/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "linux/delay.h" #include "hwmgr.h" #include "fiji_smumgr.h" #include "atombios.h" #include "hardwaremanager.h" #include "ppatomctrl.h" #include "atombios.h" #include "cgs_common.h" #include "fiji_dyn_defaults.h" #include "fiji_powertune.h" #include "smu73.h" #include "smu/smu_7_1_3_d.h" #include "smu/smu_7_1_3_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #include "pppcielanes.h" #include "fiji_hwmgr.h" #include "tonga_processpptables.h" #include "tonga_pptable.h" #include "pp_debug.h" #include "pp_acpi.h" #include "amd_pcie_helpers.h" #include "cgs_linux.h" #include "ppinterrupt.h" #include "fiji_clockpowergating.h" #include "fiji_thermal.h" #define VOLTAGE_SCALE 4 #define SMC_RAM_END 0x40000 #define VDDC_VDDCI_DELTA 300 #define MC_SEQ_MISC0_GDDR5_SHIFT 28 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 #define MC_SEQ_MISC0_GDDR5_VALUE 5 #define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */ #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d /* From smc_reg.h */ #define SMC_CG_IND_START 0xc0030000 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */ #define VOLTAGE_SCALE 4 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 #define VDDC_VDDCI_DELTA 300 #define ixSWRST_COMMAND_1 0x1400103 #define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ enum DPM_EVENT_SRC { DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */ DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */ DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */ DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */ DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */ }; /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0}, {600, 1050, 6, 1} }; /* [FF, SS] type, [] 4 voltage ranges, and * [Floor Freq, Boundary Freq, VID min , VID max] */ static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] * (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic); struct fiji_power_state *cast_phw_fiji_power_state( struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (struct fiji_power_state *)hw_ps; } const struct fiji_power_state *cast_const_phw_fiji_power_state( const struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (const struct fiji_power_state *)hw_ps; } static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) { return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) ? true : false; } static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_ulv_parm *ulv = &data->ulv; ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT; data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0; data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1; data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2; data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3; data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4; data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5; data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6; data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7; data->static_screen_threshold_unit = PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT; data->static_screen_threshold = PPFIJI_STATICSCREENTHRESHOLD_DFLT; /* Unset ABM cap as it moved to DAL. * Add PHM_PlatformCaps_NonABMSupportInPPLib * for re-direct ABM related request to DAL */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ABM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NonABMSupportInPPLib); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicACTiming); fiji_initialize_power_tune_defaults(hwmgr); data->mclk_stutter_mode_threshold = 60000; data->pcie_gen_performance.max = PP_PCIEGen1; data->pcie_gen_performance.min = PP_PCIEGen3; data->pcie_gen_power_saving.max = PP_PCIEGen1; data->pcie_gen_power_saving.min = PP_PCIEGen3; data->pcie_lane_performance.max = 0; data->pcie_lane_performance.min = 16; data->pcie_lane_power_saving.max = 0; data->pcie_lane_power_saving.min = 16; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); } static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *sclk) { uint8_t entryId; uint8_t voltageId; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) { voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd; if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id) break; } PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count, "Can't find requested voltage id in vdd_dep_on_sclk table!", return -EINVAL; ); *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk; return 0; } /** * Get Leakage VDDC based on leakage ID. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint16_t vv_id; uint16_t vddc = 0; uint16_t evv_default = 1150; uint16_t i, j; uint32_t sclk = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; int result; for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) { vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (!fiji_get_sclk_for_voltage_evv(hwmgr, table_info->vddc_lookup_table, vv_id, &sclk)) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { for (j = 1; j < sclk_table->count; j++) { if (sclk_table->entries[j].clk == sclk && sclk_table->entries[j].cks_enable == 0) { sclk += 5000; break; } } } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableDriverEVV)) result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr, VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true); else result = -EINVAL; if (result) result = atomctrl_get_voltage_evv_on_sclk(hwmgr, VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc); /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ PP_ASSERT_WITH_CODE((vddc < 2000), "Invalid VDDC value, greater than 2v!", result = -EINVAL;); if (result) /* 1.15V is the default safe value for Fiji */ vddc = evv_default; /* the voltage should not be zero nor equal to leakage ID */ if (vddc != 0 && vddc != vv_id) { data->vddc_leakage.actual_voltage [data->vddc_leakage.count] = vddc; data->vddc_leakage.leakage_id [data->vddc_leakage.count] = vv_id; data->vddc_leakage.count++; } } } return 0; } /** * Change virtual leakage voltage to actual value. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to changing voltage * @param pointer to leakage table */ static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, uint16_t *voltage, struct fiji_leakage_voltage *leakage_table) { uint32_t index; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (index = 0; index < leakage_table->count; index++) { /* if this voltage matches a leakage voltage ID */ /* patch with actual leakage voltage */ if (leakage_table->leakage_id[index] == *voltage) { *voltage = leakage_table->actual_voltage[index]; break; } } if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n"); } /** * Patch voltage lookup table by EVV leakages. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to voltage lookup table * @param pointer to leakage table * @return always 0 */ static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, struct fiji_leakage_voltage *leakage_table) { uint32_t i; for (i = 0; i < lookup_table->count; i++) fiji_patch_with_vdd_leakage(hwmgr, &lookup_table->entries[i].us_vdd, leakage_table); return 0; } static int fiji_patch_clock_voltage_limits_with_vddc_leakage( struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table, uint16_t *vddc) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = table_info->max_clock_voltage_on_dc.vddc; return 0; } static int fiji_patch_voltage_dependency_tables_with_lookup_table( struct pp_hwmgr *hwmgr) { uint8_t entryId; uint8_t voltageId; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; for (entryId = 0; entryId < sclk_table->count; ++entryId) { voltageId = sclk_table->entries[entryId].vddInd; sclk_table->entries[entryId].vddc = table_info->vddc_lookup_table->entries[voltageId].us_vdd; } for (entryId = 0; entryId < mclk_table->count; ++entryId) { voltageId = mclk_table->entries[entryId].vddInd; mclk_table->entries[entryId].vddc = table_info->vddc_lookup_table->entries[voltageId].us_vdd; } for (entryId = 0; entryId < mm_table->count; ++entryId) { voltageId = mm_table->entries[entryId].vddcInd; mm_table->entries[entryId].vddc = table_info->vddc_lookup_table->entries[voltageId].us_vdd; } return 0; } static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) { /* Need to determine if we need calculated voltage. */ return 0; } static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) { /* Need to determine if we need calculated voltage from mm table. */ return 0; } static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_voltage_lookup_table *lookup_table) { uint32_t table_size, i, j; struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; table_size = lookup_table->count; PP_ASSERT_WITH_CODE(0 != lookup_table->count, "Lookup table is empty", return -EINVAL); /* Sorting voltages */ for (i = 0; i < table_size - 1; i++) { for (j = i + 1; j > 0; j--) { if (lookup_table->entries[j].us_vdd < lookup_table->entries[j - 1].us_vdd) { tmp_voltage_lookup_record = lookup_table->entries[j - 1]; lookup_table->entries[j - 1] = lookup_table->entries[j]; lookup_table->entries[j] = tmp_voltage_lookup_record; } } } return 0; } static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr) { int result = 0; int tmp_result; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr, table_info->vddc_lookup_table, &(data->vddc_leakage)); if (tmp_result) result = tmp_result; tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); if (tmp_result) result = tmp_result; tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = fiji_calc_voltage_dependency_tables(hwmgr); if (tmp_result) result = tmp_result; tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); if(tmp_result) result = tmp_result; return result; } static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, "VDD dependency on SCLK table is missing. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, "VDD dependency on SCLK table has to have is missing. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, "VDD dependency on MCLK table is missing. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, "VDD dependency on MCLK table has to have is missing. \ This table is mandatory", return -EINVAL); data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc; data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table-> entries[allowed_sclk_vdd_table->count - 1].vddc; table_info->max_clock_voltage_on_ac.sclk = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.mclk = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.vddc = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; table_info->max_clock_voltage_on_ac.vddci = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; return 0; } static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr) { uint32_t speedCntl = 0; /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, ixPCIE_LC_SPEED_CNTL); return((uint16_t)PHM_GET_FIELD(speedCntl, PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); } static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) { uint32_t link_width; /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); PP_ASSERT_WITH_CODE((7 >= link_width), "Invalid PCIe lane width!", return 0); return decode_pcie_lane_width(link_width); } /** Patch the Boot State to match VBIOS boot clocks and voltage. * * @param hwmgr Pointer to the hardware manager. * @param pPowerState The address of the PowerState instance being created. * */ static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps; ATOM_FIRMWARE_INFO_V2_2 *fw_info; uint16_t size; uint8_t frev, crev; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); /* First retrieve the Boot clocks and VDDC from the firmware info table. * We assume here that fw_info is unchanged if this call fails. */ fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( hwmgr->device, index, &size, &frev, &crev); if (!fw_info) /* During a test, there is no firmware info table. */ return 0; /* Patch the state. */ data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock); data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock); data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage); data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage); data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage); data->vbios_boot_state.pcie_gen_bootup_value = fiji_get_current_pcie_speed(hwmgr); data->vbios_boot_state.pcie_lane_bootup_value = (uint16_t)fiji_get_current_pcie_lane_number(hwmgr); /* set boot power state */ ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; return 0; } static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t i; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); bool stay_in_boot; int result; data->dll_default_on = false; data->sram_end = SMC_RAM_END; for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++) data->activity_target[i] = FIJI_AT_DFLT; data->vddc_vddci_delta = VDDC_VDDCI_DELTA; data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT; data->mclk_dpm0_activity_target = 0xa; data->sclk_dpm_key_disabled = 0; data->mclk_dpm_key_disabled = 0; data->pcie_dpm_key_disabled = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); data->gpio_debug = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); /* need to set voltage control types before EVV patching */ data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE; data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE; data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE; if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl)) if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO; if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI)) { if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2; } if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); if (table_info && table_info->cac_dtp_table->usClockStretchAmount) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); fiji_init_dpm_defaults(hwmgr); /* Get leakage voltage based on leakage ID. */ fiji_get_evv_voltages(hwmgr); /* Patch our voltage dependency table with actual leakage voltage * We need to perform leakage translation before it's used by other functions */ fiji_complete_dependency_tables(hwmgr); /* Parse pptable data read from VBIOS */ fiji_set_private_data_based_on_pptable(hwmgr); /* ULV Support */ data->ulv.ulv_supported = true; /* ULV feature is enabled by default */ /* Initalize Dynamic State Adjustment Rule Settings */ result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr); if (!result) { data->uvd_enabled = false; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); data->vddc_phase_shed_control = false; } stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StayInBootState); if (0 == result) { struct cgs_system_info sys_info = {0}; data->is_tlu_enabled = 0; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = FIJI_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp && hwmgr->thermal_controller. advanceFanControlParameters.ucFanControlMode) { hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = table_info->cac_dtp_table->usOperatingTempMinLimit; hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usOperatingTempMaxLimit; hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = table_info->cac_dtp_table->usOperatingTempStep; hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = table_info->cac_dtp_table->usTargetOperatingTemp; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); } sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; result = cgs_query_system_info(hwmgr->device, &sys_info); if (result) data->pcie_gen_cap = 0x30007; else data->pcie_gen_cap = (uint32_t)sys_info.value; if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) data->pcie_spc_cap = 20; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; result = cgs_query_system_info(hwmgr->device, &sys_info); if (result) data->pcie_lane_cap = 0x2f0000; else data->pcie_lane_cap = (uint32_t)sys_info.value; } else { /* Ignore return value in here, we are cleaning up a mess. */ tonga_hwmgr_backend_fini(hwmgr); } return 0; } /** * Read clock related registers. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); return 0; } /** * Find out if memory is GDDR5. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_get_memory_type(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t temp; temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE == ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT)); return 0; } /** * Enables Dynamic Power Management by SMC * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1); return 0; } /** * Initialize PowerGating States for different engines * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); data->uvd_power_gated = false; data->vce_power_gated = false; data->samu_power_gated = false; data->acp_power_gated = false; data->pg_acp_init = true; return 0; } static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = fiji_read_clock_registers(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to read clock registers!", result = tmp_result); tmp_result = fiji_get_memory_type(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get memory type!", result = tmp_result); tmp_result = fiji_enable_acpi_power_management(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable ACPI power management!", result = tmp_result); tmp_result = fiji_init_power_gate_state(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to init power gate state!", result = tmp_result); tmp_result = tonga_get_mc_microcode_version(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get MC microcode version!", result = tmp_result); tmp_result = fiji_init_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to init sclk threshold!", result = tmp_result); return result; } /** * Checks if we want to support voltage control * * @param hwmgr the address of the powerplay hardware manager. */ static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr) { const struct fiji_hwmgr *data = (const struct fiji_hwmgr *)(hwmgr->backend); return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control); } /** * Enable voltage control * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr) { /* enable voltage control */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); return 0; } /** * Remove repeated voltage values and create table with unique values. * * @param hwmgr the address of the powerplay hardware manager. * @param vol_table the pointer to changing voltage table * @return 0 in success */ static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr, struct pp_atomctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomctrl_voltage_table *table; PP_ASSERT_WITH_CODE((NULL != vol_table), "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomctrl_voltage_table), GFP_KERNEL); if (NULL == table) return -ENOMEM; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table)); kfree(table); return 0; } static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table); PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } result = fiji_trim_voltage_table(hwmgr, vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim MVDD table.", return result); return 0; } static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table); PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } result = fiji_trim_voltage_table(hwmgr, vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim VDDCI table.", return result); return 0; } static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table) { int i = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table); PP_ASSERT_WITH_CODE((0 != lookup_table->count), "Voltage Lookup Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = lookup_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = lookup_table->entries[i].us_vdd; vol_table->entries[i].smio_low = 0; } return 0; } /* ---- Voltage Tables ---- * If the voltage table would be bigger than * what will fit into the state table on * the SMC keep only the higher entries. */ static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr, uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; return; } /** * Create Voltage Tables. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; int result; if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve MVDD table.", return result); } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { result = fiji_get_svi2_mvdd_voltage_table(hwmgr, table_info->vdd_dep_on_mclk); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 MVDD table from dependancy table.", return result;); } if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve VDDCI table.", return result); } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { result = fiji_get_svi2_vddci_voltage_table(hwmgr, table_info->vdd_dep_on_mclk); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result); } if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { result = fiji_get_svi2_vdd_voltage_table(hwmgr, table_info->vddc_lookup_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDC table from lookup table.", return result); } PP_ASSERT_WITH_CODE( (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)), "Too many voltage values for VDDC. Trimming to fit state table.", fiji_trim_voltage_table_to_fit_state_table(hwmgr, SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table))); PP_ASSERT_WITH_CODE( (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)), "Too many voltage values for VDDCI. Trimming to fit state table.", fiji_trim_voltage_table_to_fit_state_table(hwmgr, SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table))); PP_ASSERT_WITH_CODE( (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)), "Too many voltage values for MVDD. Trimming to fit state table.", fiji_trim_voltage_table_to_fit_state_table(hwmgr, SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table))); return 0; } static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) { /* Program additional LP registers * that are no longer programmed by VBIOS */ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); return 0; } /** * Programs static screed detection parameters * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_program_static_screen_threshold_parameters( struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); /* Set static screen threshold unit */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, data->static_screen_threshold_unit); /* Set static screen threshold */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, data->static_screen_threshold); return 0; } /** * Setup display gap for glitch free memory clock switching. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr) { uint32_t displayGap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE); displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, displayGap); return 0; } /** * Programs activity state transition voting clients * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); /* Clear reset for voting clients before enabling DPM */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); return 0; } /** * Get the location of various tables inside the FW image. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); uint32_t tmp; int result; bool error = false; result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, DpmTable), &tmp, data->sram_end); if (0 == result) data->dpm_table_start = tmp; error |= (0 != result); result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, SoftRegisters), &tmp, data->sram_end); if (!result) { data->soft_regs_start = tmp; smu_data->soft_regs_start = tmp; } error |= (0 != result); result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, mcRegisterTable), &tmp, data->sram_end); if (!result) data->mc_reg_table_start = tmp; result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, FanTable), &tmp, data->sram_end); if (!result) data->fan_table_start = tmp; error |= (0 != result); result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), &tmp, data->sram_end); if (!result) data->arb_table_start = tmp; error |= (0 != result); result = fiji_read_smc_sram_dword(hwmgr->smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, Version), &tmp, data->sram_end); if (!result) hwmgr->microcode_version_info.SMC = tmp; error |= (0 != result); return error ? -1 : 0; } /* Copy one arb setting to another and then switch the active set. * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. */ static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, uint32_t arb_src, uint32_t arb_dest) { uint32_t mc_arb_dram_timing; uint32_t mc_arb_dram_timing2; uint32_t burst_time; uint32_t mc_cg_config; switch (arb_src) { case MC_CG_ARB_FREQ_F0: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); break; case MC_CG_ARB_FREQ_F1: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); break; default: return -EINVAL; } switch (arb_dest) { case MC_CG_ARB_FREQ_F0: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); break; case MC_CG_ARB_FREQ_F1: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); break; default: return -EINVAL; } mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); mc_cg_config |= 0x0000000F; cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); return 0; } /** * Initial switch from ARB F0->F1 * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 * This function is to be called from the SetPowerState table. */ static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) { return fiji_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr, struct fiji_single_dpm_table *dpm_table, uint32_t count) { int i; PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER, "Fatal error, can not set up single DPM table entries " "to exceed max number!",); dpm_table->count = count; for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) dpm_table->dpm_levels[i].enabled = false; return 0; } static void fiji_setup_pcie_table_entry( struct fiji_single_dpm_table *dpm_table, uint32_t index, uint32_t pcie_gen, uint32_t pcie_lanes) { dpm_table->dpm_levels[index].value = pcie_gen; dpm_table->dpm_levels[index].param1 = pcie_lanes; dpm_table->dpm_levels[index].enabled = 1; } static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; uint32_t i, max_entry; PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || data->use_pcie_power_saving_levels), "No pcie performance levels!", return -EINVAL); if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) { data->pcie_gen_power_saving = data->pcie_gen_performance; data->pcie_lane_power_saving = data->pcie_lane_performance; } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) { data->pcie_gen_performance = data->pcie_gen_power_saving; data->pcie_lane_performance = data->pcie_lane_power_saving; } fiji_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK); if (pcie_table != NULL) { /* max_entry is used to make sure we reserve one PCIE level * for boot level (fix for A+A PSPP issue). * If PCIE table from PPTable have ULV entry + 8 entries, * then ignore the last entry.