/* * Copyright (C) 2009 Daniel Hellstrom (daniel@gaisler.com) Aeroflex Gaisler AB * Copyright (C) 2009 Konrad Eisele (konrad@gaisler.com) Aeroflex Gaisler AB */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "prom.h" #include "irq.h" struct leon3_irqctrl_regs_map *leon3_irqctrl_regs; /* interrupt controller base address */ struct leon3_gptimer_regs_map *leon3_gptimer_regs; /* timer controller base address */ int leondebug_irq_disable; int leon_debug_irqout; static int dummy_master_l10_counter; unsigned long amba_system_id; static DEFINE_SPINLOCK(leon_irq_lock); unsigned long leon3_gptimer_irq; /* interrupt controller irq number */ unsigned long leon3_gptimer_idx; /* Timer Index (0..6) within Timer Core */ int leon3_ticker_irq; /* Timer ticker IRQ */ unsigned int sparc_leon_eirq; #define LEON_IMASK(cpu) (&leon3_irqctrl_regs->mask[cpu]) #define LEON_IACK (&leon3_irqctrl_regs->iclear) #define LEON_DO_ACK_HW 1 /* Return the last ACKed IRQ by the Extended IRQ controller. It has already * been (automatically) ACKed when the CPU takes the trap. */ static inline unsigned int leon_eirq_get(int cpu) { return LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->intid[cpu]) & 0x1f; } /* Handle one or multiple IRQs from the extended interrupt controller */ static void leon_handle_ext_irq(unsigned int irq, struct irq_desc *desc) { unsigned int eirq; int cpu = sparc_leon3_cpuid(); eirq = leon_eirq_get(cpu); if ((eirq & 0x10) && irq_map[eirq]->irq) /* bit4 tells if IRQ happened */ generic_handle_irq(irq_map[eirq]->irq); } /* The extended IRQ controller has been found, this function registers it */ void leon_eirq_setup(unsigned int eirq) { unsigned long mask, oldmask; unsigned int veirq; if (eirq < 1 || eirq > 0xf) { printk(KERN_ERR "LEON EXT IRQ NUMBER BAD: %d\n", eirq); return; } veirq = leon_build_device_irq(eirq, leon_handle_ext_irq, "extirq", 0); /* * Unmask the Extended IRQ, the IRQs routed through the Ext-IRQ * controller have a mask-bit of their own, so this is safe. */ irq_link(veirq); mask = 1 << eirq; oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(boot_cpu_id)); LEON3_BYPASS_STORE_PA(LEON_IMASK(boot_cpu_id), (oldmask | mask)); sparc_leon_eirq = eirq; } static inline unsigned long get_irqmask(unsigned int irq) { unsigned long mask; if (!irq || ((irq > 0xf) && !sparc_leon_eirq) || ((irq > 0x1f) && sparc_leon_eirq)) { printk(KERN_ERR "leon_get_irqmask: false irq number: %d\n", irq); mask = 0; } else { mask = LEON_HARD_INT(irq); } return mask; } #ifdef CONFIG_SMP static int irq_choose_cpu(const struct cpumask *affinity) { cpumask_t mask; cpumask_and(&mask, cpu_online_mask, affinity); if (cpumask_equal(&mask, cpu_online_mask) || cpumask_empty(&mask)) return boot_cpu_id; else return cpumask_first(&mask); } #else #define irq_choose_cpu(affinity) boot_cpu_id #endif static int leon_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { unsigned long mask, oldmask, flags; int oldcpu, newcpu; mask = (unsigned long)data->chip_data; oldcpu = irq_choose_cpu(data->affinity); newcpu = irq_choose_cpu(dest); if (oldcpu == newcpu) goto out; /* unmask on old CPU first before enabling on the selected CPU */ spin_lock_irqsave(&leon_irq_lock, flags); oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(oldcpu)); LEON3_BYPASS_STORE_PA(LEON_IMASK(oldcpu), (oldmask & ~mask)); oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(newcpu)); LEON3_BYPASS_STORE_PA(LEON_IMASK(newcpu), (oldmask | mask)); spin_unlock_irqrestore(&leon_irq_lock, flags); out: return IRQ_SET_MASK_OK; } static void leon_unmask_irq(struct irq_data *data) { unsigned long mask, oldmask, flags; int cpu; mask = (unsigned long)data->chip_data; cpu = irq_choose_cpu(data->affinity); spin_lock_irqsave(&leon_irq_lock, flags); oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(cpu)); LEON3_BYPASS_STORE_PA(LEON_IMASK(cpu), (oldmask | mask)); spin_unlock_irqrestore(&leon_irq_lock, flags); } static void leon_mask_irq(struct irq_data *data) { unsigned long mask, oldmask, flags; int cpu; mask = (unsigned long)data->chip_data; cpu = irq_choose_cpu(data->affinity); spin_lock_irqsave(&leon_irq_lock, flags); oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(cpu)); LEON3_BYPASS_STORE_PA(LEON_IMASK(cpu), (oldmask & ~mask)); spin_unlock_irqrestore(&leon_irq_lock, flags); } static unsigned int leon_startup_irq(struct irq_data *data) { irq_link(data->irq); leon_unmask_irq(data); return 0; } static void leon_shutdown_irq(struct irq_data *data) { leon_mask_irq(data); irq_unlink(data->irq); } /* Used by external level sensitive IRQ handlers on the LEON: ACK IRQ ctrl */ static void leon_eoi_irq(struct irq_data *data) { unsigned long mask = (unsigned long)data->chip_data; if (mask & LEON_DO_ACK_HW) LEON3_BYPASS_STORE_PA(LEON_IACK, mask & ~LEON_DO_ACK_HW); } static struct irq_chip leon_irq = { .name = "leon", .irq_startup = leon_startup_irq, .irq_shutdown = leon_shutdown_irq, .irq_mask = leon_mask_irq, .irq_unmask = leon_unmask_irq, .irq_eoi = leon_eoi_irq, .irq_set_affinity = leon_set_affinity, }; /* * Build a LEON IRQ for the edge triggered LEON IRQ controller: * Edge (normal) IRQ - handle_simple_irq, ack=DONT-CARE, never ack * Level IRQ (PCI|Level-GPIO) - handle_fasteoi_irq, ack=1, ack after ISR * Per-CPU Edge - handle_percpu_irq, ack=0 */ unsigned int leon_build_device_irq(unsigned int real_irq, irq_flow_handler_t flow_handler, const char *name, int do_ack) { unsigned int irq; unsigned long mask; irq = 0; mask = get_irqmask(real_irq); if (mask == 0) goto out; irq = irq_alloc(real_irq, real_irq); if (irq == 0) goto out; if (do_ack) mask |= LEON_DO_ACK_HW; irq_set_chip_and_handler_name(irq, &leon_irq, flow_handler, name); irq_set_chip_data(irq, (void *)mask); out: return irq; } static unsigned int _leon_build_device_irq(struct platform_device *op, unsigned int real_irq) { return leon_build_device_irq(real_irq, handle_simple_irq, "edge", 0); } void leon_update_virq_handling(unsigned int virq, irq_flow_handler_t flow_handler, const char *name, int do_ack) { unsigned long mask = (unsigned long)irq_get_chip_data(virq); mask &= ~LEON_DO_ACK_HW; if (do_ack) mask |= LEON_DO_ACK_HW; irq_set_chip_and_handler_name(virq, &leon_irq, flow_handler, name); irq_set_chip_data(virq, (void *)mask); } static u32 leon_cycles_offset(void) { u32 rld, val, off; rld = LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].rld); val = LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].val); off = rld - val; return rld - val; } #ifdef CONFIG_SMP /* smp clockevent irq */ irqreturn_t leon_percpu_timer_ce_interrupt(int irq, void *unused) { struct clock_event_device *ce; int cpu = smp_processor_id(); leon_clear_profile_irq(cpu); ce = &per_cpu(sparc32_clockevent, cpu); irq_enter(); if (ce->event_handler) ce->event_handler(ce); irq_exit(); return IRQ_HANDLED; } #endif /* CONFIG_SMP */ void __init leon_init_timers(void) { int irq, eirq; struct device_node *rootnp, *np, *nnp; struct property *pp; int len; int icsel; int ampopts; int err; sparc_config.get_cycles_offset = leon_cycles_offset; sparc_config.cs_period = 1000000 / HZ; sparc_config.features |= FEAT_L10_CLOCKSOURCE; #ifndef CONFIG_SMP sparc_config.features |= FEAT_L10_CLOCKEVENT; #endif leondebug_irq_disable = 0; leon_debug_irqout = 0; master_l10_counter = (unsigned int *)&dummy_master_l10_counter; dummy_master_l10_counter = 0; rootnp = of_find_node_by_path("/ambapp0"); if (!rootnp) goto bad; /* Find System ID: GRLIB build ID and optional CHIP ID */ pp = of_find_property(rootnp, "systemid", &len); if (pp) amba_system_id = *(unsigned long *)pp->value; /* Find IRQMP IRQ Controller Registers base adr otherwise bail out */ np = of_find_node_by_name(rootnp, "GAISLER_IRQMP"); if (!np) { np = of_find_node_by_name(rootnp, "01_00d"); if (!np) goto bad; } pp = of_find_property(np, "reg", &len); if (!pp) goto bad; leon3_irqctrl_regs = *(struct leon3_irqctrl_regs_map **)pp->value; /* Find GPTIMER Timer Registers base address otherwise bail out. */ nnp = rootnp; do { np = of_find_node_by_name(nnp, "GAISLER_GPTIMER"); if (!np) { np = of_find_node_by_name(nnp, "01_011"); if (!np) goto bad; } ampopts = 0; pp = of_find_property(np, "ampopts", &len); if (pp) { ampopts = *(int *)pp->value; if (ampopts == 0) { /* Skip this instance, resource already * allocated by other OS */ nnp = np; continue; } } /* Select Timer-Instance on Timer Core. Default is zero */ leon3_gptimer_idx = ampopts & 0x7; pp = of_find_property(np, "reg", &len); if (pp) leon3_gptimer_regs = *(struct leon3_gptimer_regs_map **) pp->value; pp = of_find_property(np, "interrupts", &len); if (pp) leon3_gptimer_irq = *(unsigned int *)pp->value; } while (0); if (!(leon3_gptimer_regs && leon3_irqctrl_regs && leon3_gptimer_irq)) goto bad; LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].val, 0); LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].rld, (((1000000 / HZ) - 1))); LEON3_BYPASS_STORE_PA( &leon3_gptimer_regs->e[leon3_gptimer_idx].ctrl, 0); #ifdef CONFIG_SMP leon3_ticker_irq = leon3_gptimer_irq + 1 + leon3_gptimer_idx; if (!(LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->config) & (1<e[leon3_gptimer_idx+1].val, 0); LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx+1].rld, (((1000000/HZ) - 1))); LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx+1].ctrl, 0); #endif /* * The IRQ controller may (if implemented) consist of multiple * IRQ controllers, each mapped on a 4Kb boundary. * Each CPU may be routed to different IRQCTRLs, however * we assume that all CPUs (in SMP system) is routed to the * same IRQ Controller, and for non-SMP only one IRQCTRL is * accessed anyway. * In AMP systems, Linux must run on CPU0 for the time being. */ icsel = LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->icsel[boot_cpu_id/8]); icsel = (icsel >> ((7 - (boot_cpu_id&0x7)) * 4)) & 0xf; leon3_irqctrl_regs += icsel; /* Mask all IRQs on boot-cpu IRQ controller */ LEON3_BYPASS_STORE_PA(&leon3_irqctrl_regs->mask[boot_cpu_id], 0); /* Probe extended IRQ controller */ eirq = (LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->mpstatus) >> 16) & 0xf; if (eirq != 0) leon_eirq_setup(eirq); irq = _leon_build_device_irq(NULL, leon3_gptimer_irq+leon3_gptimer_idx); err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL); if (err) { printk(KERN_ERR "unable to attach timer IRQ%d\n", irq); prom_halt(); } #ifdef CONFIG_SMP { unsigned long flags; /* * In SMP, sun4m adds a IPI handler to IRQ trap handler that * LEON never must take, sun4d and LEON overwrites the branch * with a NOP. */ local_irq_save(flags); patchme_maybe_smp_msg[0] = 0x01000000; /* NOP out the branch */ local_flush_cache_all(); local_irq_restore(flags); } #endif LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].ctrl, LEON3_GPTIMER_EN | LEON3_GPTIMER_RL | LEON3_GPTIMER_LD | LEON3_GPTIMER_IRQEN); #ifdef CONFIG_SMP /* Install per-cpu IRQ handler for broadcasted ticker */ irq = leon_build_device_irq(leon3_ticker_irq, handle_percpu_irq, "per-cpu", 0); err = request_irq(irq, leon_percpu_timer_ce_interrupt, IRQF_PERCPU | IRQF_TIMER, "ticker", NULL); if (err) { printk(KERN_ERR "unable to attach ticker IRQ%d\n", irq); prom_halt(); } LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx+1].ctrl, LEON3_GPTIMER_EN | LEON3_GPTIMER_RL | LEON3_GPTIMER_LD | LEON3_GPTIMER_IRQEN); #endif return; bad: printk(KERN_ERR "No Timer/irqctrl found\n"); BUG(); return; } void leon_clear_clock_irq(void) { } void leon_load_profile_irq(int cpu, unsigned int limit) { } void __init leon_trans_init(struct device_node *dp) { if (strcmp(dp->type, "cpu") == 0 && strcmp(dp->name, "") == 0) { struct property *p; p = of_find_property(dp, "mid", (void *)0); if (p) { int mid; dp->name = prom_early_alloc(5 + 1); memcpy(&mid, p->value, p->length); sprintf((char *)dp->name, "cpu%.2d", mid); } } } void __initdata (*prom_amba_init)(struct device_node *dp, struct device_node ***nextp) = 0; void __init leon_node_init(struct device_node *dp, struct device_node ***nextp) { if (prom_amba_init && strcmp(dp->type, "ambapp") == 0 && strcmp(dp->name, "ambapp0") == 0) { prom_amba_init(dp, nextp); } } #ifdef CONFIG_SMP void leon_set_cpu_int(int cpu, int level) { unsigned long mask; mask = get_irqmask(level); LEON3_BYPASS_STORE_PA(&leon3_irqctrl_regs->force[cpu], mask); } static void leon_clear_ipi(int cpu, int level) { unsigned long mask; mask = get_irqmask(level); LEON3_BYPASS_STORE_PA(&leon3_irqctrl_regs->force[cpu], mask<<16); } static void leon_set_udt(int cpu) { } void leon_clear_profile_irq(int cpu) { } void leon_enable_irq_cpu(unsigned int irq_nr, unsigned int cpu) { unsigned long mask, flags, *addr; mask = get_irqmask(irq_nr); spin_lock_irqsave(&leon_irq_lock, flags); addr = (unsigned long *)LEON_IMASK(cpu); LEON3_BYPASS_STORE_PA(addr, (LEON3_BYPASS_LOAD_PA(addr) | mask)); spin_unlock_irqrestore(&leon_irq_lock, flags); } #endif void __init leon_init_IRQ(void) { sparc_config.init_timers = leon_init_timers; sparc_config.build_device_irq = _leon_build_device_irq; sparc_config.clock_rate = 1000000; BTFIXUPSET_CALL(clear_clock_irq, leon_clear_clock_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(load_profile_irq, leon_load_profile_irq, BTFIXUPCALL_NOP); #ifdef CONFIG_SMP BTFIXUPSET_CALL(set_cpu_int, leon_set_cpu_int, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_cpu_int, leon_clear_ipi, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(set_irq_udt, leon_set_udt, BTFIXUPCALL_NORM); #endif } void __init leon_init(void) { of_pdt_build_more = &leon_node_init; }