/* * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org * * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "drm_crtc_internal.h" #include "drm_legacy.h" #include "drm_internal.h" /* * drm_debug: Enable debug output. * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. */ unsigned int drm_debug = 0; EXPORT_SYMBOL(drm_debug); MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); MODULE_DESCRIPTION("DRM shared core routines"); MODULE_LICENSE("GPL and additional rights"); MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n" "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n" "\t\tBit 8 (0x100) will enable DP messages (displayport code)"); module_param_named(debug, drm_debug, int, 0600); static DEFINE_SPINLOCK(drm_minor_lock); static struct idr drm_minors_idr; /* * If the drm core fails to init for whatever reason, * we should prevent any drivers from registering with it. * It's best to check this at drm_dev_init(), as some drivers * prefer to embed struct drm_device into their own device * structure and call drm_dev_init() themselves. */ static bool drm_core_init_complete = false; static struct dentry *drm_debugfs_root; DEFINE_STATIC_SRCU(drm_unplug_srcu); /* * DRM Minors * A DRM device can provide several char-dev interfaces on the DRM-Major. Each * of them is represented by a drm_minor object. Depending on the capabilities * of the device-driver, different interfaces are registered. * * Minors can be accessed via dev->$minor_name. This pointer is either * NULL or a valid drm_minor pointer and stays valid as long as the device is * valid. This means, DRM minors have the same life-time as the underlying * device. However, this doesn't mean that the minor is active. Minors are * registered and unregistered dynamically according to device-state. */ static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, unsigned int type) { switch (type) { case DRM_MINOR_PRIMARY: return &dev->primary; case DRM_MINOR_RENDER: return &dev->render; default: BUG(); } } static int drm_minor_alloc(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int r; minor = kzalloc(sizeof(*minor), GFP_KERNEL); if (!minor) return -ENOMEM; minor->type = type; minor->dev = dev; idr_preload(GFP_KERNEL); spin_lock_irqsave(&drm_minor_lock, flags); r = idr_alloc(&drm_minors_idr, NULL, 64 * type, 64 * (type + 1), GFP_NOWAIT); spin_unlock_irqrestore(&drm_minor_lock, flags); idr_preload_end(); if (r < 0) goto err_free; minor->index = r; minor->kdev = drm_sysfs_minor_alloc(minor); if (IS_ERR(minor->kdev)) { r = PTR_ERR(minor->kdev); goto err_index; } *drm_minor_get_slot(dev, type) = minor; return 0; err_index: spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); err_free: kfree(minor); return r; } static void drm_minor_free(struct drm_device *dev, unsigned int type) { struct drm_minor **slot, *minor; unsigned long flags; slot = drm_minor_get_slot(dev, type); minor = *slot; if (!minor) return; put_device(minor->kdev); spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); kfree(minor); *slot = NULL; } static int drm_minor_register(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int ret; DRM_DEBUG("\n"); minor = *drm_minor_get_slot(dev, type); if (!minor) return 0; ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); if (ret) { DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); goto err_debugfs; } ret = device_add(minor->kdev); if (ret) goto err_debugfs; /* replace NULL with @minor so lookups will succeed from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, minor, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); DRM_DEBUG("new minor registered %d\n", minor->index); return 0; err_debugfs: drm_debugfs_cleanup(minor); return ret; } static void drm_minor_unregister(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; minor = *drm_minor_get_slot(dev, type); if (!minor || !device_is_registered(minor->kdev)) return; /* replace @minor with NULL so lookups will fail from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, NULL, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); device_del(minor->kdev); dev_set_drvdata(minor->kdev, NULL); /* safety belt */ drm_debugfs_cleanup(minor); } /* * Looks up the given minor-ID and returns the respective DRM-minor object. The * refence-count of the underlying device is increased so