*/ max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ? SMU73_MAX_LEVELS_LINK : pcie_table->count; for (i = 1; i < max_entry; i++) { fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed), get_pcie_lane_support(data->pcie_lane_cap, pcie_table->entries[i].lane_width)); } data->dpm_table.pcie_speed_table.count = max_entry - 1; } else { /* Hardcode Pcie Table */ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); data->dpm_table.pcie_speed_table.count = 6; } /* Populate last level for boot PCIE level, but do not increment count. */ fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, data->dpm_table.pcie_speed_table.count, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); return 0; } /* * This function is to initalize all DPM state tables * for SMU7 based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, "SCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, "SCLK dependency table has to have is missing. " "This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, "MCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, "MCLK dependency table has to have is missing. " "This table is mandatory", return -EINVAL); /* clear the state table to reset everything to default */ fiji_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS); fiji_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY); /* Initialize Sclk DPM table based on allow Sclk values */ data->dpm_table.sclk_table.count = 0; for (i = 0; i < dep_sclk_table->count; i++) { if (i == 0 || data->dpm_table.sclk_table.dpm_levels [data->dpm_table.sclk_table.count - 1].value != dep_sclk_table->entries[i].clk) { data->dpm_table.sclk_table.dpm_levels [data->dpm_table.sclk_table.count].value = dep_sclk_table->entries[i].clk; data->dpm_table.sclk_table.dpm_levels [data->dpm_table.sclk_table.count].enabled = (i == 0) ? true : false; data->dpm_table.sclk_table.count++; } } /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mclk_table.count = 0; for (i=0; icount; i++) { if ( i==0 || data->dpm_table.mclk_table.dpm_levels [data->dpm_table.mclk_table.count - 1].value != dep_mclk_table->entries[i].clk) { data->dpm_table.mclk_table.dpm_levels [data->dpm_table.mclk_table.count].value = dep_mclk_table->entries[i].clk; data->dpm_table.mclk_table.dpm_levels [data->dpm_table.mclk_table.count].enabled = (i == 0) ? true : false; data->dpm_table.mclk_table.count++; } } /* setup PCIE gen speed levels */ fiji_setup_default_pcie_table(hwmgr); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct fiji_dpm_table)); return 0; } /** * @brief PhwFiji_GetVoltageOrder * Returns index of requested voltage record in lookup(table) * @param lookup_table - lookup list to search in * @param voltage - voltage to look for * @return 0 on success */ uint8_t fiji_get_voltage_index( struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage) { uint8_t count = (uint8_t) (lookup_table->count); uint8_t i; PP_ASSERT_WITH_CODE((NULL != lookup_table), "Lookup Table empty.", return 0); PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0); for (i = 0; i < lookup_table->count; i++) { /* find first voltage equal or bigger than requested */ if (lookup_table->entries[i].us_vdd >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } /** * Preparation of vddc and vddgfx CAC tables for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { uint32_t count; uint8_t index; int result = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_voltage_lookup_table *lookup_table = table_info->vddc_lookup_table; /* tables is already swapped, so in order to use the value from it, * we need to swap it back. * We are populating vddc CAC data to BapmVddc table * in split and merged mode */ for( count = 0; countcount; count++) { index = fiji_get_voltage_index(lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 - (lookup_table->entries[index].us_cac_low * VOLTAGE_SCALE)) / 25); table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 - (lookup_table->entries[index].us_cac_high * VOLTAGE_SCALE)) / 25); } return result; } /** * Preparation of voltage tables for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result; result = fiji_populate_cac_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate CAC voltage tables to SMC", return -EINVAL); return 0; } static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_Ulv *state) { int result = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 ); state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); } return result; } static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { return fiji_populate_ulv_level(hwmgr, &table->Ulv); } static int32_t fiji_get_dpm_level_enable_mask_value( struct fiji_single_dpm_table* dpm_table) { int32_t i; int32_t mask = 0; for (i = dpm_table->count; i > 0; i--) { mask = mask << 1; if (dpm_table->dpm_levels[i - 1].enabled) mask |= 0x1; else mask &= 0xFFFFFFFE; } return mask; } static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_dpm_table *dpm_table = &data->dpm_table; int i; /* Index (dpm_table->pcie_speed_table.count) * is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; data->dpm_level_enable_mask.pcie_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } /** * Calculates the SCLK dividers using the provided engine clock * * @param hwmgr the address of the hardware manager * @param clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) { const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct pp_atomctrl_clock_dividers_vi dividers; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; uint32_t ref_clock; uint32_t ref_divider; uint32_t fbdiv; int result; /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ ref_clock = atomctrl_get_reference_clock(hwmgr); ref_divider = 1 + dividers.uc_pll_ref_div; /* low 14 bits is fraction and high 12 bits is divider */ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; /* SPLL_FUNC_CNTL setup */ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); /* SPLL_FUNC_CNTL_3 setup*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); /* set to use fractional accumulation*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { struct pp_atomctrl_internal_ss_info ssInfo; uint32_t vco_freq = clock * dividers.uc_pll_post_div; if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, vco_freq, &ssInfo)) { /* * ss_info.speed_spectrum_percentage -- in unit of 0.01% * ss_info.speed_spectrum_rate -- in unit of khz * * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ uint32_t clk_s = ref_clock * 5 / (ref_divider * ssInfo.speed_spectrum_rate); /* clkv = 2 * D * fbdiv / NS */ uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); } } sclk->SclkFrequency = clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (uint8_t)dividers.pll_post_divider; return 0; } static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci) { uint32_t i; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct pp_atomctrl_voltage_table *vddci_table = &(data->vddci_voltage_table); for (i = 0; i < vddci_table->count; i++) { if (vddci_table->entries[i].value >= vddci) return vddci_table->entries[i].value; } PP_ASSERT_WITH_CODE(false, "VDDCI is larger than max VDDCI in VDDCI Voltage Table!", return vddci_table->entries[i].value); } static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table* dep_table, uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) { uint32_t i; uint16_t vddci; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); *voltage = *mvdd = 0; /* clock - voltage dependency table is empty table */ if (dep_table->count == 0) return -EINVAL; for (i = 0; i < dep_table->count; i++) { /* find first sclk bigger than request */ if (dep_table->entries[i].clk >= clock) { *voltage |= (dep_table->entries[i].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i].vddci) *voltage |= (dep_table->entries[i].vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; else { vddci = fiji_find_closest_vddci(hwmgr, (dep_table->entries[i].vddc - (uint16_t)data->vddc_vddci_delta)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i].mvdd * VOLTAGE_SCALE; *voltage |= 1 << PHASES_SHIFT; return 0; } } /* sclk is bigger than max sclk in the dependence table */ *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i-1].vddci) { vddci = fiji_find_closest_vddci(hwmgr, (dep_table->entries[i].vddc - (uint16_t)data->vddc_vddci_delta)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; return 0; } static uint8_t fiji_get_sleep_divider_id_from_clock(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t clock_insr) { uint8_t i; uint32_t temp; uint32_t min = clock_insr > 2500 ? clock_insr : 2500; PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { temp = clock / (1UL << i); if (temp >= min || i == 0) break; } return i; } /** * Populates single SMC SCLK structure using the provided engine clock * * @param hwmgr the address of the hardware manager * @param clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint16_t sclk_al_threshold, struct SMU73_Discrete_GraphicsLevel *level) { int result; /* PP_Clocks minClocks; */ uint32_t threshold, mvdd; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); result = fiji_calculate_sclk_params(hwmgr, clock, level); /* populate graphics levels */ result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, clock, &level->MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find VDDC voltage value for " "VDDC engine clock dependency table", return result); level->SclkFrequency = clock; level->ActivityLevel = sclk_al_threshold; level->CcPwrDynRm = 0; level->CcPwrDynRm1 = 0; level->EnabledForActivity = 0; level->EnabledForThrottle = 1; level->UpHyst = 10; level->DownHyst = 0; level->VoltageDownHyst = 0; level->PowerThrottle = 0; threshold = clock * data->fast_watermark_threshold / 100; data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(hwmgr, clock, hwmgr->display_config.min_core_set_clock_in_sr); /* Default to slow, highest DPM level will be * set to PPSMC_DISPLAY_WATERMARK_LOW later. */ level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); return 0; } /** * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states * * @param hwmgr the address of the hardware manager */ static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_dpm_table *dpm_table = &data->dpm_table; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; int result = 0; uint32_t array = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * SMU73_MAX_LEVELS_GRAPHICS; struct SMU73_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel; uint32_t i, max_entry; uint8_t hightest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; for (i = 0; i < dpm_table->sclk_table.count; i++) { result = fiji_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, (uint16_t)data->activity_target[i], &levels[i]); if (result) return result; /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) levels[i].DeepSleepDivId = 0; } /* Only enable level 0 for now.*/ levels[0].EnabledForActivity = 1; /* set highest level watermark to high */ levels[dpm_table->sclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; data->dpm_level_enable_mask.sclk_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); if (pcie_table != NULL) { PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); max_entry = pcie_entry_cnt - 1; for (i = 0; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = (uint8_t) ((i < max_entry)? i : max_entry); } else { while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (hightest_pcie_level_enabled + 1))) != 0 )) hightest_pcie_level_enabled++; while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << lowest_pcie_level_enabled)) == 0 )) lowest_pcie_level_enabled++; while ((count < hightest_pcie_level_enabled) && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 )) count++; mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) < hightest_pcie_level_enabled? (lowest_pcie_level_enabled + 1 + count) : hightest_pcie_level_enabled; /* set pcieDpmLevel to hightest_pcie_level_enabled */ for(i = 2; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = hightest_pcie_level_enabled; /* set pcieDpmLevel to lowest_pcie_level_enabled */ levels[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled */ levels[1].pcieDpmLevel = mid_pcie_level_enabled; } /* level count will send to smc once at init smc table and never change */ result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, (uint32_t)array_size, data->sram_end); return result; } /** * MCLK Frequency Ratio * SEQ_CG_RESP Bit[31:24] - 0x0 * Bit[27:24] \96 DDR3 Frequency ratio * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz * 400 < 0x7 <= 450MHz, 800 < 0xF */ static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) { if (mem_clock <= 10000) return 0x0; if (mem_clock <= 15000) return 0x1; if (mem_clock <= 20000) return 0x2; if (mem_clock <= 25000) return 0x3; if (mem_clock <= 30000) return 0x4; if (mem_clock <= 35000) return 0x5; if (mem_clock <= 40000) return 0x6; if (mem_clock <= 45000) return 0x7; if (mem_clock <= 50000) return 0x8; if (mem_clock <= 55000) return 0x9; if (mem_clock <= 60000) return 0xa; if (mem_clock <= 65000) return 0xb; if (mem_clock <= 70000) return 0xc; if (mem_clock <= 75000) return 0xd; if (mem_clock <= 80000) return 0xe; /* mem_clock > 800MHz */ return 0xf; } /** * Populates the SMC MCLK structure using the provided memory clock * * @param hwmgr the address of the hardware manager * @param clock the memory clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) { struct pp_atomctrl_memory_clock_param mem_param; int result; result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); PP_ASSERT_WITH_CODE((0 == result), "Failed to get Memory PLL Dividers.",); /* Save the result data to outpupt memory level structure */ mclk->MclkFrequency = clock; mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); return result; } static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int result = 0; if (table_info->vdd_dep_on_mclk) { result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, clock, &mem_level->MinVoltage, &mem_level->MinMvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddc voltage value from memory " "VDDC voltage dependency table", return result); } mem_level->EnabledForThrottle = 1; mem_level->EnabledForActivity = 0; mem_level->UpHyst = 0; mem_level->DownHyst = 100; mem_level->VoltageDownHyst = 0; mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target; mem_level->StutterEnable = false; mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; /* enable stutter mode if all the follow condition applied * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, * &(data->DisplayTiming.numExistingDisplays)); */ data->display_timing.num_existing_displays = 1; if ((data->mclk_stutter_mode_threshold) && (clock <= data->mclk_stutter_mode_threshold) && (!data->is_uvd_enabled) && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)) mem_level->StutterEnable = true; result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); } return result; } /** * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states * * @param hwmgr the address of the hardware manager */ static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_dpm_table *dpm_table = &data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t array = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, MemoryLevel); uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * SMU73_MAX_LEVELS_MEMORY; struct SMU73_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel; uint32_t i; for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = fiji_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &levels[i]); if (result) return result; } /* Only enable level 0 for now. */ levels[0].EnabledForActivity = 1; /* in order to prevent MC activity from stutter mode to push DPM up. * the UVD change complements this by putting the MCLK in * a higher state by default such that we are not effected by * up threshold or and MCLK DPM latency. */ levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; data->dpm_level_enable_mask.mclk_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); /* set highest level watermark to high */ levels[dpm_table->mclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; /* level count will send to smc once at init smc table and never change */ result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, (uint32_t)array_size, data->sram_end); return result; } /** * Populates the SMC MVDD structure using the provided memory clock. * * @param hwmgr the address of the hardware manager * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. * @param voltage the SMC VOLTAGE structure to be populated */ int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pat) { const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i = 0; if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else return -EINVAL; return 0; } static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = 0; const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct pp_atomctrl_clock_dividers_vi dividers; SMIO_Pattern vol_level; uint32_t mvdd; uint16_t us_mvdd; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; if (!data->sclk_dpm_key_disabled) { /* Get MinVoltage and Frequency from DPM0, * already converted to SMC_UL */ table->ACPILevel.SclkFrequency = data->dpm_table.sclk_table.dpm_levels[0].value; result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, table->ACPILevel.SclkFrequency, &table->ACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table",); } else { table->ACPILevel.SclkFrequency = data->vbios_boot_state.sclk_bootup_value; table->ACPILevel.MinVoltage = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; } /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, table->ACPILevel.SclkFrequency, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); if (!data->mclk_dpm_key_disabled) { /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ table->MemoryACPILevel.MclkFrequency = data->dpm_table.mclk_table.dpm_levels[0].value; result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, table->MemoryACPILevel.MclkFrequency, &table->MemoryACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table",); } else { table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; table->MemoryACPILevel.MinVoltage = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; } us_mvdd = 0; if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) || (data->mclk_dpm_key_disabled)) us_mvdd = data->vbios_boot_state.mvdd_bootup_value; else { if (!fiji_populate_mvdd_value(hwmgr, data->dpm_table.mclk_table.dpm_levels[0].value, &vol_level)) us_mvdd = vol_level.Voltage; } table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); table->MemoryACPILevel.StutterEnable = false; CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); return result; } static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); table->VceLevelCount = (uint8_t)(mm_table->count); table->VceBootLevel = 0; for(count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = mm_table->entries[count].eclk; table->VceLevel[count].MinVoltage = 0; table->VceLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->VceLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /*retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); } return result; } static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); table->AcpLevelCount = (uint8_t)(mm_table->count); table->AcpBootLevel = 0; for (count = 0; count < table->AcpLevelCount; count++) { table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->AcpLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for engine clock", return result); table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); } return result; } static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); table->SamuBootLevel = 0; table->SamuLevelCount = (uint8_t)(mm_table->count); for (count = 0; count < table->SamuLevelCount; count++) { /* not sure whether we need evclk or not */ table->SamuLevel[count].MinVoltage = 0; table->SamuLevel[count].Frequency = mm_table->entries[count].samclock; table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->SamuLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for samu clock", return result); table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage); } return result; } static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, int32_t eng_clock, int32_t mem_clock, struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) { uint32_t dram_timing; uint32_t dram_timing2; uint32_t burstTime; ULONG state, trrds, trrdl; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, eng_clock, mem_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0); trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); arb_regs->McArbBurstTime = (uint8_t)burstTime; arb_regs->TRRDS = (uint8_t)trrds; arb_regs->TRRDL = (uint8_t)trrdl; return 0; } static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct SMU73_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; int result = 0; for (i = 0; i < data->dpm_table.sclk_table.count; i++) { for (j = 0; j < data->dpm_table.mclk_table.count; j++) { result = fiji_populate_memory_timing_parameters(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (result) break; } } if (!result) result = fiji_copy_bytes_to_smc( hwmgr->smumgr, data->arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU73_Discrete_MCArbDramTimingTable), data->sram_end); return result; } static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); table->UvdLevelCount = (uint8_t)(mm_table->count); table->UvdBootLevel = 0; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].MinVoltage = 0; table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); } return result; } static int fiji_find_boot_level(struct fiji_single_dpm_table *table, uint32_t value, uint32_t *boot_level) { int result = -EINVAL; uint32_t i; for (i = 0; i < table->count; i++) { if (value == table->dpm_levels[i].value) { *boot_level = i; result = 0; } } return result; } static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table */ result = fiji_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(table->GraphicsBootLevel)); result = fiji_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(table->MemoryBootLevel)); table->BootVddc = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; table->BootVddci = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); return 0; } static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint8_t count, level; count = (uint8_t)(table_info->vdd_dep_on_sclk->count); for (level = 0; level < count; level++) { if(table_info->vdd_dep_on_sclk->entries[level].clk >= data->vbios_boot_state.sclk_bootup_value) { data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(table_info->vdd_dep_on_mclk->count); for (level = 0; level < count; level++) { if(table_info->vdd_dep_on_mclk->entries[level].clk >= data->vbios_boot_state.mclk_bootup_value) { data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) { uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, volt_with_cks, value; uint16_t clock_freq_u16; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, volt_offset = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; /* Read SMU_Eefuse to read and calculate RO and determine * if the part is SS or FF. if RO >= 1660MHz, part is FF. */ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (146 * 4)); efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (148 * 4)); efuse &= 0xFF000000; efuse = efuse >> 24; efuse2 &= 0xF; if (efuse2 == 1) ro = (2300 - 1350) * efuse / 255 + 1350; else ro = (2500 - 1000) * efuse / 255 + 1000; if (ro >= 1660) type = 0; else type = 1; /* Populate Stretch amount */ data->smc_state_table.ClockStretcherAmount = stretch_amount; /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ for (i = 0; i < sclk_table->count; i++) { data->smc_state_table.Sclk_CKS_masterEn0_7 |= sclk_table->entries[i].cks_enable << i; volt_without_cks = (uint32_t)((14041 * (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); volt_with_cks = (uint32_t)((13946 * (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); if (volt_without_cks >= volt_with_cks) volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; } PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, STRETCH_ENABLE, 0x0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x0); /* Populate CKS Lookup Table */ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) stretch_amount2 = 0; else if (stretch_amount == 3 || stretch_amount == 4) stretch_amount2 = 1; else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); PP_ASSERT_WITH_CODE(false, "Stretch Amount in PPTable not supported\n", return -EINVAL); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFC2FF87; data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = fiji_clock_stretcher_lookup_table[stretch_amount2][0]; data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = fiji_clock_stretcher_lookup_table[stretch_amount2][1]; clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table. GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) / 100); if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16 && fiji_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) { /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ value |= (fiji_clock_stretch_amount_conversion [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] [stretch_amount]) << 3; } CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq); CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq); data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); /* Populate DDT Lookup Table */ for (i = 0; i < 4; i++) { /* Assign the minimum and maximum VID stored * in the last row of Clock Stretcher Voltage Table. */ data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].minVID = (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].maxVID = (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; /* Loop through each SCLK and check the frequency * to see if it lies within the frequency for clock stretcher. */ for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) { cks_setting = 0; clock_freq = PP_SMC_TO_HOST_UL( data->smc_state_table.GraphicsLevel[j].SclkFrequency); /* Check the allowed frequency against the sclk level[j]. * Sclk's endianness has already been converted, * and it's in 10Khz unit, * as opposed to Data table, which is in Mhz unit. */ if (clock_freq >= (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { cks_setting |= 0x2; if (clock_freq < (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) cks_setting |= 0x1; } data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); } CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFFFFFFE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); return 0; } /** * Populates the SMC VRConfig field in DPM table. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint16_t config; config = VR_MERGED_WITH_VDDC; table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); /* Set Vddc Voltage Controller */ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { config = VR_SVI2_PLANE_1; table->VRConfig |= config; } else { PP_ASSERT_WITH_CODE(false, "VDDC should be on SVI2 control in merged mode!",); } /* Set Vddci Voltage Controller */ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { config = VR_SVI2_PLANE_2; /* only in merged mode */ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { config = VR_SMIO_PATTERN_1; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } /* Set Mvdd Voltage Controller */ if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { config = VR_SVI2_PLANE_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { config = VR_SMIO_PATTERN_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } return 0; } /** * Initializes the SMC table and uploads it * * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PowerState) * @return always 0 */ static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table); const struct fiji_ulv_parm *ulv = &(data->ulv); uint8_t i; struct pp_atomctrl_gpio_pin_assignment gpio_pin; result = fiji_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to setup default DPM tables!", return result); if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control) fiji_populate_smc_voltage_tables(hwmgr, table); table->SystemFlags = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) { result = fiji_populate_ulv_state(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ULV state!", return result); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter); } result = fiji_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Link Level!", return result); result = fiji_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Graphics Level!", return result); result = fiji_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Memory Level!", return result); result = fiji_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACPI Level!", return result); result = fiji_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize VCE Level!", return result); result = fiji_populate_smc_acp_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACP Level!", return result); result = fiji_populate_smc_samu_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize SAMU Level!", return result); /* Since only the initial state is completely set up at this point * (the other states are just copies of the boot state) we only * need to populate the ARB settings for the initial state. */ result = fiji_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to Write ARB settings for the initial state.", return result); result = fiji_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize UVD Level!", return result); result = fiji_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot Level!", return result); result = fiji_populate_smc_initailial_state(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { result = fiji_populate_clock_stretcher_data_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate Clock Stretcher Data Table!", return result); } table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = table_info->cac_dtp_table->usTargetOperatingTemp * FIJI_Q88_FORMAT_CONVERSION_UNIT; table->TemperatureLimitLow = (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * FIJI_Q88_FORMAT_CONVERSION_UNIT; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ table->PCIeGenInterval = 1; table->VRConfig = 0; result = fiji_populate_vr_config(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate VRConfig setting!", return result); table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } else { table->VRHotGpio = FIJI_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } else { table->AcDcGpio = FIJI_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } /* Thermal Output GPIO */ if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; /* For porlarity read GPIOPAD_A with assigned Gpio pin * since VBIOS will program this register to set 'inactive state', * driver can then determine 'active state' from this and * program SMU with correct polarity */ table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; /* if required, combine VRHot/PCC with thermal out GPIO */ if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; } else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = 17; table->ThermOutPolarity = 1; table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; } for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = fiji_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), data->sram_end); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload dpm data to SMC memory!", return result); return 0; } /** * Initialize the ARB DRAM timing table's index field. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) { const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t tmp; int result; /* This is a read-modify-write on the first byte of the ARB table. * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure * is the field 'current'. * This solution is ugly, but we never write the whole table only * individual fields in it. * In reality this field should not be in that structure * but in a soft register. */ result = fiji_read_smc_sram_dword(hwmgr->smumgr, data->arb_table_start, &tmp, data->sram_end); if (result) return result; tmp &= 0x00FFFFFF; tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; return fiji_write_smc_sram_dword(hwmgr->smumgr, data->arb_table_start, tmp, data->sram_end); } static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) { if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)) return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableVRHotGPIOInterrupt); return 0; } static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0); return 0; } static int fiji_enable_ulv(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_ulv_parm *ulv = &(data->ulv); if (ulv->ulv_supported) return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV); return 0; } static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON)) PP_ASSERT_WITH_CODE(false, "Attempt to enable Master Deep Sleep switch failed!", return -1); } else { if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_OFF)) { PP_ASSERT_WITH_CODE(false, "Attempt to disable Master Deep Sleep switch failed!", return -1); } } return 0; } static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t val, val0, val2; uint32_t i, cpl_cntl, cpl_threshold, mc_threshold; /* enable SCLK dpm */ if(!data->sclk_dpm_key_disabled) PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)), "Failed to enable SCLK DPM during DPM Start Function!", return -1); /* enable MCLK dpm */ if(0 == data->mclk_dpm_key_disabled) { cpl_threshold = 0; mc_threshold = 0; /* Read per MCD tile (0 - 7) */ for (i = 0; i < 8; i++) { PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i); val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000; if (0xf0000000 != val) { /* count number of MCQ that has channel(s) enabled */ cpl_threshold++; /* only harvest 3 or full 4 supported */ mc_threshold = val ? 3 : 4; } } PP_ASSERT_WITH_CODE(0 != cpl_threshold, "Number of MCQ is zero!", return -EINVAL;); mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) << LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) | LCAC_MC0_CNTL__MC0_ENABLE_MASK; cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) << LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) | LCAC_CPL_CNTL__CPL_ENABLE_MASK; cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, mc_threshold); if (8 == cpl_threshold) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC2_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC3_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC4_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC5_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC6_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC7_CNTL, mc_threshold); } cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, cpl_cntl); udelay(5); mc_threshold = mc_threshold | (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT); cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, mc_threshold); if (8 == cpl_threshold) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC2_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC3_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC4_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC5_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC6_CNTL, mc_threshold); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC7_CNTL, mc_threshold); } cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, cpl_cntl); /* Program CAC_EN per MCD (0-7) Tile */ val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD); val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK | MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK | MC_CONFIG_MCD__MC_RD_ENABLE_MASK); for (i = 0; i < 8; i++) { /* Enable MCD i Tile read & write */ val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) | (1 << i)); cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2); /* Enbale CAC_ON MCD i Tile */ val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL); val2 |= MC_SEQ_CNTL__CAC_EN_MASK; cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2); } /* Set MC_CONFIG_MCD back to its default setting val0 */ cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0); PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_Enable)), "Failed to enable MCLK DPM during DPM Start Function!", return -1); } return 0; } static int fiji_start_dpm(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); /*enable general power management */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1); /* enable sclk deep sleep */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1); /* prepare for PCIE DPM */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU73_SoftRegisters, VoltageChangeTimeout), 0x1000); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0); PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable)), "Failed to enable voltage DPM during DPM Start Function!", return -1); if (fiji_enable_sclk_mclk_dpm(hwmgr)) { printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!"); return -1; } /* enable PCIE dpm */ if(!data->pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_Enable)), "Failed to enable pcie DPM during DPM Start Function!", return -1); } return 0; } static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) { bool protection; enum DPM_EVENT_SRC src; switch (sources) { default: printk(KERN_ERR "Unknown throttling event sources."); /* fall through */ case 0: protection = false; /* src is unused */ break; case (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL; break; case (1 << PHM_AutoThrottleSource_External): protection = true; src = DPM_EVENT_SRC_EXTERNAL; break; case (1 << PHM_AutoThrottleSource_External) | (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; break; } /* Order matters - don't enable thermal protection for the wrong source. */ if (protection) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, DPM_EVENT_SRC, src); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)); } else PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); } static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, PHM_AutoThrottleSource source) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (!(data->active_auto_throttle_sources & (1 << source))) { data->active_auto_throttle_sources |= 1 << source; fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); } return 0; } static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) { return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); } static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1; PP_ASSERT_WITH_CODE(result == 0, "DPM is already running right now, no need to enable DPM!", return 0); if (fiji_voltage_control(hwmgr)) { tmp_result = fiji_enable_voltage_control(hwmgr); PP_ASSERT_WITH_CODE(tmp_result == 0, "Failed to enable voltage control!", result = tmp_result); } if (fiji_voltage_control(hwmgr)) { tmp_result = fiji_construct_voltage_tables(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to contruct voltage tables!", result = tmp_result); } tmp_result = fiji_initialize_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize MC reg table!