 0); if (ret < 0) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "cannot obtain irq\n"); return ret; } return hisi_sas_probe(pdev, &hisi_sas_v2_hw); } static int hisi_sas_v2_remove(struct platform_device *pdev) { struct sas_ha_struct *sha = platform_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; hisi_sas_kill_tasklets(hisi_hba); return hisi_sas_remove(pdev); } static const struct of_device_id sas_v2_of_match[] = { { .compatible = "hisilicon,hip06-sas-v2",}, { .compatible = "hisilicon,hip07-sas-v2",}, {}, }; MODULE_DEVICE_TABLE(of, sas_v2_of_match); static const struct acpi_device_id sas_v2_acpi_match[] = { { "HISI0162", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, sas_v2_acpi_match); static struct platform_driver hisi_sas_v2_driver = { .probe = hisi_sas_v2_probe, .remove = hisi_sas_v2_remove, .driver = { .name = DRV_NAME, .of_match_table = sas_v2_of_match, .acpi_match_table = ACPI_PTR(sas_v2_acpi_match), }, }; module_platform_driver(hisi_sas_v2_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Garry "); MODULE_DESCRIPTION("HISILICON SAS controller v2 hw driver"); MODULE_ALIAS("platform:" DRV_NAME);