you must release this * object with drm_minor_release(). * * As long as you hold this minor, it is guaranteed that the object and the * minor->dev pointer will stay valid! However, the device may get unplugged and * unregistered while you hold the minor. */ struct drm_minor *drm_minor_acquire(unsigned int minor_id) { struct drm_minor *minor; unsigned long flags; spin_lock_irqsave(&drm_minor_lock, flags); minor = idr_find(&drm_minors_idr, minor_id); if (minor) drm_dev_get(minor->dev); spin_unlock_irqrestore(&drm_minor_lock, flags); if (!minor) { return ERR_PTR(-ENODEV); } else if (drm_dev_is_unplugged(minor->dev)) { drm_dev_put(minor->dev); return ERR_PTR(-ENODEV); } return minor; } void drm_minor_release(struct drm_minor *minor) { drm_dev_put(minor->dev); } /** * DOC: driver instance overview * * A device instance for a drm driver is represented by &struct drm_device. This * is initialized with drm_dev_init(), usually from bus-specific ->probe() * callbacks implemented by the driver. The driver then needs to initialize all * the various subsystems for the drm device like memory management, vblank * handling, modesetting support and intial output configuration plus obviously * initialize all the corresponding hardware bits. Finally when everything is up * and running and ready for userspace the device instance can be published * using drm_dev_register(). * * There is also deprecated support for initalizing device instances using * bus-specific helpers and the &drm_driver.load callback. But due to * backwards-compatibility needs the device instance have to be published too * early, which requires unpretty global locking to make safe and is therefore * only support for existing drivers not yet converted to the new scheme. * * When cleaning up a device instance everything needs to be done in reverse: * First unpublish the device instance with drm_dev_unregister(). Then clean up * any other resources allocated at device initialization and drop the driver's * reference to &drm_device using drm_dev_put(). * * Note that the lifetime rules for &drm_device instance has still a lot of * historical baggage. Hence use the reference counting provided by * drm_dev_get() and drm_dev_put() only carefully. */ /** * drm_put_dev - Unregister and release a DRM device * @dev: DRM device * * Called at module unload time or when a PCI device is unplugged. * * Cleans up all DRM device, calling drm_lastclose(). * * Note: Use of this function is deprecated. It will eventually go away * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly * instead to make sure that the device isn't userspace accessible any more * while teardown is in progress, ensuring that userspace can't access an * inconsistent state. */ void drm_put_dev(struct drm_device *dev) { DRM_DEBUG("\n"); if (!dev) { DRM_ERROR("cleanup called no dev\n"); return; } drm_dev_unregister(dev); drm_dev_put(dev); } EXPORT_SYMBOL(drm_put_dev); /** * drm_dev_enter - Enter device critical section * @dev: DRM device * @idx: Pointer to index that will be passed to the matching drm_dev_exit() * * This function marks and protects the beginning of a section that should not * be entered after the device has been unplugged. The section end is marked * with drm_dev_exit(). Calls to this function can be nested. * * Returns: * True if it is OK to enter the section, false otherwise. */ bool drm_dev_enter(struct drm_device *dev, int *idx) { *idx = srcu_read_lock(&drm_unplug_srcu); if (dev->unplugged) { srcu_read_unlock(&drm_unplug_srcu, *idx); return false; } return true; } EXPORT_SYMBOL(drm_dev_enter); /** * drm_dev_exit - Exit device critical section * @idx: index returned from drm_dev_enter() * * This function marks the end of a section that should not be entered after * the device has been unplugged. */ void drm_dev_exit(int idx) { srcu_read_unlock(&drm_unplug_srcu, idx); } EXPORT_SYMBOL(drm_dev_exit); /** * drm_dev_unplug - unplug a DRM device * @dev: DRM device * * This unplugs a hotpluggable DRM device, which makes it inaccessible to * userspace operations. Entry-points can use drm_dev_enter() and * drm_dev_exit() to protect device resources in a race free manner. This * essentially unregisters the device like drm_dev_unregister(), but can be * called while there are still open users of @dev. */ void drm_dev_unplug(struct