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)) PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program static screen threshold parameters!", result = tmp_result); tmp_result = fiji_enable_display_gap(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable display gap!", result = tmp_result); tmp_result = fiji_program_voting_clients(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program voting clients!", result = tmp_result); tmp_result = fiji_process_firmware_header(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to process firmware header!", result = tmp_result); tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize switch from ArbF0 to F1!", result = tmp_result); tmp_result = fiji_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize SMC table!", result = tmp_result); tmp_result = fiji_init_arb_table_index(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize ARB table index!", result = tmp_result); tmp_result = fiji_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate PM fuses!", result = tmp_result); tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable VR hot GPIO interrupt!", result = tmp_result); tmp_result = tonga_notify_smc_display_change(hwmgr, false); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify no display!", result = tmp_result); tmp_result = fiji_enable_sclk_control(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SCLK control!", result = tmp_result); tmp_result = fiji_enable_ulv(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable ULV!", result = tmp_result); tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable deep sleep master switch!", result = tmp_result); tmp_result = fiji_start_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to start DPM!", result = tmp_result); tmp_result = fiji_enable_smc_cac(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SMC CAC!", result = tmp_result); tmp_result = fiji_enable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable power containment!", result = tmp_result); tmp_result = fiji_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to power control set level!", result = tmp_result); tmp_result = fiji_enable_thermal_auto_throttle(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable thermal auto throttle!", result = tmp_result); return result; } static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t level, tmp; if (!data->sclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, (1 << level)); } } if (!data->mclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, (1 << level)); } } if (!data->pcie_dpm_key_disabled) { if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { level = 0; tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; while (tmp >>= 1) level++; if (level) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_ForceLevel, (1 << level)); } } return 0; } static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_clock_voltage_dependency_table *table = table_info->vddc_dep_on_dal_pwrl; struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table; enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level; uint32_t req_vddc = 0, req_volt, i; if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW && dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE)) return; for (i= 0; i < table->count; i++) { if (dal_power_level == table->entries[i].clk) { req_vddc = table->entries[i].v; break; } } vddc_table = table_info->vdd_dep_on_sclk; for (i= 0; i < vddc_table->count; i++) { if (req_vddc <= vddc_table->entries[i].vddc) { req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE) << VDDC_SHIFT; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_VddC_Request, req_volt); return; } } printk(KERN_ERR "DAL requested level can not" " found a available voltage in VDDC DPM Table \n"); } static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); fiji_apply_dal_min_voltage_request(hwmgr); if (!data->sclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask); } return 0; } static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (!fiji_is_dpm_running(hwmgr)) return -EINVAL; if (!data->pcie_dpm_key_disabled) { smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_UnForceLevel); } return fiji_upload_dpmlevel_enable_mask(hwmgr); } static uint32_t fiji_get_lowest_enabled_level( struct pp_hwmgr *hwmgr, uint32_t mask) { uint32_t level = 0; while(0 == (mask & (1 << level))) level++; return level; } static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t level; if (!data->sclk_dpm_key_disabled) if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = fiji_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.sclk_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, (1 << level)); } if (!data->mclk_dpm_key_disabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { level = fiji_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.mclk_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, (1 << level)); } } if (!data->pcie_dpm_key_disabled) { if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { level = fiji_get_lowest_enabled_level(hwmgr, data->dpm_level_enable_mask.pcie_dpm_enable_mask); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_ForceLevel, (1 << level)); } } return 0; } static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = fiji_force_dpm_highest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_LOW: ret = fiji_force_dpm_lowest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = fiji_unforce_dpm_levels(hwmgr); if (ret) return ret; break; default: break; } hwmgr->dpm_level = level; return ret; } static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct fiji_power_state); } static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, void *state, struct pp_power_state *power_state, void *pp_table, uint32_t classification_flag) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_power_state *fiji_power_state = (struct fiji_power_state *)(&(power_state->hardware)); struct fiji_performance_level *performance_level; ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; ATOM_Tonga_POWERPLAYTABLE *powerplay_table = (ATOM_Tonga_POWERPLAYTABLE *)pp_table; ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = (ATOM_Tonga_SCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Tonga_MCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); /* The following fields are not initialized here: id orderedList allStatesList */ power_state->classification.ui_label = (le16_to_cpu(state_entry->usClassification) & ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; power_state->classification.flags = classification_flag; /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ power_state->classification.temporary_state = false; power_state->classification.to_be_deleted = false; power_state->validation.disallowOnDC = (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC)); power_state->pcie.lanes = 0; power_state->display.disableFrameModulation = false; power_state->display.limitRefreshrate = false; power_state->display.enableVariBright = (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT)); power_state->validation.supportedPowerLevels = 0; power_state->uvd_clocks.VCLK = 0; power_state->uvd_clocks.DCLK = 0; power_state->temperatures.min = 0; power_state->temperatures.max = 0; performance_level = &(fiji_power_state->performance_levels [fiji_power_state->performance_level_count++]); PP_ASSERT_WITH_CODE( (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS), "Performance levels exceeds SMC limit!", return -1); PP_ASSERT_WITH_CODE( (fiji_power_state->performance_level_count <= hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit!", return -1); /* Performance levels are arranged from low to high. */ performance_level->memory_clock = mclk_dep_table->entries [state_entry->ucMemoryClockIndexLow].ulMclk; performance_level->engine_clock = sclk_dep_table->entries [state_entry->ucEngineClockIndexLow].ulSclk; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, state_entry->ucPCIEGenLow); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, state_entry->ucPCIELaneHigh); performance_level = &(fiji_power_state->performance_levels [fiji_power_state->performance_level_count++]); performance_level->memory_clock = mclk_dep_table->entries [state_entry->ucMemoryClockIndexHigh].ulMclk; performance_level->engine_clock = sclk_dep_table->entries [state_entry->ucEngineClockIndexHigh].ulSclk; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, state_entry->ucPCIEGenHigh); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, state_entry->ucPCIELaneHigh); return 0; } static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct fiji_power_state *ps; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = table_info->vdd_dep_on_mclk; state->hardware.magic = PHM_VIslands_Magic; ps = (struct fiji_power_state *)(&state->hardware); result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state, fiji_get_pp_table_entry_callback_func); /* This is the earliest time we have all the dependency table and the VBIOS boot state * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state */ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { if (dep_mclk_table->entries[0].clk != data->vbios_boot_state.mclk_bootup_value) printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " "does not match VBIOS boot MCLK level"); if (dep_mclk_table->entries[0].vddci != data->vbios_boot_state.vddci_bootup_value) printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " "does not match VBIOS boot VDDCI level"); } /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) ps->dc_compatible = true; if (state->classification.flags & PP_StateClassificationFlag_ACPI) data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; ps->uvd_clks.vclk = state->uvd_clocks.VCLK; ps->uvd_clks.dclk = state->uvd_clocks.DCLK; if (!result) { uint32_t i; switch (state->classification.ui_label) { case PP_StateUILabel_Performance: data->use_pcie_performance_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_performance.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_performance.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_performance.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_performance.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.min = ps->performance_levels[i].pcie_lane; } break; case PP_StateUILabel_Battery: data->use_pcie_power_saving_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_power_saving.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_power_saving.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_power_saving.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_power_saving.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.min = ps->performance_levels[i].pcie_lane; } break; default: break; } } return 0; } static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *request_ps, const struct pp_power_state *current_ps) { struct fiji_power_state *fiji_ps = cast_phw_fiji_power_state(&request_ps->hardware); uint32_t sclk; uint32_t mclk; struct PP_Clocks minimum_clocks = {0}; bool disable_mclk_switching; bool disable_mclk_switching_for_frame_lock; struct cgs_display_info info = {0}; const struct phm_clock_and_voltage_limits *max_limits; uint32_t i; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int32_t count; int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; data->battery_state = (PP_StateUILabel_Battery == request_ps->classification.ui_label); PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2, "VI should always have 2 performance levels",); max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? &(hwmgr->dyn_state.max_clock_voltage_on_ac) : &(hwmgr->dyn_state.max_clock_voltage_on_dc); /* Cap clock DPM tables at DC MAX if it is in DC. */ if (PP_PowerSource_DC == hwmgr->power_source) { for (i = 0; i < fiji_ps->performance_level_count; i++) { if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk) fiji_ps->performance_levels[i].memory_clock = max_limits->mclk; if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk) fiji_ps->performance_levels[i].engine_clock = max_limits->sclk; } } fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk; fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk; fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk; cgs_get_active_displays_info(hwmgr->device, &info); /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); stable_pstate_sclk = (max_limits->sclk * 75) / 100; for (count = table_info->vdd_dep_on_sclk->count - 1; count >= 0; count--) { if (stable_pstate_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; break; } } if (count < 0) stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; stable_pstate_mclk = max_limits->mclk; minimum_clocks.engineClock = stable_pstate_sclk; minimum_clocks.memoryClock = stable_pstate_mclk; } if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock), "Overdrive sclk exceeds limit", hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock); if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) fiji_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive; } if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock), "Overdrive mclk exceeds limit", hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock); if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) fiji_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive; } disable_mclk_switching_for_frame_lock = phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); disable_mclk_switching = (1 < info.display_count) || disable_mclk_switching_for_frame_lock; sclk = fiji_ps->performance_levels[0].engine_clock; mclk = fiji_ps->performance_levels[0].memory_clock; if (disable_mclk_switching) mclk = fiji_ps->performance_levels [fiji_ps->performance_level_count - 1].memory_clock; if (sclk < minimum_clocks.engineClock) sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; if (mclk < minimum_clocks.memoryClock) mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; fiji_ps->performance_levels[0].engine_clock = sclk; fiji_ps->performance_levels[0].memory_clock = mclk; fiji_ps->performance_levels[1].engine_clock = (fiji_ps->performance_levels[1].engine_clock >= fiji_ps->performance_levels[0].engine_clock) ? fiji_ps->performance_levels[1].engine_clock : fiji_ps->performance_levels[0].engine_clock; if (disable_mclk_switching) { if (mclk < fiji_ps->performance_levels[1].memory_clock) mclk = fiji_ps->performance_levels[1].memory_clock; fiji_ps->performance_levels[0].memory_clock = mclk; fiji_ps->performance_levels[1].memory_clock = mclk; } else { if (fiji_ps->performance_levels[1].memory_clock < fiji_ps->performance_levels[0].memory_clock) fiji_ps->performance_levels[1].memory_clock = fiji_ps->performance_levels[0].memory_clock; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { for (i = 0; i < fiji_ps->performance_level_count; i++) { fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk; fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk; fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; } } return 0; } static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct fiji_power_state *fiji_ps = cast_const_phw_fiji_power_state(states->pnew_state); struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); uint32_t sclk = fiji_ps->performance_levels [fiji_ps->performance_level_count - 1].engine_clock; struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); uint32_t mclk = fiji_ps->performance_levels [fiji_ps->performance_level_count - 1].memory_clock; uint32_t i; struct cgs_display_info info = {0}; data->need_update_smu7_dpm_table = 0; for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (i >= sclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; else { if(data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; } for (i = 0; i < mclk_table->count; i++) { if (mclk == mclk_table->dpm_levels[i].value) break; } if (i >= mclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; return 0; } static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct fiji_power_state *fiji_ps) { uint32_t i; uint32_t sclk, max_sclk = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_dpm_table *dpm_table = &data->dpm_table; for (i = 0; i < fiji_ps->performance_level_count; i++) { sclk = fiji_ps->performance_levels[i].engine_clock; if (max_sclk < sclk) max_sclk = sclk; } for (i = 0; i < dpm_table->sclk_table.count; i++) { if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? dpm_table->pcie_speed_table.dpm_levels [dpm_table->pcie_speed_table.count - 1].value : dpm_table->pcie_speed_table.dpm_levels[i].value); } return 0; } static int fiji_request_link_speed_change_before_state_change( struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); const struct fiji_power_state *fiji_nps = cast_const_phw_fiji_power_state(states->pnew_state); const struct fiji_power_state *fiji_cps = cast_const_phw_fiji_power_state(states->pcurrent_state); uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps); uint16_t current_link_speed; if (data->force_pcie_gen == PP_PCIEGenInvalid) current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps); else current_link_speed = data->force_pcie_gen; data->force_pcie_gen = PP_PCIEGenInvalid; data->pspp_notify_required = false; if (target_link_speed > current_link_speed) { switch(target_link_speed) { case PP_PCIEGen3: if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) break; data->force_pcie_gen = PP_PCIEGen2; if (current_link_speed == PP_PCIEGen2) break; case PP_PCIEGen2: if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) break; default: data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr); break; } } else { if (target_link_speed < current_link_speed) data->pspp_notify_required = true; } return 0; } static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr), "Trying to freeze SCLK DPM when DPM is disabled",); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_FreezeLevel), "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", return -1); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr), "Trying to freeze MCLK DPM when DPM is disabled",); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_FreezeLevel), "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", return -1); } return 0; } static int fiji_populate_and_upload_sclk_mclk_dpm_levels( struct pp_hwmgr *hwmgr, const void *input) { int result = 0; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct fiji_power_state *fiji_ps = cast_const_phw_fiji_power_state(states->pnew_state); struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t sclk = fiji_ps->performance_levels [fiji_ps->performance_level_count - 1].engine_clock; uint32_t mclk = fiji_ps->performance_levels [fiji_ps->performance_level_count - 1].memory_clock; struct fiji_dpm_table *dpm_table = &data->dpm_table; struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table; uint32_t dpm_count, clock_percent; uint32_t i; if (0 == data->need_update_smu7_dpm_table) return 0; if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { dpm_table->sclk_table.dpm_levels [dpm_table->sclk_table.count - 1].value = sclk; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { /* Need to do calculation based on the golden DPM table * as the Heatmap GPU Clock axis is also based on the default values */ PP_ASSERT_WITH_CODE( (golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count - 1].value != 0), "Divide by 0!", return -1); dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2; for (i = dpm_count; i > 1; i--) { if (sclk > golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count-1].value) { clock_percent = ((sclk - golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count-1].value) * 100) / golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count-1].value; dpm_table->sclk_table.dpm_levels[i].value = golden_dpm_table->sclk_table.dpm_levels[i].value + (golden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; } else if (golden_dpm_table->sclk_table.dpm_levels [dpm_table->sclk_table.count-1].value > sclk) { clock_percent = ((golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count - 1].value - sclk) * 100) / golden_dpm_table->sclk_table.dpm_levels [golden_dpm_table->sclk_table.count-1].value; dpm_table->sclk_table.dpm_levels[i].value = golden_dpm_table->sclk_table.dpm_levels[i].value - (golden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent) / 100; } else dpm_table->sclk_table.dpm_levels[i].value = golden_dpm_table->sclk_table.dpm_levels[i].value; } } } if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { dpm_table->mclk_table.dpm_levels [dpm_table->mclk_table.count - 1].value = mclk; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { PP_ASSERT_WITH_CODE( (golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value != 0), "Divide by 0!", return -1); dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2; for (i = dpm_count; i > 1; i--) { if (mclk > golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value) { clock_percent = ((mclk - golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value) * 100) / golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value; dpm_table->mclk_table.dpm_levels[i].value = golden_dpm_table->mclk_table.dpm_levels[i].value + (golden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent) / 100; } else if (golden_dpm_table->mclk_table.dpm_levels [dpm_table->mclk_table.count-1].value > mclk) { clock_percent = ((golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) / golden_dpm_table->mclk_table.dpm_levels [golden_dpm_table->mclk_table.count-1].value; dpm_table->mclk_table.dpm_levels[i].value = golden_dpm_table->mclk_table.dpm_levels[i].value - (golden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent) / 100; } else dpm_table->mclk_table.dpm_levels[i].value = golden_dpm_table->mclk_table.dpm_levels[i].value; } } } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { result = fiji_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", return result); } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { /*populate MCLK dpm table to SMU7 */ result = fiji_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", return result); } return result; } static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr, struct fiji_single_dpm_table * dpm_table, uint32_t low_limit, uint32_t high_limit) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct fiji_power_state *fiji_ps) { int result = 0; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t high_limit_count; PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1), "power state did not have any performance level", return -1); high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1; fiji_trim_single_dpm_states(hwmgr, &(data->dpm_table.sclk_table), fiji_ps->performance_levels[0].engine_clock, fiji_ps->performance_levels[high_limit_count].engine_clock); fiji_trim_single_dpm_states(hwmgr, &(data->dpm_table.mclk_table), fiji_ps->performance_levels[0].memory_clock, fiji_ps->performance_levels[high_limit_count].memory_clock); return result; } static int fiji_generate_dpm_level_enable_mask( struct pp_hwmgr *hwmgr, const void *input) { int result; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); const struct fiji_power_state *fiji_ps = cast_const_phw_fiji_power_state(states->pnew_state); result = fiji_trim_dpm_states(hwmgr, fiji_ps); if (result) return result; data->dpm_level_enable_mask.sclk_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); data->dpm_level_enable_mask.mclk_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask; if (data->uvd_enabled) { if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1) data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; } data->dpm_level_enable_mask.pcie_dpm_enable_mask = fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); return 0; } int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { return smum_send_msg_to_smc(hwmgr->smumgr, enable ? (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable : (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable); } int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { return smum_send_msg_to_smc(hwmgr->smumgr, enable? PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable); } int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable) { return smum_send_msg_to_smc(hwmgr->smumgr, enable? PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable); } int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable) { return smum_send_msg_to_smc(hwmgr->smumgr, enable? PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable); } int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (!bgate) { data->smc_state_table.UvdBootLevel = 0; if (table_info->mm_dep_table->count > 0) data->smc_state_table.UvdBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0x00FFFFFF; mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_UVDDPM_SetEnabledMask, (uint32_t)(1 << data->smc_state_table.UvdBootLevel)); } return fiji_enable_disable_uvd_dpm(hwmgr, !bgate); } int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); const struct fiji_power_state *fiji_nps = cast_const_phw_fiji_power_state(states->pnew_state); const struct fiji_power_state *fiji_cps = cast_const_phw_fiji_power_state(states->pcurrent_state); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (fiji_nps->vce_clks.evclk >0 && (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) { data->smc_state_table.VceBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, VceBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFF00FFFF; mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_VCEDPM_SetEnabledMask, (uint32_t)1 << data->smc_state_table.VceBootLevel); fiji_enable_disable_vce_dpm(hwmgr, true); } else if (fiji_nps->vce_clks.evclk == 0 && fiji_cps != NULL && fiji_cps->vce_clks.evclk > 0) fiji_enable_disable_vce_dpm(hwmgr, false); } return 0; } int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (!bgate) { data->smc_state_table.SamuBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, SamuBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFFFFFF00; mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SAMUDPM_SetEnabledMask, (uint32_t)(1 << data->smc_state_table.SamuBootLevel)); } return fiji_enable_disable_samu_dpm(hwmgr, !bgate); } int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (!bgate) { data->smc_state_table.AcpBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, AcpBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFFFF00FF; mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_ACPDPM_SetEnabledMask, (uint32_t)(1 << data->smc_state_table.AcpBootLevel)); } return fiji_enable_disable_acp_dpm(hwmgr, !bgate); } static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = fiji_copy_bytes_to_smc( hwmgr->smumgr, data->dpm_table_start + offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), data->sram_end); } return result; } static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return fiji_program_memory_timing_parameters(hwmgr); return 0; } static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr), "Trying to Unfreeze SCLK DPM when DPM is