drm_device *dev) { /* * After synchronizing any critical read section is guaranteed to see * the new value of ->unplugged, and any critical section which might * still have seen the old value of ->unplugged is guaranteed to have * finished. */ dev->unplugged = true; synchronize_srcu(&drm_unplug_srcu); drm_dev_unregister(dev); } EXPORT_SYMBOL(drm_dev_unplug); /* * DRM internal mount * We want to be able to allocate our own "struct address_space" to control * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow * stand-alone address_space objects, so we need an underlying inode. As there * is no way to allocate an independent inode easily, we need a fake internal * VFS mount-point. * * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() * frees it again. You are allowed to use iget() and iput() to get references to * the inode. But each drm_fs_inode_new() call must be paired with exactly one * drm_fs_inode_free() call (which does not have to be the last iput()). * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it * between multiple inode-users. You could, technically, call * iget() + drm_fs_inode_free() directly after alloc and sometime later do an * iput(), but this way you'd end up with a new vfsmount for each inode. */ static int drm_fs_cnt; static struct vfsmount *drm_fs_mnt; static const struct dentry_operations drm_fs_dops = { .d_dname = simple_dname, }; static const struct super_operations drm_fs_sops = { .statfs = simple_statfs, }; static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo(fs_type, "drm:", &drm_fs_sops, &drm_fs_dops, 0x010203ff); } static struct file_system_type drm_fs_type = { .name = "drm", .owner = THIS_MODULE, .mount = drm_fs_mount, .kill_sb = kill_anon_super, }; static struct inode *drm_fs_inode_new(void) { struct inode *inode; int r; r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); if (r < 0) { DRM_ERROR("Cannot mount pseudo fs: %d\n", r); return ERR_PTR(r); } inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); if (IS_ERR(inode)) simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); return inode; } static void drm_fs_inode_free(struct inode *inode) { if (inode) { iput(inode); simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); } } /** * DOC: component helper usage recommendations * * DRM drivers that drive hardware where a logical device consists of a pile of * independent hardware blocks are recommended to use the :ref:`component helper * library`. For consistency and better options for code reuse the * following guidelines apply: * * - The entire device initialization procedure should be run from the * &component_master_ops.master_bind callback, starting with drm_dev_init(), * then binding all components with component_bind_all() and finishing with * drm_dev_register(). * * - The opaque pointer passed to all components through component_bind_all() * should point at &struct drm_device of the device instance, not some driver * specific private structure. * * - The component helper fills the niche where further standardization of * interfaces is not practical. When there already is, or will be, a * standardized interface like &drm_bridge or &drm_panel, providing its own * functions to find such components at driver load time, like * drm_of_find_panel_or_bridge(), then the component helper should not be * used. */ /** * drm_dev_init - Initialise new DRM device * @dev: DRM device * @driver: DRM driver * @parent: Parent device object * * Initialize a new DRM device. No device registration is done. * Call drm_dev_register() to advertice the device to user space and register it * with other core subsystems. This should be done last in the device * initialization sequence to make sure userspace can't access an inconsistent * state. * * The initial ref-count of the object is 1. Use drm_dev_get() and * drm_dev_put() to take and drop further ref-counts. * * It is recommended that drivers embed &struct drm_device into their own device * structure. * * Drivers that do not want to allocate their own device struct * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers * that do embed &struct drm_device it must be placed first in the overall * structure, and the overall structure must be allocated using kmalloc(): The * drm core's release function unconditionally calls