disabled",); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel), "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", return -1); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr), "Trying to Unfreeze MCLK DPM when DPM is disabled",); PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel), "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", return -1); } data->need_update_smu7_dpm_table = 0; return 0; } /* Look up the voltaged based on DAL's requested level. * and then send the requested VDDC voltage to SMC */ static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr) { return; } int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) { int result; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); /* Apply minimum voltage based on DAL's request level */ fiji_apply_dal_minimum_voltage_request(hwmgr); if (0 == data->sclk_dpm_key_disabled) { /* Checking if DPM is running. If we discover hang because of this, * we should skip this message. */ if (!fiji_is_dpm_running(hwmgr)) printk(KERN_ERR "[ powerplay ] " "Trying to set Enable Mask when DPM is disabled \n"); if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask); PP_ASSERT_WITH_CODE((0 == result), "Set Sclk Dpm enable Mask failed", return -1); } } if (0 == data->mclk_dpm_key_disabled) { /* Checking if DPM is running. If we discover hang because of this, * we should skip this message. */ if (!fiji_is_dpm_running(hwmgr)) printk(KERN_ERR "[ powerplay ]" " Trying to set Enable Mask when DPM is disabled \n"); if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.mclk_dpm_enable_mask); PP_ASSERT_WITH_CODE((0 == result), "Set Mclk Dpm enable Mask failed", return -1); } } return 0; } static int fiji_notify_link_speed_change_after_state_change( struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); const struct fiji_power_state *fiji_ps = cast_const_phw_fiji_power_state(states->pnew_state); uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps); uint8_t request; if (data->pspp_notify_required) { if (target_link_speed == PP_PCIEGen3) request = PCIE_PERF_REQ_GEN3; else if (target_link_speed == PP_PCIEGen2) request = PCIE_PERF_REQ_GEN2; else request = PCIE_PERF_REQ_GEN1; if(request == PCIE_PERF_REQ_GEN1 && fiji_get_current_pcie_speed(hwmgr) > 0) return 0; if (acpi_pcie_perf_request(hwmgr->device, request, false)) { if (PP_PCIEGen2 == target_link_speed) printk("PSPP request to switch to Gen2 from Gen3 Failed!"); else printk("PSPP request to switch to Gen1 from Gen2 Failed!"); } } return 0; } static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int tmp_result, result = 0; tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = fiji_request_link_speed_change_before_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result); } tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result); tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result); tmp_result = fiji_update_vce_dpm(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result); tmp_result = fiji_update_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result); tmp_result = fiji_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result); tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result); tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = fiji_notify_link_speed_change_after_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result); } return result; } static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct fiji_power_state *fiji_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; fiji_ps = cast_phw_fiji_power_state(&ps->hardware); if (low) return fiji_ps->performance_levels[0].engine_clock; else return fiji_ps->performance_levels [fiji_ps->performance_level_count-1].engine_clock; } static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct fiji_power_state *fiji_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; fiji_ps = cast_phw_fiji_power_state(&ps->hardware); if (low) return fiji_ps->performance_levels[0].memory_clock; else return fiji_ps->performance_levels [fiji_ps->performance_level_count-1].memory_clock; } static void fiji_print_current_perforce_level( struct pp_hwmgr *hwmgr, struct seq_file *m) { uint32_t sclk, mclk, activity_percent = 0; uint32_t offset; struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk / 100, sclk / 100); offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); activity_percent += 0x80; activity_percent >>= 8; seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent); seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en"); seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en"); } static int fiji_program_display_gap(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); uint32_t num_active_displays = 0; uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); uint32_t display_gap2; uint32_t pre_vbi_time_in_us; uint32_t frame_time_in_us; uint32_t ref_clock; uint32_t refresh_rate = 0; struct cgs_display_info info = {0}; struct cgs_mode_info mode_info; info.mode_info = &mode_info; cgs_get_active_displays_info(hwmgr->device, &info); num_active_displays = info.display_count; display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); ref_clock = mode_info.ref_clock; refresh_rate = mode_info.refresh_rate; if (refresh_rate == 0) refresh_rate = 60; frame_time_in_us = 1000000 / refresh_rate; pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU73_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); if (num_active_displays == 1) tonga_notify_smc_display_change(hwmgr, true); return 0; } int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { return fiji_program_display_gap(hwmgr); } static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) { hwmgr->thermal_controller. advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; if (phm_is_hw_access_blocked(hwmgr)) return 0; return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm); } static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) { hwmgr->thermal_controller. advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; if (phm_is_hw_access_blocked(hwmgr)) return 0; return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm); } int fiji_dpm_set_interrupt_state(void *private_data, unsigned src_id, unsigned type, int enabled) { uint32_t cg_thermal_int; struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr; if (hwmgr == NULL) return -EINVAL; switch (type) { case AMD_THERMAL_IRQ_LOW_TO_HIGH: if (enabled) { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } else { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } break; case AMD_THERMAL_IRQ_HIGH_TO_LOW: if (enabled) { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } else { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } break; default: break; } return 0; } int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, const void *thermal_interrupt_info) { int result; const struct pp_interrupt_registration_info *info = (const struct pp_interrupt_registration_info *) thermal_interrupt_info; if (info == NULL) return -EINVAL; result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST, fiji_dpm_set_interrupt_state, info->call_back, info->context); if (result) return -EINVAL; result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST, fiji_dpm_set_interrupt_state, info->call_back, info->context); if (result) return -EINVAL; return 0; } static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { if (mode) { /* stop auto-manage */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) fiji_fan_ctrl_stop_smc_fan_control(hwmgr); fiji_fan_ctrl_set_static_mode(hwmgr, mode); } else /* restart auto-manage */ fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr); return 0; } static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr) { if (hwmgr->fan_ctrl_is_in_default_mode) return hwmgr->fan_ctrl_default_mode; else return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL2, FDO_PWM_MODE); } static int fiji_get_pp_table(struct pp_hwmgr *hwmgr, char **table) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); *table = (char *)&data->smc_state_table; return sizeof(struct SMU73_Discrete_DpmTable); } static int fiji_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); void *table = (void *)&data->smc_state_table; memcpy(table, buf, size); return 0; } static int fiji_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, int level) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) return -EINVAL; switch (type) { case PP_SCLK: if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, (1 << level)); break; case PP_MCLK: if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, (1 << level)); break; case PP_PCIE: if (!data->pcie_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_ForceLevel, (1 << level)); break; default: break; } return 0; } static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); int i, now, size = 0; uint32_t clock, pcie_speed; switch (type) { case PP_SCLK: smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < sclk_table->count; i++) { if (clock > sclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < mclk_table->count; i++) { if (clock > mclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_PCIE: pcie_speed = fiji_get_current_pcie_speed(hwmgr); for (i = 0; i < pcie_table->count; i++) { if (pcie_speed != pcie_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < pcie_table->count; i++) size += sprintf(buf + size, "%d: %s %s\n", i, (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" : (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" : (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "", (i == now) ? "*" : ""); break; default: break; } return size; } static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1, const struct fiji_performance_level *pl2) { return ((pl1->memory_clock == pl2->memory_clock) && (pl1->engine_clock == pl2->engine_clock) && (pl1->pcie_gen == pl2->pcie_gen) && (pl1->pcie_lane == pl2->pcie_lane)); } int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) { const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1); const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2); int i; if (equal == NULL || psa == NULL || psb == NULL) return -EINVAL; /* If the two states don't even have the same number of performance levels they cannot be the same state. */ if (psa->performance_level_count != psb->performance_level_count) { *equal = false; return 0; } for (i = 0; i < psa->performance_level_count; i++) { if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { /* If we have found even one performance level pair that is different the states are different. */ *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); *equal &= (psa->sclk_threshold == psb->sclk_threshold); *equal &= (psa->acp_clk == psb->acp_clk); return 0; } bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend); bool is_update_required = false; struct cgs_display_info info = {0,0,NULL}; cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) is_update_required = true; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr) is_update_required = true; } return is_update_required; } static const struct pp_hwmgr_func fiji_hwmgr_funcs = { .backend_init = &fiji_hwmgr_backend_init, .backend_fini = &tonga_hwmgr_backend_fini, .asic_setup = &fiji_setup_asic_task, .dynamic_state_management_enable = &fiji_enable_dpm_tasks, .force_dpm_level = &fiji_dpm_force_dpm_level, .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries, .get_power_state_size = &fiji_get_power_state_size, .get_pp_table_entry = &fiji_get_pp_table_entry, .patch_boot_state = &fiji_patch_boot_state, .apply_state_adjust_rules = &fiji_apply_state_adjust_rules, .power_state_set = &fiji_set_power_state_tasks, .get_sclk = &fiji_dpm_get_sclk, .get_mclk = &fiji_dpm_get_mclk, .print_current_perforce_level = &fiji_print_current_perforce_level, .powergate_uvd = &fiji_phm_powergate_uvd, .powergate_vce = &fiji_phm_powergate_vce, .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating, .notify_smc_display_config_after_ps_adjustment = &tonga_notify_smc_display_config_after_ps_adjustment, .display_config_changed = &fiji_display_configuration_changed_task, .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output, .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output, .get_temperature = fiji_thermal_get_temperature, .stop_thermal_controller = fiji_thermal_stop_thermal_controller, .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info, .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent, .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent, .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm, .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller, .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt, .set_fan_control_mode = fiji_set_fan_control_mode, .get_fan_control_mode = fiji_get_fan_control_mode, .check_states_equal = fiji_check_states_equal, .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration, .get_pp_table = fiji_get_pp_table, .set_pp_table = fiji_set_pp_table, .force_clock_level = fiji_force_clock_level, .print_clock_levels = fiji_print_clock_levels, }; int fiji_hwmgr_init(struct pp_hwmgr *hwmgr) { struct fiji_hwmgr *data; int ret = 0; data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; hwmgr->hwmgr_func = &fiji_hwmgr_funcs; hwmgr->pptable_func = &tonga_pptable_funcs; pp_fiji_thermal_initialize(hwmgr); return ret; }