kfree() on the @dev pointer * when the final reference is released. To override this behaviour, and so * allow embedding of the drm_device inside the driver's device struct at an * arbitrary offset, you must supply a &drm_driver.release callback and control * the finalization explicitly. * * RETURNS: * 0 on success, or error code on failure. */ int drm_dev_init(struct drm_device *dev, struct drm_driver *driver, struct device *parent) { int ret; if (!drm_core_init_complete) { DRM_ERROR("DRM core is not initialized\n"); return -ENODEV; } BUG_ON(!parent); kref_init(&dev->ref); dev->dev = get_device(parent); dev->driver = driver; /* no per-device feature limits by default */ dev->driver_features = ~0u; INIT_LIST_HEAD(&dev->filelist); INIT_LIST_HEAD(&dev->filelist_internal); INIT_LIST_HEAD(&dev->clientlist); INIT_LIST_HEAD(&dev->ctxlist); INIT_LIST_HEAD(&dev->vmalist); INIT_LIST_HEAD(&dev->maplist); INIT_LIST_HEAD(&dev->vblank_event_list); spin_lock_init(&dev->buf_lock); spin_lock_init(&dev->event_lock); mutex_init(&dev->struct_mutex); mutex_init(&dev->filelist_mutex); mutex_init(&dev->clientlist_mutex); mutex_init(&dev->ctxlist_mutex); mutex_init(&dev->master_mutex); dev->anon_inode = drm_fs_inode_new(); if (IS_ERR(dev->anon_inode)) { ret = PTR_ERR(dev->anon_inode); DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); goto err_free; } if (drm_core_check_feature(dev, DRIVER_RENDER)) { ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; } ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); if (ret) goto err_minors; ret = drm_ht_create(&dev->map_hash, 12); if (ret) goto err_minors; drm_legacy_ctxbitmap_init(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto err_ctxbitmap; } } ret = drm_dev_set_unique(dev, dev_name(parent)); if (ret) goto err_setunique; return 0; err_setunique: if (drm_core_check_feature(dev, DRIVER_GEM)) drm_gem_destroy(dev); err_ctxbitmap: drm_legacy_ctxbitmap_cleanup(dev); drm_ht_remove(&dev->map_hash); err_minors: drm_minor_free(dev, DRM_MINOR_PRIMARY); drm_minor_free(dev, DRM_MINOR_RENDER); drm_fs_inode_free(dev->anon_inode); err_free: put_device(dev->dev); mutex_destroy(&dev->master_mutex); mutex_destroy(&dev->ctxlist_mutex); mutex_destroy(&dev->clientlist_mutex); mutex_destroy(&dev->filelist_mutex); mutex_destroy(&dev->struct_mutex); return ret; } EXPORT_SYMBOL(drm_dev_init); static void devm_drm_dev_init_release(void *data) { drm_dev_put(data); } /** * devm_drm_dev_init - Resource managed drm_dev_init() * @parent: Parent device object * @dev: DRM device * @driver: DRM driver * * Managed drm_dev_init(). The DRM device initialized with this function is * automatically put on driver detach using drm_dev_put(). You must supply a * &drm_driver.release callback to control the finalization explicitly. * * RETURNS: * 0 on success, or error code on failure. */ int devm_drm_dev_init(struct device *parent, struct drm_device *dev, struct drm_driver *driver) { int ret; if (WARN_ON(!parent || !driver->release)) return -EINVAL; ret = drm_dev_init(dev, driver, parent); if (ret) return ret; ret = devm_add_action(parent, devm_drm_dev_init_release, dev); if (ret) devm_drm_dev_init_release(dev); return ret; } EXPORT_SYMBOL(devm_drm_dev_init); /** * drm_dev_fini - Finalize a dead DRM device * @dev: DRM device * * Finalize a dead DRM device. This is the converse to drm_dev_init() and * frees up all data allocated by it. All driver private data should be * finalized first. Note that this function does not free the @dev, that is * left to the caller. * * The ref-count of @dev must be zero, and drm_dev_fini() should only be called * from a &drm_driver.release callback. */ void drm_dev_fini(struct drm_device *dev) { drm_vblank_cleanup(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) drm_gem_destroy(dev); drm_legacy_ctxbitmap_cleanup(dev); drm_ht_remove(&dev->map_hash); drm_fs_inode_free(dev->anon_inode); drm_minor_free(dev, DRM_MINOR_PRIMARY); drm_minor_free(dev, DRM_MINOR_RENDER); put_device(dev->dev); mutex_destroy(&dev->master_mutex); mutex_destroy(&dev->ctxlist_mutex); mutex_destroy(&dev->clientlist_mutex); mutex_destroy(&dev->filelist_mutex); mutex_destroy(&dev->struct_mutex); kfree(dev->unique); } EXPORT_SYMBOL(drm_dev_fini); /** * drm_dev_alloc - Allocate new DRM device * @driver: DRM driver to allocate device for * @parent: Parent device object * * Allocate and initialize a new DRM device. No device registration is done. * Call drm_dev_register() to advertice the device to user space and register it * with other core subsystems. This should be done last in the device * initialization sequence to make sure userspace can't access an inconsistent * state. * * The initial ref-count of the object is 1. Use drm_dev_get() and * drm_dev_put() to take and drop further ref-counts. * * Note that for purely virtual devices @parent can be NULL. * * Drivers that wish to subclass or embed &struct drm_device into their * own struct should look at using drm_dev_init() instead. * * RETURNS: * Pointer to new DRM device, or ERR_PTR on failure. */ struct drm_device *drm_dev_alloc(struct drm_driver *driver, struct device *parent) { struct drm_device *dev; int ret; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); ret = drm_dev_init(dev, driver, parent); if (ret) { kfree(dev); return ERR_PTR(ret); } return dev; } EXPORT_SYMBOL(drm_dev_alloc); static void drm_dev_release(struct kref *ref) { struct drm_device *dev = container_of(ref, struct drm_device, ref); if (dev->driver->release) { dev->driver->release(dev); } else { drm_dev_fini(dev); kfree(dev); } } /** * drm_dev_get - Take reference of a DRM device * @dev: device to take reference of or NULL * * This increases the ref-count of @dev by one. You *must* already own a * reference when calling this. Use drm_dev_put() to drop this reference * again. * * This function never fails. However, this function does not provide *any* * guarantee whether the device is alive or running. It only provides a * reference to the object and the memory associated with it. */ void drm_dev_get(struct drm_device *dev) { if (dev) kref_get(&dev->ref); } EXPORT_SYMBOL(drm_dev_get); /** * drm_dev_put - Drop reference of a DRM device * @dev: device to drop reference of or NULL * * This decreases the ref-count of @dev by one. The device is destroyed if the * ref-count drops to zero. */ void drm_dev_put(struct drm_device *dev) { if (dev) kref_put(&dev->ref, drm_dev_release); } EXPORT_SYMBOL(drm_dev_put); static int create_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; int ret; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return 0; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return 0; /* * Some existing userspace out there uses the existing of the controlD* * sysfs files to figure out whether it's a modeset driver. It only does * readdir, hence a symlink is sufficient (and the least confusing * option). Otherwise controlD* is entirely unused. * * Old controlD chardev have been allocated in the range * 64-127. */ name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return -ENOMEM; ret = sysfs_create_link(minor->kdev->kobj.parent, &minor->kdev->kobj, name); kfree(name); return ret; } static void remove_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return; name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return; sysfs_remove_link(minor->kdev->kobj.parent, name); kfree(name); } /** * drm_dev_register - Register DRM device * @dev: Device to register * @flags: Flags passed to the driver's .load() function * * Register the DRM device @dev with the system, advertise device to user-space * and start normal device operation. @dev must be initialized via drm_dev_init() * previously. * * Never call this twice on any device! * * NOTE: To ensure backward compatibility with existing drivers method this * function calls the &drm_driver.load method after registering the device * nodes, creating race conditions. Usage of the &drm_driver.load methods is * therefore deprecated, drivers must perform all initialization before calling * drm_dev_register(). * * RETURNS: * 0 on success, negative error code on failure. */ int drm_dev_register(struct drm_device *dev, unsigned long flags) { struct drm_driver *driver = dev->driver; int ret; mutex_lock(&drm_global_mutex); ret = drm_minor_register(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); if (ret) goto err_minors; ret = create_compat_control_link(dev); if (ret) goto err_minors; dev->registered = true; if (dev->driver->load) { ret = dev->driver->load(dev, flags); if (ret) goto err_minors; } if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_register_all(dev); ret = 0; DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", driver->name, driver->major, driver->minor, driver->patchlevel, driver->date, dev->dev ? dev_name(dev->dev) : "virtual device", dev->primary->index); goto out_unlock; err_minors: remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); out_unlock: mutex_unlock(&drm_global_mutex); return ret; } EXPORT_SYMBOL(drm_dev_register); /** * drm_dev_unregister - Unregister DRM device * @dev: Device to unregister * * Unregister the DRM device from the system. This does the reverse of * drm_dev_register() but does not deallocate the device. The caller must call * drm_dev_put() to drop their final reference. * * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), * which can be called while there are still open users of @dev. * * This should be called first in the device teardown code to make sure * userspace can't access the device instance any more. */ void drm_dev_unregister(struct drm_device *dev) { struct drm_map_list *r_list, *list_temp; if (drm_core_check_feature(dev, DRIVER_LEGACY)) drm_lastclose(dev); dev->registered = false; drm_client_dev_unregister(dev); if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_unregister_all(dev); if (dev->driver->unload) dev->driver->unload(dev); if (dev->agp) drm_pci_agp_destroy(dev); list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) drm_legacy_rmmap(dev, r_list->map); remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); } EXPORT_SYMBOL(drm_dev_unregister); /** * drm_dev_set_unique - Set the unique name of a DRM device * @dev: device of which to set the unique name * @name: unique name * * Sets the unique name of a DRM device using the specified string. This is * already done by drm_dev_init(), drivers should only override the default * unique name for backwards compatibility reasons. * * Return: 0 on success or a negative error code on failure. */ int drm_dev_set_unique(struct drm_device *dev, const char *name) { kfree(dev->unique); dev->unique = kstrdup(name, GFP_KERNEL); return dev->unique ? 0 : -ENOMEM; } EXPORT_SYMBOL(drm_dev_set_unique); /* * DRM Core * The DRM core module initializes all global DRM objects and makes them * available to drivers. Once setup, drivers can probe their respective * devices. * Currently, core management includes: * - The "DRM-Global" key/value database * - Global ID management for connectors * - DRM major number allocation * - DRM minor management * - DRM sysfs class * - DRM debugfs root * * Furthermore, the DRM core provides dynamic char-dev lookups. For each * interface registered on a DRM device, you can request minor numbers from DRM * core. DRM core takes care of major-number management and char-dev * registration. A stub ->open() callback forwards any open() requests to the * registered minor. */ static int drm_stub_open(struct inode *inode, struct file *filp) { const struct file_operations *new_fops; struct drm_minor *minor; int err; DRM_DEBUG("\n"); mutex_lock(&drm_global_mutex); minor = drm_minor_acquire(iminor(inode)); if (IS_ERR(minor)) { err = PTR_ERR(minor); goto out_unlock; } new_fops = fops_get(minor->dev->driver->fops); if (!new_fops) { err = -ENODEV; goto out_release; } replace_fops(filp, new_fops); if (filp->f_op->open) err = filp->f_op->open(inode, filp); else err = 0; out_release: drm_minor_release(minor); out_unlock: mutex_unlock(&drm_global_mutex); return err; } static const struct file_operations drm_stub_fops = { .owner = THIS_MODULE, .open = drm_stub_open, .llseek = noop_llseek, }; static void drm_core_exit(void) { unregister_chrdev(DRM_MAJOR, "drm"); debugfs_remove(drm_debugfs_root); drm_sysfs_destroy(); idr_destroy(&drm_minors_idr); drm_connector_ida_destroy(); } static int __init drm_core_init(void) { int ret; drm_connector_ida_init(); idr_init(&drm_minors_idr); ret = drm_sysfs_init(); if (ret < 0) { DRM_ERROR("Cannot create DRM class: %d\n", ret); goto error; } drm_debugfs_root = debugfs_create_dir("dri", NULL); if (!drm_debugfs_root) { ret = -ENOMEM; DRM_ERROR("Cannot create debugfs-root: %d\n", ret); goto error; } ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); if (ret < 0) goto error; drm_core_init_complete = true; DRM_DEBUG("Initialized\n"); return 0; error: drm_core_exit(); return ret; } module_init(drm_core_init); module_exit(drm_core_exit);